JPS649375B2 - - Google Patents

Info

Publication number
JPS649375B2
JPS649375B2 JP4835984A JP4835984A JPS649375B2 JP S649375 B2 JPS649375 B2 JP S649375B2 JP 4835984 A JP4835984 A JP 4835984A JP 4835984 A JP4835984 A JP 4835984A JP S649375 B2 JPS649375 B2 JP S649375B2
Authority
JP
Japan
Prior art keywords
temperature
amount
control
brick
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4835984A
Other languages
Japanese (ja)
Other versions
JPS60194004A (en
Inventor
Koichi Ootsuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4835984A priority Critical patent/JPS60194004A/en
Publication of JPS60194004A publication Critical patent/JPS60194004A/en
Publication of JPS649375B2 publication Critical patent/JPS649375B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B9/00Stoves for heating the blast in blast furnaces
    • C21B9/10Other details, e.g. blast mains

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、熱風炉の燃焼制御方法に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a combustion control method for a hot blast stove.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年の熱風炉の蓋熱室には、従来の粘土質、高
アルミナ質煉瓦に代つて、ケイ石質煉瓦が高温下
特性が優れているため、高速風温度を得るに用い
られている。
In recent years, siliceous bricks have been used in the lid heating chambers of hot air stoves to obtain high-velocity air temperatures, instead of the conventional clay and high alumina bricks, due to their superior high-temperature properties.

一方、周知のように、熱風炉操業において、燃
焼期の投入熱量が不足すると、送風期において指
定された温度を維持できず、高炉の円滑な操業を
阻害する。他方で、過剰な熱量を投入した場合
は、高炉送風として有効に利用される熱量以上を
投入することになり、排ガスに伴う熱損失が大き
くなり、炉休放散熱損失量が増大し、結局熱効率
が低下する。
On the other hand, as is well known, when operating a hot blast furnace, if the amount of input heat during the combustion period is insufficient, the specified temperature cannot be maintained during the blowing period, which impedes the smooth operation of the blast furnace. On the other hand, if an excessive amount of heat is input, more heat will be input than can be effectively used for blowing air into the blast furnace, which will increase the heat loss due to exhaust gas, increase the amount of heat dissipated during furnace downtime, and ultimately reduce the thermal efficiency. decreases.

そこで、所定の送風温度を維持するために、本
出願人の出願に係る特公昭57−19725号公報記載
の発明等が提案されている。なるほど、この方法
はある面において有効であるけれども、ケイ石質
煉瓦等の管理下限温度が存在する煉瓦を用いる最
近の熱風炉や、必要とされる送風温度が低下して
いる高炉設備の下では、熱効率の面でいま一歩の
感がある。すなわち、現情では、送風温度の維持
のためよりも、ケイ石質煉瓦の下限管理温度を下
らせないために、投入熱量を調節する必要があ
る。
Therefore, in order to maintain a predetermined air blowing temperature, the invention described in Japanese Patent Publication No. 19725/1983 filed by the present applicant has been proposed. Although this method is effective in some respects, it is not suitable for modern hot blast furnaces that use bricks such as silica bricks that have a minimum control temperature, or for blast furnace equipment where the required air blowing temperature is lower. , I feel like it's one step ahead in terms of thermal efficiency. That is, under the current circumstances, it is necessary to adjust the amount of heat input to prevent the lower limit control temperature of the siliceous bricks from falling, rather than to maintain the blast temperature.

〔発明の目的〕[Purpose of the invention]

本発明は、前記事情に鑑み提案されたもので、
その目的は必要とされる送風温度条件を満たしつ
つ、煉瓦の保護を図りながら、投入熱量を極力少
くして熱効率に優れたものとなる熱風炉の燃焼制
御方法を提供することを目的としている。
The present invention was proposed in view of the above circumstances, and
The purpose is to provide a combustion control method for a hot air stove that satisfies the required air blowing temperature conditions, protects the bricks, and minimizes the amount of heat input to achieve excellent thermal efficiency.

