JP5692727B2 - Ultraviolet light emitting phosphor and light emitting device using the same - Google Patents

Ultraviolet light emitting phosphor and light emitting device using the same Download PDF

Info

Publication number
JP5692727B2
JP5692727B2 JP2012104497A JP2012104497A JP5692727B2 JP 5692727 B2 JP5692727 B2 JP 5692727B2 JP 2012104497 A JP2012104497 A JP 2012104497A JP 2012104497 A JP2012104497 A JP 2012104497A JP 5692727 B2 JP5692727 B2 JP 5692727B2
Authority
JP
Japan
Prior art keywords
light emitting
excitation
ultraviolet light
phosphor
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012104497A
Other languages
Japanese (ja)
Other versions
JP2013231142A (en
Inventor
道夫 尾畠
道夫 尾畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiden Co Inc
Original Assignee
Daiden Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiden Co Inc filed Critical Daiden Co Inc
Priority to JP2012104497A priority Critical patent/JP5692727B2/en
Publication of JP2013231142A publication Critical patent/JP2013231142A/en
Application granted granted Critical
Publication of JP5692727B2 publication Critical patent/JP5692727B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、紫外線を発光する紫外線発光蛍光体及びそれを用いる発光素子に関する。   The present invention relates to an ultraviolet light-emitting phosphor that emits ultraviolet light and a light-emitting element using the same.

一般に蛍光体は、紫外線、電子線、X線などの電磁波エネルギーにより励起され、紫外域から赤外域までの光を発光する物質である。そして、蛍光体の種類によって、様々な分光分布を持たせることができるため、適当な励起源との組み合わせにより様々な発光素子が開発されている。   In general, a phosphor is a substance that is excited by electromagnetic wave energy such as ultraviolet rays, electron beams, and X-rays and emits light from the ultraviolet region to the infrared region. And since various spectral distributions can be given according to the kind of fluorescent substance, various light emitting elements are developed by combining with an appropriate excitation source.

使用頻度の高い蛍光体は光の三原色である赤色、緑色、青色を発光する蛍光体であり、多くの蛍光体が開発・実用化されている。
このような蛍光体は励起源に何を用いるかにより選択され、使用される。例えば、ブラウン管に用いられる電子線励起用蛍光体としてはYS:Eu、ZnS:Cu,Al、ZnS:Ag,Alなどがある。蛍光灯照明や冷陰極管に用いられる紫外線励起用蛍光体としてはY:Eu、LaPO:Tb、BaMgAl1017:Euなどがあり、プラズマディスプレイに用いられる真空紫外線励起用蛍光体としては(YGd)BO:Eu、ZnSiO:Mn、BaMgAl1017:Euなどがある。
Phosphors that are frequently used are those that emit red, green, and blue, which are the three primary colors of light, and many phosphors have been developed and put to practical use.
Such a phosphor is selected and used depending on what is used as an excitation source. For example, phosphors for electron beam excitation used in cathode ray tubes include Y 2 O 2 S: Eu, ZnS: Cu, Al, ZnS: Ag, Al, and the like. Examples of phosphors for ultraviolet excitation used in fluorescent lamp illumination and cold cathode tubes include Y 2 O 3 : Eu, LaPO 4 : Tb, BaMgAl 10 O 17 : Eu, and the like. (YGd) BO 3 : Eu, Zn 2 SiO 4 : Mn, BaMgAl 10 O 17 : Eu, and the like.

紫外線を発光する紫外線発光蛍光体も開発されている。紫外線はその波長から近紫外線(波長200−380nm),遠紫外線(波長10−200nm:一般に真空紫外線と呼ばれており、以下「真空紫外線」という。),極端紫外線(波長10nm以下)に分けられる。近紫外線はさらにUV−A(波長315−380nm)、UV−B(波長280−315nm)、UV−C(波長200−280nm)に分けられる。これらの紫外線は補虫器、殺菌、脱臭、汚れ防止、露光用や皮膚治療など、用途に応じて選択され利用されている。   Ultraviolet light emitting phosphors that emit ultraviolet light have also been developed. Ultraviolet rays are classified into near ultraviolet rays (wavelengths 200 to 380 nm), far ultraviolet rays (wavelengths 10 to 200 nm: generally called vacuum ultraviolet rays, hereinafter referred to as “vacuum ultraviolet rays”), and extreme ultraviolet rays (wavelengths 10 nm or less). . Near-ultraviolet rays are further divided into UV-A (wavelengths 315 to 380 nm), UV-B (wavelengths 280 to 315 nm), and UV-C (wavelengths 200 to 280 nm). These ultraviolet rays are selected and used according to applications such as an insect repellent device, sterilization, deodorization, stain prevention, exposure and skin treatment.

