JPS649356B2 - - Google Patents

Info

Publication number
JPS649356B2
JPS649356B2 JP62004248A JP424887A JPS649356B2 JP S649356 B2 JPS649356 B2 JP S649356B2 JP 62004248 A JP62004248 A JP 62004248A JP 424887 A JP424887 A JP 424887A JP S649356 B2 JPS649356 B2 JP S649356B2
Authority
JP
Japan
Prior art keywords
activator
gadolinium
luminescent
luminescent material
activated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP62004248A
Other languages
Japanese (ja)
Other versions
JPS62215683A (en
Inventor
Teodorusu Uiruherumusu De Hairu Yohanesu
Marinusu Booheruto Herito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of JPS62215683A publication Critical patent/JPS62215683A/en
Publication of JPS649356B2 publication Critical patent/JPS649356B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7777Phosphates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/778Borates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ランタンを主成分の1種として含有
する結晶性無機化合物からなる主格子(host
lattice)を有する発光化合物を含有し、ガドリニ
ウムにより活性化され、更に第2活性剤元素およ
び第3活性剤元素を含有する発光材料に関するも
のである。 既に公開されているオランダ国特許出願第
7607724号には、ガドリニウムを含有し、ビスマ
スのほかテルビウムおよび/またはジスプロシウ
ムにより活性化され、式:La1-x-y-zGdxBiyAz
B3O6(式中のAはテルビウムおよび/またはジス
プロシウムを示し、0x1、0.001y
0.80、0z0.60およびx+y+z1であ
る)で表わされるメタホウ酸ランタンが披瀝され
ている。このホウ酸塩ではガドリニウムは主格子
の構成成分であり、活性剤元素ビスマスは低圧水
銀蒸気放電灯からの主として約254nmの波長から
なる紫外放射によつて励起され、次いでこの励起
エネルギーは活性剤元素ビスマスから活性剤元素
Aに移行し、Aとして選定した活性剤元素によつ
て、テルビウムまたはジスプロシウムの発光特性
を示す。効率の良いテルビウムまたはジスプロシ
ウムの発光を得るための条件は、その物質がガド
リニウムを好ましくは比較的多量含有することで
ある。その理由は不詳であるが、ガドリニウムの
みが主格子の主成分の役割を果しているからであ
ると考えられる。 普通、発光材料は結晶性無機化合物を主格子と
し、これに普通少量の活性剤元素を混入したもの
である。発光材料にとつて重要な主格子群はイツ
トリウム、ランタンおよびランタニドからなる群
から選定した元素を主成分の1種として含有する
化合物により形成される。かかる主格子は希土類
格子で示され、Y,Laおよびランタニドといつ
た上記陽イオンのほかに他の陽イオン、例えばア
ルカリ金属およびアルカリ土類金属を主成分とし
て含有することができる。 ガドリニウムで活性化した発光材料は古くから
知られている(例えば、エフ・エー・クレーゲル
(F.A.Kroger)著:「サム・アスペクツ、オブ・
ザ・ルミネツセンス・オブ・ソリツド(Some
Aspects cf the Luminescence cf Solids)」
(1948)第293頁参照)。Gdで活性化した希土類格
子、特にGdで活性化したタンタル酸イツトリウ
ムは「ジヤーナル・オブ・ルミネツセンス(J.
Luminescence)」(1970)第109頁に披瀝され
ている。 発光材料において有利に使用できる一般に知ら
れている現象は励起エネルギーがある種類の活性
剤元素(いわゆる増感剤(sensitizer))から他の
種類の活性剤元素(実際の活性剤)に移行する現
象である。かかる移行は完全であることもあり、
また一部分のみであることもある。前者の場合に
は活性剤の発光のみが認められ、後者の場合には
活性剤の発光のほかに増感剤の発光が認められ
る。多くの場合に、エネルギー移行の生起する条
件は、活性剤を励起させることのできるスペクト
ル部分において、増感剤が発光を示すことであ
る。 励起エネルギーのガドリニウムへの移行は発光
材料中で生起させることができることが知られて
いる。「アプライド・フイジークス・レター
(Appl.Phys.Lett.)」21(1972)第57頁には、例
えばタリウムで活性化したガラスおよびガドリニ
ウムで活性化したガラスが披瀝されている。かか
る材料では、励起させる放射は増感剤として作用
するタリウムに吸収され、ガドリニウムに移行す
る。更に、ガドリニウムが増感剤の役割を果すこ
とができることが知られている。「ストラクチヤ
ー・アンド・ボンデイング(Structure and
Bonding)」、13(1973)第53頁には発光材料中の
ガドリニウムからテルビウムへのエネルギー移行
について記載されている。ドイツ国特許明細書第
1284296号には、ガドリニウム活性化およびテル
ビニウム活性化ホウ酸アルカリ土類金属アルカリ
金属塩が披瀝されている。 増感剤および活性剤を含有する多くの発光材料
の重大な欠点は、活性剤への完全なエネルギー移
行を達成して所望の活性剤の放射の最大可能発光
を得るには、極めて高い活性剤濃度を必要とする
ことが多いことである。しかし、普通かかる高い
活性剤濃度の場合にはいわゆる濃度消光
(quenching)が生じ、この結果極めて低い光束
が得られる。従つて少量の活性剤を使用する必要
があるが、この場合にはエネルギー移行が最適で
ない。高い活性剤濃度でも濃度消光を生じない材
料は極めて高価であるという欠点を有することが
多い。この理由は普通高価な希土類金属を活性剤
として使用するからである。 本発明の目的は励起エネルギーの移行が生起
し、かつその放射が所望である活性剤の濃度を小
さくすることができるガドリニウムで活性化した
材料を得ようとするにある。 本発明の発光材料は次式: LaxGd1-x-y-zBiyMnzB3O6 (ただし、0x0.5 0.001y0.1 0.001z0.2) で表わされるホウ酸塩である。かかるホウ酸塩は
短波長紫外放射により励起させた場合にスペクト
ルの緑色部分に効率良くMnの発光を示す。 本発明は、ガドリニウム、第2活性剤元素およ
び第3活性剤元素を含有する希土類金属格子にお
いて、ガドリニウムを経由する第2活性剤元素か
ら第3活性剤元素への励起エネルギーの効率の良
い移行を生起させることができることを確かめた
ことに基く。原則として、この機構は上述のよう
に活性化されているすべての結晶性希土類金属格
子において生起させることができる。しかし、
Gdおよび第2活性剤元素のみによつて(すなわ
ち、第3活性剤元素の不存在下に)活性化された
感光材料が、短波長の紫外放射により励起させた
場合に、310〜315nmの範囲においてGdの特性線
発光を示し、また場合によつては第2活性剤元素
の発光特性を示すことが条件である。Gdを含有
する希土類格子が第2と第3の活性剤元素のある
組合せにより活性化するのに適当であるかどうか
を求めるためのかかる試験において使用する紫外
放射は主として約254nmの波長からなる低圧水銀
蒸気放電の水銀共鳴放射である。 上述の説明から、本発明の発光材料において
は、エネルギー移行は第2活性剤からGdへの移
行およびGdから第3活性剤への移行という2段
階で行われることが分かる。この過程において、
Gdイオン間の相互移行を生起させることができ
るので、第3活性剤濃度が低くても普通この第3
活性剤への完全な移行を達成することができる。 本発明の発光材料の重要な利点は、第3活性剤
濃度が低くても第3活性剤元素からの効率の良い
発光を示すことができることである。 従つて濃度消光の危険が小さくなり、高い光束
を達成することができる。更に、普通第3活性剤
濃度が低いと高価でない材料が得られる。 上述の一般式における数値限定は、発光材料が
所望の発光を示す範囲を意味するものである。 上述のように、本発明の発光材料はマンガン放
射を放出するホウ酸塩であり、このホウ酸塩は3