〔発明の概要〕[Summary of the invention]

この目的を達成するための本発明法は、低温時
の特性が問題となる煉瓦を耐火材として用いた熱
風炉にあつて、前記煉瓦部分を測温し、その煉瓦
の管理下限温度より低くなることを防止するため
に必要な燃料投入量と、送風終了時の熱風炉出口
温度を設定された送風温度に制御するために必要
な燃料投入量との関係の下で、それらのうち大な
る方の燃料投入量を基準として熱風炉において燃
焼を行うことを特徴とするものである。
The method of the present invention to achieve this objective measures the temperature of the brick part in a hot air stove using brick as a refractory material whose characteristics at low temperatures are a problem, and the temperature is lower than the control lower limit temperature of the brick. Based on the relationship between the amount of fuel input required to prevent this from occurring and the amount of fuel input required to control the hot air furnace outlet temperature at the end of blasting to the set blasting temperature, whichever is greater is determined. This method is characterized in that combustion is carried out in a hot stove based on the amount of fuel input.

すなわち、本発明は、送風温度から要求される
燃料投入量のほかに、煉瓦の管理下限温度から要
求される燃料投入量も加味し、両者の大なる方の
燃料投入量を基準として燃焼を行うことによつ
て、熱効率を高めるとともに、炉体保護を図らん
とするものである。
That is, in the present invention, in addition to the amount of fuel input required from the blowing temperature, the amount of fuel input required from the lower limit temperature of the brick is taken into account, and combustion is performed based on the larger of the two. By doing so, it is intended to increase thermal efficiency and protect the furnace body.

〔発明の具体例〕[Specific examples of the invention]

以下本発明を図面に示した具体例を参照しなが
らさらに詳説する。
The present invention will be explained in more detail below with reference to specific examples shown in the drawings.

高炉へ供給される送風温度の制御は、第1図に
示すように、熱風炉1と高炉2とを連通している
熱風本管3の途中に設けられている送風温度計4
によつて測温し、これを送風温度調節計5に取込
み、この送風温度調節計5により、混合冷風管6
の途中に設けられている混合冷風調節弁7の開度
を調節し、冷風の混合比率を増減することにより
行なわれている。そして、従来の燃焼制御法にあ
つては、特公昭57−19725号公報のように、混合
冷風調節弁7の送風終了時の開度に基いて、調節
計5からの制御出力を発信器8から計算機9に入
力し、計算機10で次燃焼サイクルでの最適燃料
投入量を算出し、その結果を発信器11から燃料
供給量調節計12へ与え、燃料供給調節弁13を
制御するものであつた。
The temperature of the blast air supplied to the blast furnace is controlled by a blast thermometer 4 installed in the middle of the hot blast main pipe 3 that communicates the hot blast furnace 1 and the blast furnace 2, as shown in FIG.
The temperature is measured by the temperature controller 5, and the temperature is taken into the temperature controller 5.
This is done by adjusting the opening degree of a mixed cold air regulating valve 7 provided in the middle of the air and increasing/decreasing the mixing ratio of the cold air. In the conventional combustion control method, as in Japanese Patent Publication No. 57-19725, the control output from the controller 5 is transmitted to the transmitter 8 based on the opening degree of the mixed cold air control valve 7 at the end of air blowing. is input into the computer 9, the computer 10 calculates the optimum fuel input amount for the next combustion cycle, and the result is sent from the transmitter 11 to the fuel supply amount controller 12 to control the fuel supply control valve 13. Ta.

すなわち、次記(1)式にあらわされる制御方法で
ある。
That is, this is a control method expressed by the following equation (1).

FgasN+1=FgasN+K・(RVALV N−RVALV *) (1) ここでFgasN+1:次サイクル燃料供給量 FgagN:今サイクル燃料供給量 K:定数 RVALV N:今サイクル送風終了時混合冷
風調節弁開度 RVALV *:目標送風終了時混合冷風調節
弁開度 N:サイクルNo しかし、この従来法では、ケイ石質煉瓦の管理
下限温度(たとえば煉瓦の継目部温度が500℃未
満になると炉体の寿命低下が激しくなる)を考慮
しておらず、この温度以下になるような投入熱量
を与えないことがあり、また逆に温度の余裕代を
取り過ぎて不必要な熱量を投入して熱効率を悪く
しがちである。
Fgas N+1 = Fgas N +K・(R VALV N −R VALV * ) (1) Here, Fgas N+1 : Next cycle fuel supply amount Fgag N : Current cycle fuel supply amount K: Constant R VALV N : Current cycle Opening degree of mixed cold air control valve at the end of blowing R VALV * : Target opening degree of mixed cool air control valve at the end of blowing N: Cycle No. If the temperature is below 500℃, the life of the furnace body will be drastically shortened), so the amount of heat input that would bring the temperature below this temperature may not be given, or conversely, too much temperature margin is taken, making it unnecessary. This tends to lead to poor thermal efficiency due to the large amount of heat input.