紫外線発光蛍光体としては、例えばSrBF:EuやBaSi:PbはUV−Aを発光することが知られている。また、YBO:Gd,Pr(特許文献1参照)、YF:Gd(特許文献2参照)、YB:Gd(特許文献2参照)、(Y1−mGd)Al(BO(特許文献2参照)、(Y1−mGd)Al3−nSc(BO(特許文献3参照)、Sr1−mGdAl12−nMg19(特許文献4参照)、(La1−m−n−zGdCe)PO(特許文献5参照)などはUV−Bを発光する蛍光体として報告されている。また、LaPO:Pr,YPO:Bi,LuPO:Pr(特許文献6参照)やSr(Al,Mg)1219:Pr(特許文献7参照)などはUV−Cを発光する蛍光体として報告されている。なお、以上の構造式において、m、n、zは、一般に、1以下の数字を表す。 For example, SrB 4 O 7 F: Eu or BaSi 2 O 5 : Pb is known to emit UV-A as the ultraviolet light emitting phosphor. Further, YBO 3: Gd, Pr (see Patent Document 1), YF 3: Gd (see Patent Document 2), YB m O n: Gd ( see Patent Document 2), (Y 1-m Gd m) Al 3 ( BO 3 ) 4 (see Patent Document 2), (Y 1-m Gd m ) Al 3 -n Sc m (BO 3 ) 4 (see Patent Document 3), Sr 1-m Gd m Al 12-n Mg n O 19 (see Patent Document 4), etc. (La 1-m-n- z Gd m Y n Ce z) PO 4 ( see Patent Document 5) it has been reported as a phosphor emitting UV-B. LaPO 4 : Pr, YPO 4 : Bi, LuPO 4 : Pr (refer to Patent Document 6), Sr (Al, Mg) 12 O 19 : Pr (refer to Patent Document 7), etc. are phosphors that emit UV-C. As reported. In the above structural formulas, m, n, and z generally represent a number of 1 or less.

UV−Bを発光する蛍光体のうち、YAl(BOからなる母体で構成されY(イットリウム)の一部がGd(ガドリニウム)で置換されている(Y1−mGd)Al(BOと(Y1−mGd)Al3−nSc(BOは313nm付近にGd3+のf−f遷移に起因した半値幅の狭い発光を示す優れた紫外線発光蛍光体であり、非特許文献1には(Y1−mGd)Al(BOの励起源として真空紫外線を用いることが有効であるが記載されている。 Among phosphors emitting UV-B, Y (yttrium) is composed of a matrix composed of YAl 3 (BO 3 ) 4 and part of Y (yttrium) is substituted with Gd (gadolinium) (Y 1-m Gd m ) Al 3 (BO 3 ) 4 and (Y 1-m Gd m ) Al 3 -n Sc n (BO 3 ) 4 are excellent ultraviolet rays exhibiting light emission with a narrow half-value width due to the ff transition of Gd 3+ near 313 nm. Non-Patent Document 1 describes that it is effective to use vacuum ultraviolet rays as an excitation source of (Y 1-m Gd m ) Al 3 (BO 3 ) 4 .