種の活性剤元素、すなわちGd,BiおよびMnを含
有する。第2活性剤元素Biは低圧水銀蒸気放電
灯の254nm放射によつて励起され、この励起エネ
ルギーは活性剤元素Gdを経て第3活性剤元素Mn
に移行し、次いでMnがスペクトルの緑部分にお
いて発光する。Gdが存在していない場合には、
BiからMnへのエネルギーの移行は極めて僅かで
ある。本発明の発光材料では、エネルギーの移行
にはGdの存在が不可欠であるので、Gdはホウ酸
塩の主格子の構成成分ではなく活性剤元素であ
る。また、本発明の発光材料は二価Mnで活性化
されているので、520nmに最大値を有する一本の
狭いバンドで発光する。この種の発光は、前述の
オランダ国特許出願第7607724号に示されている
発光材料における、多数のラインからなるテルビ
ウムのスペクトル、または2本のバンドからなる
ジスプロシウムのスペクトルと較べて、種々の実
際的な用途において極めて望ましいものである。 本発明の発光材料は発光スクリーン、好ましく
は低圧水銀蒸気放電灯の発光スクリーンに使用す
ることができる。本発明の発光材料は、例えば、
次の用途に有利に使用することができる: (1) 青色発光成分および赤色発光成分と組み合わ
せて、一般照明用の多成分低圧水銀蒸気放電灯
における緑色発光成分として、 (2) 光化学的プロセス用、特にフオトコピー用の
低圧水銀蒸気放電灯において、 (3) 高ビリルビン血症の乳児を照射するための低
圧水銀蒸気放電灯において、 (4) 植物の生長を研究するために植物を照射する
ための低圧水銀蒸気放電灯において。 かかる放電灯においては、普通の照明用および
特殊用途において、上述の第3活性剤元素の1種
または2種以上の発光が所望であることが多い。 本発明の発光材料は従来の発光材料の製造方法
により製造することができる。化合物を構成する
元素の出発混合物を高温において固体反応させる
のが普通である。 次に本発明を図面を参照して実施例について説
明する。 実施例 1 次の物質: Gd2O3 4.441g La2O3 1.579g H3BO3 6.813g(5%過剰) Bi2O2CO3 0.116g MnCO3 0.044g からなる混合物を作つた。この混合物を窒素雰囲
気中において1000℃で1時間づつ2回加熱した。
生成物は式:La0.277Gd0.7Bi0.013Mn0.01B3O6で表
わされ、254nmの放射で励起させた場合に緑色の
発光バンド(最大値約520nm)において発光し
た。量子収率は55%であつた。第1図に放出され
た放射のスペクトル分布を示す。 第1図では波長λ(nm)を横軸にとり、相対放
射強度E(任意の単位)を縦軸にとつた。Gd発光
の小さな寄与が310〜315nmにおいてなお認めら
れた。第1図ではこの発光ラインを10倍の縮尺で
示した。 実施例2および3 実施例1と同様な方法で活性剤含有量の異なる
2種の発光ホウ酸塩を作つた。これらの物質を表
わす式およびこれらの物質を254nmの放射で励起
させた場合の量子率q(%)の測定結果を第1表
に示す。
The present invention provides a main lattice (host) consisting of a crystalline inorganic compound containing lanthanum as one of the main components.
lattice), activated by gadolinium, and further containing a second activator element and a third activator element. Already published Dutch patent application no.
No. 7607724 contains gadolinium, is activated by terbium and/or dysprosium in addition to bismuth, and has the formula: La 1-xyz Gd x Bi y A z
B 3 O 6 (A in the formula represents terbium and/or dysprosium, 0x1, 0.001y
0.80, 0z0.60 and x+y+z1). In this borate, gadolinium is a constituent of the main lattice, and the activator element bismuth is excited by ultraviolet radiation from a low-pressure mercury vapor discharge lamp consisting primarily of a wavelength of about 254 nm, and this excitation energy is then transferred to the activator element. Transitioning from bismuth to activator element A, and depending on the activator element selected as A, exhibits the emission characteristics of terbium or dysprosium. A condition for obtaining efficient terbium or dysprosium luminescence is that the material contains gadolinium, preferably in relatively large amounts. The reason for this is unknown, but it is thought that it is because only gadolinium plays the role of the main component of the main lattice. Usually, a luminescent material has a crystalline inorganic compound as its main lattice, and a small amount of an activator element is usually mixed therein. The main lattice group, which is important for luminescent materials, is formed by compounds containing as one of the main components an element selected from the group consisting of yttrium, lanthanum and lanthanides. Such a main lattice is represented by a rare earth lattice and can contain, in addition to the above-mentioned cations such as Y, La and lanthanides, other cations such as alkali metals and alkaline earth metals as a main component. Gadolinium-activated luminescent materials have been known for a long time (e.g., F.A. Kroger: Some Aspects of
The Luminous Sense of Solid
Aspects cf the Luminescence cf Solids)
(1948), p. 293). Gd-activated rare earth lattices, especially Gd-activated yttrium tantalate, are known as the ``Journal of Luminescence''.
Luminescence) 3 (1970), page 109. A generally known phenomenon that can be used advantageously in luminescent materials is the transfer of excitation energy from one type of activator element (the so-called sensitizer) to another type of activator element (the actual activator). It is. Such transition may be complete;