そこで、本発明では、ケイ石質煉瓦16の下限
温度を管理するために、たとえば蓋熱室のケイ石
質煉瓦16の最下部でかつ外側位置に煉瓦継目測
温計14を設け、発信器15により温度信号を計
算機9に与え、次記(2)〜(4)の演算処理を行い、最
終的に(4)式の出力をもつて燃料供給調節弁13を
調節するものである。
Therefore, in the present invention, in order to control the lower limit temperature of the siliceous bricks 16, a brick joint thermometer 14 is provided at the lowest and outer position of the siliceous bricks 16 in the lid heat chamber, and a transmitter 15 is provided. A temperature signal is given to the computer 9, which performs the following arithmetic processing (2) to (4), and finally controls the fuel supply control valve 13 with the output of equation (4).

Fgas(BlastN+1)=FgasN3j=0 ・Gj・(TbN+1-j−TbN-j)+3j=0 ・Hj・(TdegN-j−TbN-j) (2) Fgas(ShellN+1)=FgasN3j=0 gj・(TbN+1-j−TbN-j)+3j=0 hj・(TshellN-1−Tshell*) (3) FgasN+1max〔FgasN+1(Blast),Fgas(Shell)〕N+1
(4) ここで FgasN+1(Blast):送風温度制御に必要な次サイ
クル燃料供給量 FgasN+1(Shell):珪石継目温度制御に必要な次サ
イクル燃料供給量 FgasN:今サイクル実績燃料供給量 FgasN+1:次サイクル燃料供給量最終出力 Tb :設定送風温度 TdegN:送風終了時熱風炉出口温度 TshellN:送風終了時珪石継目温度 Tshell*:目標珪石継目温度 Gj,Hj,gj,hj:定数 また、ここで、熱風炉出口温度Tdegは実測し
てもよいが、混合冷風調節弁(バタ弁)7の開度
Rvailvおよび送風終了時実測送風温度TBから、
次記(5)式および第3図のように推定によつて求め
てもよい。
Fgas (Blast N+1 )=Fgas N + 3j=0・Gj・(Tb N+1-j −Tb Nj ) +3j=0・Hj・(Tdeg Nj −Tb Nj ) (2) Fgas (Shell N+1 )=Fgas N + 3j=0 gj・(Tb N+1-j −Tb Nj ) +3j=0 hj・(Tshell N-1 −Tshell * ) (3) Fgas N +1 max [Fgas N+1 (Blast), Fgas (Shell)] N+1
(4) Here, Fgas N+1 (Blast): Next cycle fuel supply amount required for blast temperature control Fgas N+1 (Shell): Next cycle fuel supply amount necessary for silica joint temperature control Fgas N : Current cycle actual Fuel supply amount Fgas N+1 : Next cycle fuel supply amount final output Tb: Set blasting temperature Tdeg N : Hot air furnace outlet temperature at the end of blasting Tshell N : Silica stone joint temperature at the end of blasting Tshell * : Target silica joint temperature Gj, Hj, gj, hj: constant In addition, here, the hot air furnace outlet temperature Tdeg may be actually measured, but the opening degree of the mixed cold air control valve (Bata valve) 7
From Rvailv and the measured air temperature TB at the end of air blowing,
It may be obtained by estimation as shown in the following equation (5) and FIG.