この真空紫外線を発生させる方法としてはプラズマディスプレイに用いられているXe放電が一般的であるが、その際に発生する147nmと172nmの波長の割合と真空紫外線の発生効率(真空紫外線の発生量を直接測定するよりも蛍光体を発光させた方が測定しやすいため、発光効率として議論されることが多い。)はXe濃度に依存している。Xe濃度が低い場合には147nmの発生割合が高いが、Xe濃度が高くなるにつれ、172nmの発生割合が高くなってくる。特許文献8にはXe濃度における147nmと172nmの発生割合が記載されており、Xe濃度が10mol%では172nmの強度の割合が147nmの3.1倍と高く、Xe濃度が12mol%では147nmの3.8倍になるとある。また、Xe濃度が高い方が真空紫外線の発生効率が高くなることが知られており、現在市販されているプラズマディスプレイパネルにおいては、発光効率の観点からXe濃度が高めに設定されている。そのため、Xe放電により発生する真空紫外線を用いる場合には147nmと172nmのどちらか一方の波長より効率よく励起されるのではなく、両方の波長により効率良く励起されることが望まれる。   As a method for generating vacuum ultraviolet rays, Xe discharge used in plasma displays is generally used. The ratio of the wavelengths of 147 nm and 172 nm generated at that time and the generation efficiency of vacuum ultraviolet rays (the amount of generation of vacuum ultraviolet rays are determined). Since it is easier to measure by emitting the phosphor than direct measurement, it is often discussed as luminous efficiency.) Depends on the Xe concentration. When the Xe concentration is low, the generation rate at 147 nm is high. However, as the Xe concentration increases, the generation rate at 172 nm increases. Patent Document 8 describes the generation ratios of 147 nm and 172 nm in the Xe concentration. When the Xe concentration is 10 mol%, the intensity ratio of 172 nm is 3.1 times as high as 147 nm, and when the Xe concentration is 12 mol%, 3 of 147 nm. .8 times. Further, it is known that the higher the Xe concentration, the higher the generation efficiency of vacuum ultraviolet rays. In the plasma display panels currently on the market, the Xe concentration is set higher from the viewpoint of light emission efficiency. For this reason, when using vacuum ultraviolet rays generated by Xe discharge, it is desired that excitation is not performed more efficiently than either wavelength of 147 nm or 172 nm, but is performed efficiently by both wavelengths.

しかしながら、YAl(BOでは非特許文献1に記載されているように170nm以下の波長では強い発光を示すが、170nm以上の波長では極端に発光が弱いため、Xe放電を用いた光源を用いる場合には147nmの波長は有効に利用することができるものの、172nmの波長を有効に利用することができない。また、特許文献3に記載の(Y1−mGd)Al3−nSc(BOは前記蛍光体のAlサイトの一部をScで置換したものであるが、これにより172nm励起の発光特性は改善するものの、147nm励起の発光特性の変化については記載されておらず、また発光特性改善のために用いられているScはレアアースに分類され、その性質上抽出方法が難しいため、生産量も少なく、非常に高価な物質であるので、かなり高価になってしまう。 However, although YAl 3 (BO 3 ) 4 shows strong light emission at a wavelength of 170 nm or less as described in Non-Patent Document 1, a light source using Xe discharge is extremely weak at a wavelength of 170 nm or more. In the case of using, the wavelength of 147 nm can be used effectively, but the wavelength of 172 nm cannot be used effectively. In addition, (Y 1-m Gd m ) Al 3-n Sc n (BO 3 ) 4 described in Patent Document 3 is obtained by substituting a part of the Al site of the phosphor with Sc. Although the emission characteristics of the excitation are improved, there is no description about the change in the emission characteristics of the 147 nm excitation, and Sc used for improving the emission characteristics is classified as a rare earth, and the extraction method is difficult due to its nature. Since the production amount is small and the material is very expensive, it becomes quite expensive.

特許第3683143号公報Japanese Patent No. 3683143 特許第4266706号公報Japanese Patent No. 4266706 特許第4109995号公報Japanese Patent No. 4109995 特開2007−238938号公報JP 2007-238938 特表2006−525404号公報Special table 2006-525404 gazette 特開2003−022783号公報JP 2003-022783 A 特開2006−342336号公報JP 2006-342336 A 特開2009−029407号公報JP 2009-029407 A

Jpn.J.Appl.Phys.Vol.42(2003)pp.5656-5659Jpn.J.Appl.Phys.Vol.42 (2003) pp.5656-5659

本発明は、YAl(BOから成る母体で構成され、Yの一部がGdで置換されている紫外線発光蛍光体において、Xe放電により発生する147nmと172nmのいずれの励起波長によっても効率良く発光できるように改善することを目的とする。 The present invention is an ultraviolet light emitting phosphor composed of a matrix composed of YAl 3 (BO 3 ) 4 , in which a part of Y is substituted with Gd, regardless of the excitation wavelength of 147 nm or 172 nm generated by Xe discharge. It aims at improving so that it can light-emit efficiently.