It may also be only a part of it. In the former case, only the activator's luminescence is observed, and in the latter case, the sensitizer's luminescence is observed in addition to the activator's luminescence. In many cases, the condition for energy transfer to occur is that the sensitizer emits light in the portion of the spectrum in which the activator can be excited. It is known that the transfer of excitation energy to gadolinium can occur in luminescent materials. "Appl. Phys. Lett." 21 (1972) p. 57 lists, for example, thallium-activated glasses and gadolinium-activated glasses. In such materials, the exciting radiation is absorbed by thallium, which acts as a sensitizer, and transferred to gadolinium. Furthermore, it is known that gadolinium can act as a sensitizer. “Structure and Bonding”
Bonding), 13 (1973), p. 53, describes the energy transfer from gadolinium to terbium in luminescent materials. German Patent Specification No.
No. 1284296 discloses gadolinium-activated and terbinium-activated boric acid alkaline earth metal alkali metal salts. A significant drawback of many luminescent materials containing sensitizers and activators is that in order to achieve complete energy transfer to the activator and obtain the maximum possible emission of the desired activator radiation, very high activators are required. Concentration is often required. However, normally at such high activator concentrations so-called concentration quenching occurs, resulting in very low luminous fluxes. It is therefore necessary to use small amounts of activator, in which case the energy transfer is not optimal. Materials that do not exhibit concentration quenching even at high activator concentrations often have the disadvantage of being extremely expensive. The reason for this is that expensive rare earth metals are usually used as activators. The object of the invention is to obtain a gadolinium-activated material in which a transfer of excitation energy can occur and whose emission is desired to reduce the concentration of activator. The luminescent material of the present invention is a borate represented by the following formula: La x Gd 1-xyz Bi y Mn z B 3 O 6 (0x0.5 0.001y0.1 0.001z0.2). Such borates exhibit efficient Mn emission in the green portion of the spectrum when excited by short wavelength ultraviolet radiation. The present invention provides efficient transfer of excitation energy from the second activator element to the third activator element via gadolinium in a rare earth metal lattice containing gadolinium, a second activator element, and a third activator element. This is based on the fact that we have confirmed that it can be made to occur. In principle, this mechanism can occur in all crystalline rare earth metal lattices that have been activated as described above. but,
When a photosensitive material activated by Gd and a second activator element only (i.e. in the absence of a third activator element) is excited by short wavelength ultraviolet radiation, The condition is that it exhibits the characteristic line luminescence of Gd, and in some cases, exhibits the luminescence characteristic of the second activator element. The ultraviolet radiation used in such tests to determine whether a rare earth lattice containing Gd is suitable for activation by a certain combination of second and third activator elements consists primarily of low pressure wavelengths of approximately 254 nm. This is the mercury resonance radiation of mercury vapor discharge. From the above description, it can be seen that in the luminescent material of the present invention, energy transfer occurs in two stages: transfer from the second activator to Gd and transfer from Gd to the third activator. In this process,
Because mutual transfer between Gd ions can occur, this tertiary activator is usually