TdegN=TBN+CR1・Rvalv …(5) このような本発明によれば、第4図のように従
来法との対比で示したように、高温送風期におい
ては必要とされる送風温度を精度よく制御するこ
とができ、また低温送風期においてはケイ石質煉
瓦の管理下限温度を目標の温度に精度よく制御で
きる。
Tdeg N = TB N +C R1・Rvalv (5) According to the present invention, as shown in FIG. can be controlled with precision, and the lower limit temperature of the silica brick can be controlled with precision to the target temperature during the low-temperature air blowing period.

かくして、ケイ石質煉瓦継目温度の目標値を管
理下限値ぎりぎりに設定して熱風炉を操業するこ
とが可能となり、不必要な燃料の投入を抑えた結
果、熱効率が約1.0%向上した。
In this way, it became possible to operate the hot blast furnace with the target value of the siliceous brick joint temperature set just within the lower control limit, and as a result of suppressing unnecessary fuel input, thermal efficiency improved by approximately 1.0%.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明によれば、炉体保護の点か
ら管理下限温度を有する熱風炉にあつて、煉瓦部
分の測温を行い、管理下限温度を少くとも超える
ように燃料を投入するので炉体の保護を図ること
ができることは勿論、送風温度に基く必要燃料投
入量と管理下限温度に基く必要燃料投入量とのう
ち大きいものをもつて燃焼を行つているので、熱
効率を顕著に高めることができる。
As described above, according to the present invention, in a hot-blast furnace having a minimum control temperature from the point of view of furnace body protection, the temperature of the brick part is measured and fuel is injected so that the temperature exceeds at least the control minimum temperature. Not only can it protect the body, but it can also significantly increase thermal efficiency because combustion is performed using the greater of the required fuel input amount based on the air blowing temperature and the required fuel input amount based on the minimum control temperature. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明法の概要を示すフローシート、
第2図は煉瓦部分の測温状況概略図、第3図は熱
風出口温度の推定法の説明図、第4図は従来法と
本発明法との制御例の説明図である。 1……熱風炉、2……高炉、3……熱風本管、
4……送風温度計、5……送風温度調節管、7…
…混合冷風調節弁、13……燃料供給量調節弁、
14……煉瓦継目測温計、16……ケイ石質煉
瓦。
FIG. 1 is a flow sheet showing an overview of the method of the present invention;
FIG. 2 is a schematic diagram of the temperature measurement state of the brick part, FIG. 3 is an explanatory diagram of a method for estimating the hot air outlet temperature, and FIG. 4 is an explanatory diagram of control examples using the conventional method and the method of the present invention. 1...Hot air furnace, 2...Blast furnace, 3...Hot air main,
4... Air blowing thermometer, 5... Air blowing temperature adjustment pipe, 7...
...Mixed cold air control valve, 13...Fuel supply amount control valve,
14... Brick joint thermometer, 16... Silica brick.

Claims (1)

【特許請求の範囲】[Claims] 1 低温時の特性が問題となる煉瓦を耐火材とし
て用いた熱風炉にあつて、前記煉瓦部分を測温
し、その煉瓦の管理下限温度により低くなること
を防止するために必要な燃料投入量と、送風終了
時の熱風炉出口温度を設定された送風温度に制御
するために必要な燃料投入量との関係の下で、そ
れらのうち大なる方の燃料投入量を基準として熱
風炉において燃焼を行うことを特徴とする熱風炉
の燃焼制御方法。
1. In the case of a hot air stove that uses brick as a refractory material whose characteristics at low temperatures are a problem, measure the temperature of the brick part and determine the amount of fuel input necessary to prevent the temperature from falling below the control minimum temperature of the brick. and the amount of fuel input required to control the outlet temperature of the hot-blast stove to the set blowing temperature at the end of blowing. A combustion control method for a hot blast furnace, characterized by performing the following steps.
JP4835984A 1984-03-13 1984-03-13 Method for controlling combustion of hot stove Granted JPS60194004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4835984A JPS60194004A (en) 1984-03-13 1984-03-13 Method for controlling combustion of hot stove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4835984A JPS60194004A (en) 1984-03-13 1984-03-13 Method for controlling combustion of hot stove

Publications (2)

Publication Number Publication Date
JPS60194004A JPS60194004A (en) 1985-10-02
JPS649375B2 true JPS649375B2 (en) 1989-02-17