本発明者らは誠意検討した結果、YAl(BOの紫外線発光蛍光体のYの一部をGdに加えて、さらにBi(ビスマス)で置換することにより、147nm励起特性の低下を最小限に留めて、172nm励起特性を大幅に向上できることを見出し本発明を導き出した。 As a result of sincerity studies, the present inventors have found that Y part of YAl 3 (BO 3 ) 4 UV-emitting phosphor is partially substituted with Bi (bismuth) by adding a part of Y to Gd, thereby reducing the 147 nm excitation characteristics. The present invention was derived by finding that the 172 nm excitation characteristics can be greatly improved with a minimum.

すなわち、本発明は、一般式Y1−x−yGdBiAl(BO(0<x<0.6,0<y<0.03)で表される組成を有することを特徴とする紫外線を発光する蛍光体である。
また、本発明は、この蛍光体を用いることを特徴とする発光素子である。
That is, the present invention has a composition represented by the general formula Y 1-xy Gd x Bi y Al 3 (BO 3 ) 4 (0 <x <0.6, 0 <y <0.03). It is the fluorescent substance which light-emits the ultraviolet-ray characterized by these.
In addition, the present invention is a light-emitting element using this phosphor.

本発明の紫外線発光蛍光体は、Xe放電により発生する147nmと172nmを含む広範な波長の励起光源により効率よく励起されて、紫外線を発光する新しいタイプの蛍光体であり、この紫外線発光蛍光体を用いた発光素子ではGd3+のf−f遷移に起因する313nmの良好な発光を得ることができる。 The ultraviolet light-emitting phosphor of the present invention is a new type of phosphor that emits ultraviolet light by being efficiently excited by an excitation light source having a wide range of wavelengths including 147 nm and 172 nm generated by Xe discharge. The light emitting element used can obtain good light emission of 313 nm due to the df transition of Gd 3+ .

本発明の実施例の蛍光体と比較例の蛍光体の励起スペクトルデータを示す。The excitation spectrum data of the fluorescent substance of the Example of this invention and the fluorescent substance of a comparative example are shown.

本発明は、Y1−xGdAl(BOのYの一部を更にBiで置換した一般式Y1−x−yGdBiAl(BO(0<x<0.6,0<y<0.03)からなる紫外線を発光する蛍光体である。 In the present invention, Y 1-x Gd x Al 3 (BO 3 ) 4 is further substituted with Bi for the general formula Y 1-xy Gd x Bi y Al 3 (BO 3 ) 4 (0 < It is a fluorescent substance that emits ultraviolet rays consisting of x <0.6, 0 <y <0.03).

付活剤であるガドリニウムの量xは0<x<0.6であり、好ましいのは0.1≦x<0.6の間であり、より好ましいのは0.2≦x≦0.5の時である。ガドリニウムの量が0.6を超えると目的の化合物以外のものが生成しやすくなり、313nmの発光は見られるものの特性が低下してしまう。また、ガドリウムの量が0.1より少ない場合は147nm励起での特性は良いものの、172nm励起での特性が低くなってしまう。   The amount x of gadolinium as an activator is 0 <x <0.6, preferably 0.1 ≦ x <0.6, and more preferably 0.2 ≦ x ≦ 0.5. Is the time. If the amount of gadolinium exceeds 0.6, a compound other than the target compound is likely to be produced, and although the emission at 313 nm is observed, the characteristics are deteriorated. Also, when the amount of gadolinium is less than 0.1, the characteristics at 147 nm excitation are good, but the characteristics at 172 nm excitation are low.