Complete transfer to the active agent can be achieved. An important advantage of the luminescent material of the present invention is that it can exhibit efficient light emission from the third activator element even at low third activator concentrations. Therefore, the risk of concentration quenching is reduced and a high luminous flux can be achieved. Additionally, lower third activator concentrations usually result in less expensive materials. The numerical limitations in the above general formula mean the range in which the luminescent material exhibits desired luminescence. As mentioned above, the luminescent material of the present invention is a borate that emits manganese radiation;
Contains seed activator elements, namely Gd, Bi and Mn. The second activator element Bi is excited by 254 nm radiation from a low-pressure mercury vapor discharge lamp, and this excitation energy is transferred to the third activator element Mn through the activator element Gd.
, and then Mn emits in the green part of the spectrum. If Gd does not exist,
The energy transfer from Bi to Mn is extremely small. In the luminescent material of the present invention, since the presence of Gd is essential for energy transfer, Gd is not a constituent of the main lattice of borate but is an activator element. Further, since the luminescent material of the present invention is activated with divalent Mn, it emits light in one narrow band having a maximum value at 520 nm. This type of luminescence has been demonstrated in various practical applications compared to the spectrum of terbium consisting of many lines or the spectrum of dysprosium consisting of two bands in luminescent materials as shown in the aforementioned Dutch patent application No. 7607724. This is highly desirable in many applications. The luminescent material of the invention can be used in luminescent screens, preferably luminescent screens of low-pressure mercury vapor discharge lamps. The luminescent material of the present invention is, for example,
It can be advantageously used in the following applications: (1) as a green-emitting component in multicomponent low-pressure mercury vapor discharge lamps for general lighting, in combination with a blue-emitting component and a red-emitting component; (2) for photochemical processes. (3) in low-pressure mercury vapor discharge lamps for irradiating infants with hyperbilirubinemia, and (4) for irradiating plants to study plant growth. in low-pressure mercury vapor discharge lamps. In such discharge lamps, it is often desired to emit light from one or more of the above-mentioned third activator elements, both for general lighting and for special uses. The luminescent material of the present invention can be produced by a conventional method for producing luminescent materials. It is common practice to subject the starting mixtures of the elements that make up the compound to a solid state reaction at elevated temperatures. Next, embodiments of the present invention will be described with reference to the drawings. Example 1 A mixture was made consisting of the following materials: Gd 2 O 3 4.441 g La 2 O 3 1.579 g H 3 BO 3 6.813 g (5% excess) Bi 2 O 2 CO 3 0.116 g MnCO 3 0.044 g. The mixture was heated to 1000° C. twice for 1 hour each in a nitrogen atmosphere.
The product had the formula: La 0.277 Gd 0.7 Bi 0.013 Mn 0.01 B 3 O 6 and emitted in the green emission band (maximum approximately 520 nm) when excited with 254 nm radiation. The quantum yield was 55%. Figure 1 shows the spectral distribution of the emitted radiation. In FIG. 1, the wavelength λ (nm) is plotted on the horizontal axis, and the relative radiation intensity E (arbitrary unit) is plotted on the vertical axis. A small contribution of Gd emission was still observed at 310-315 nm. In Figure 1, this luminescent line is shown on a 10x scale. Examples 2 and 3 Two types of luminescent borates with different activator contents were prepared in the same manner as in Example 1. Table 1 shows the formulas expressing these substances and the measurement results of quantum rates q (%) when these substances are excited with 254 nm radiation.