Family

ID=12801153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4835984A Granted JPS60194004A (en) 1984-03-13 1984-03-13 Method for controlling combustion of hot stove

Country Status (1)

Country Link
JP (1) JPS60194004A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01146273A (en) * 1987-12-02 1989-06-08 Mitsuhiro Itoga Connector
US11499563B2 (en) 2020-08-24 2022-11-15 Saudi Arabian Oil Company Self-balancing thrust disk
US11591899B2 (en) 2021-04-05 2023-02-28 Saudi Arabian Oil Company Wellbore density meter using a rotor and diffuser
US11644351B2 (en) 2021-03-19 2023-05-09 Saudi Arabian Oil Company Multiphase flow and salinity meter with dual opposite handed helical resonators
US11913464B2 (en) 2021-04-15 2024-02-27 Saudi Arabian Oil Company Lubricating an electric submersible pump
US11920469B2 (en) 2020-09-08 2024-03-05 Saudi Arabian Oil Company Determining fluid parameters
US11994016B2 (en) 2021-12-09 2024-05-28 Saudi Arabian Oil Company Downhole phase separation in deviated wells

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100496823B1 (en) * 2000-12-26 2005-06-22 주식회사 포스코 A temperature control method of hot blast stoves in a blast furnace
CN103266193A (en) * 2013-05-24 2013-08-28 重庆钢铁(集团)有限责任公司 Wind transfer security system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01146273A (en) * 1987-12-02 1989-06-08 Mitsuhiro Itoga Connector
US11499563B2 (en) 2020-08-24 2022-11-15 Saudi Arabian Oil Company Self-balancing thrust disk
US11920469B2 (en) 2020-09-08 2024-03-05 Saudi Arabian Oil Company Determining fluid parameters
US11644351B2 (en) 2021-03-19 2023-05-09 Saudi Arabian Oil Company Multiphase flow and salinity meter with dual opposite handed helical resonators
US11591899B2 (en) 2021-04-05 2023-02-28 Saudi Arabian Oil Company Wellbore density meter using a rotor and diffuser
US11913464B2 (en) 2021-04-15 2024-02-27 Saudi Arabian Oil Company Lubricating an electric submersible pump
US11994016B2 (en) 2021-12-09 2024-05-28 Saudi Arabian Oil Company Downhole phase separation in deviated wells

Also Published As

Publication number Publication date
JPS60194004A (en) 1985-10-02

Similar Documents

Publication Publication Date Title
JPS649375B2 (en)
CA1175649A (en) Method and system for controlling multi-zone reheating furnaces
JPS63266012A (en) Operation of hot blast stove
JPS61207504A (en) Method for controlling combustion in hot stove
JP4082092B2 (en) Thermal insulation method for hot stove
CN1049691C (en) Life-prolonging method for ceramic combustor of hot-blast stove
JP2686980B2 (en) Operation method of kiln and hot stove
JPS60243207A (en) Method for operating blast furnace
JPS63226524A (en) Combustion control in hot blast furnace
JPS60262911A (en) Method for controlling combustion in hot stove
SU753793A1 (en) Thermal conditions control system of glass-smelting furnace
US2494415A (en) Open-hearth furnace and method of operating the same
JPS5833288B2 (en) Combustion control method for hot stove
CN2237826Y (en) Controllable waste heat low-temp temper furnace
JPS5956508A (en) Method for controlling combustion in hot stove for blast furnace
SU1211575A1 (en) Method of automatic control of clinker roasting process in rotating furnace
JPS54128917A (en) Method for controlling heat quantity of air sent from blast furnace
JPH02166210A (en) Method for operating hot blast stove
SU1191721A1 (en) Method of controlling mode of operation of closed ore-smelting electric furnace
JP3745538B2 (en) Blast furnace operation method
SU1677064A1 (en) Device for control of heat conditions of blast furnace hearth
SU1203122A1 (en) Method of heating reverberatory furnace for melting copper concentrate
JPS62248918A (en) Method of controlling combustion for hot blast furnace
SU720273A1 (en) Combustion conditions control system for annular recuperation furnaces
JPH10226808A (en) Method for controlling combustion of hot stove

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term