【表】 第2図に本発明の発光材料を用いた低圧水銀蒸
気放電灯の断面を示す。この低圧水銀蒸気放電灯
は管状ガラス壁1を具える。放電灯の各端部に1
個づつ電極2および3を設置し、作動中この電極
間で放電を行わせる。この放電灯に出発ガスとし
て作用する希ガス混合物を少量の水銀と共に入れ
る。壁1の内面を発光層4で被覆する。発光層4
には本発明の発光材料を含有させる。発光層4
を、例えば発光材料を含有する懸濁液により、常
法によつて被着させることができる。
[Table] Figure 2 shows a cross section of a low-pressure mercury vapor discharge lamp using the luminescent material of the present invention. This low-pressure mercury vapor discharge lamp comprises a tubular glass wall 1. 1 at each end of the discharge lamp
Electrodes 2 and 3 are installed one by one, and a discharge occurs between these electrodes during operation. The discharge lamp is charged with a rare gas mixture, which acts as a starting gas, together with a small amount of mercury. The inner surface of the wall 1 is coated with a luminescent layer 4. Luminous layer 4
contains the luminescent material of the present invention. Luminous layer 4
can be deposited in a conventional manner, for example by means of a suspension containing the luminescent material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の発光材料から放出された放射
のエネルギースペクトル分布を示すグラフ、第2
図は本発明の発光材料を用いた低圧水銀蒸気放電
灯の断面図である。 1…ガラス壁、2,3…電極、4…感光層。
FIG. 1 is a graph showing the energy spectral distribution of radiation emitted from the luminescent material of the present invention, and FIG.
The figure is a cross-sectional view of a low-pressure mercury vapor discharge lamp using the luminescent material of the present invention. 1... Glass wall, 2, 3... Electrode, 4... Photosensitive layer.

Claims (1)

【特許請求の範囲】 1 次式: LaxGd1-x-y-zBiyMnzB3O6 ただし、0x0.5 0.001y0.1 0.001z0.2 で表わされるホウ酸塩である発光材料。[Claims] A luminescent material which is a borate expressed by the following formula: La x Gd 1-xyz Bi y Mn z B 3 O 6 where 0x0.5 0.001y0.1 0.001z0.2.
JP62004248A 1978-03-10 1987-01-13 Luminescent material Granted JPS62215683A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL7802632 1978-03-10
NLAANVRAGE7802632,A NL186707C (en) 1978-03-10 1978-03-10 LUMINESCENT FABRIC, LUMINESCREEN SCREEN EQUIPPED WITH SUCH SUBSTANCE AND LOW-PRESSURE MERCURY DISCHARGE LAMP EQUIPPED WITH SUCH SCREEN.

Publications (2)

Publication Number Publication Date
JPS62215683A JPS62215683A (en) 1987-09-22
JPS649356B2 true JPS649356B2 (en) 1989-02-17

Family

ID=19830472

Family Applications (3)

Application Number Title Priority Date Filing Date
JP62004246A Granted JPS62215684A (en) 1978-03-10 1987-01-13 Luminescent material
JP62004248A Granted JPS62215683A (en) 1978-03-10 1987-01-13 Luminescent material
JP62004247A Granted JPS62215685A (en) 1978-03-10 1987-01-13 Luminescent material

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP62004246A Granted JPS62215684A (en) 1978-03-10 1987-01-13 Luminescent material

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP62004247A Granted JPS62215685A (en) 1978-03-10 1987-01-13 Luminescent material

Country Status (3)

Country Link
JP (3) JPS62215684A (en)
BE (1) BE874705A (en)
NL (1) NL186707C (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63177448A (en) * 1987-01-17 1988-07-21 Nippon Dempa Kogyo Co Ltd Metallic base and piezoelectric oscillator using this base
US7056451B2 (en) * 2004-01-21 2006-06-06 General Electric Company Phosphors containing boron and rare-earth metals, and light sources incorporating the same
JP5692727B2 (en) * 2012-05-01 2015-04-01 大電株式会社 Ultraviolet light emitting phosphor and light emitting device using the same

Also Published As

Publication number Publication date
JPS63476B2 (en) 1988-01-07
JPS62215685A (en) 1987-09-22
NL186707C (en) 1991-02-01
JPS62215684A (en) 1987-09-22
BE874705A (en) 1979-09-10
NL186707B (en) 1990-09-03
NL7802632A (en) 1979-09-12
JPS62215683A (en) 1987-09-22
JPS63477B2 (en) 1988-01-07

Similar Documents

Publication Publication Date Title
JPS6223798B2 (en)
US2270124A (en) Luminescent material
EP0023068B1 (en) Luminescent screen
US4926091A (en) Luminescent terbium-activated borate, luminescent screen provided with such a borate and low-pressure mercury vapor discharge lamp provided with such a screen
US7884535B2 (en) Low-pressure gas discharge lamp comprising a UV-B phosphor
Folkerts et al. Different types of s2 ion luminescence in compounds with eulytite structure
JPS63103841A (en) Manufacture of quartz glass activated by divalent europium
US4185222A (en) Luminescent bivalent europium-activated barium borophosphate and discharge lamp containing the same
US4716335A (en) Luminescent screen and low-pressure mercury vapor discharge lamp provided with such a screen
JPH0685313B2 (en) Luminescent aluminate for light-emitting screen and method for producing the same
US4089799A (en) Luminescent fluoride
JPS6334915B2 (en)
JPS649356B2 (en)
JP2002212553A (en) Lanthanum phosphate fluorophor for vacuum ultraviolet and rare gas discharge lamp
US3999145A (en) Optical convertor for laser systems
JPH02247279A (en) Luminescent alkaline earth metal orthosilicate, luminescent screen provided with such silicate, and low pressure mercury lamp provided with such screen
JP2002528563A (en) Luminescent material
JPH0320429B2 (en)
US4716336A (en) Luminescent screen and low-pressure mercury vapor discharge lamp provided with such a screen
JPS5927786B2 (en) luminescent substance
JPS5944335B2 (en) fluorescent material
US4233538A (en) Luminescent lead-activated alkaline earth metal rare earth metal borates and mercury vapor discharge lamp containing the same
US3575879A (en) Bivalent europium activated barium octaborate luminescent material
US3956663A (en) Luminescent screen with thallium activated aluminate
JPS6334916B2 (en)