Yサイトの一部を置換するBiの量yは0<y<0.03であり、好ましいのは0<y<0.02であり、より好ましいのは0.0005≦y≦0.02である。Biの量が0.03を超えると目的の化合物以外のものが生成しやすくなり、147nm励起の特性が著しく低下してしまう。また172nm励起の特性の改善率が低下してくるため、Bi添加効果を活かすことができない。   The amount y of Bi substituting a part of the Y site is 0 <y <0.03, preferably 0 <y <0.02, and more preferably 0.0005 ≦ y ≦ 0.02. is there. When the amount of Bi exceeds 0.03, other compounds than the target compound are likely to be produced, and the 147 nm excitation characteristics are significantly deteriorated. Moreover, since the improvement rate of the characteristic of 172 nm excitation falls, the Bi addition effect cannot be utilized.

次に、本発明にかかる紫外線発光蛍光体の作製方法について説明する。出発原料としては各構成元素の酸化物、硝酸塩、硫酸塩、有機物などを用いることができる。これらの出発原料を所要量秤量し、混合する。混合方法は公知の方法を採用することができ、例えば湿式混合や乾式混合を挙げることができる。また、溶解性のある出発原料を用いる場合はゾル−ゲル法、共沈法などの化学反応を利用することもできる。   Next, a method for producing the ultraviolet light emitting phosphor according to the present invention will be described. As starting materials, oxides, nitrates, sulfates, organic substances, and the like of each constituent element can be used. The required amounts of these starting materials are weighed and mixed. A known method can be employed as the mixing method, and examples thereof include wet mixing and dry mixing. Moreover, when using a soluble starting material, chemical reactions, such as a sol-gel method and a coprecipitation method, can also be utilized.

なお、粒子径を制御したり、発光効率を向上させるために、ハロゲン化合物やホウ素化合物などのフラックス剤を一緒に添加しても良い。添加は混合する際に一緒に添加したり、混合後に添加することもできる。   Note that a fluxing agent such as a halogen compound or a boron compound may be added together in order to control the particle diameter or improve the luminous efficiency. Addition can be performed together during mixing or after mixing.

この原料混合物をアルミナるつぼ等の耐熱容器に入れて、大気中、例えば800℃〜1200℃で1〜50時間焼成することにより、本発明にかかる紫外線発光蛍光体を得ることができる。雰囲気は大気以外にも、窒素や還元雰囲気を用いても良い。次いで必要に応じ、粉砕、水洗、乾燥、篩い分けを行い、紫外線発光蛍光体を目的の粒度に調整する。なお、均質な紫外線発光蛍光体粉末を得るために、焼成を2回以上行っても良い。   The raw material mixture is put in a heat-resistant container such as an alumina crucible and baked in the atmosphere at, for example, 800 ° C. to 1200 ° C. for 1 to 50 hours, whereby the ultraviolet light emitting phosphor according to the present invention can be obtained. The atmosphere may be nitrogen or a reducing atmosphere other than air. Then, if necessary, pulverization, washing with water, drying and sieving are performed to adjust the ultraviolet light-emitting phosphor to a desired particle size. In order to obtain a uniform ultraviolet light emitting phosphor powder, the baking may be performed twice or more.

本発明の紫外線発光蛍光体を用いた発光素子としては、励起源として電子線や真空紫外線を用いたものに利用できるが、もっとも好ましいのはXe放電を利用した真空紫外線を光源とする発光素子である。   The light emitting device using the ultraviolet light emitting phosphor of the present invention can be used as an excitation source using an electron beam or vacuum ultraviolet light, but the most preferable is a light emitting device using vacuum ultraviolet light using Xe discharge as a light source. is there.

〔実施例〕
次に本発明を下記の実施例を参照して説明するが、本発明はこれらの実施例によって限定されるものではない。
実施例1
原料としてY、Gd、Bi、Al、HBOを最終的なY:Gd:Bi:Al:Bのモル比が0.695:0.3:0.005:3:4になるように秤量し、乳鉢を用いて混合した。この混合物をアルミナ製るつぼに入れ、電気炉にて大気中1200℃で10時間保持し焼成した。この焼成物を温水で洗浄後、乾燥して乳鉢で解砕し、目的の紫外線発光蛍光体Y0.695Gd0.3Bi0.005Al(BOを得た。
〔Example〕
Next, the present invention will be described with reference to the following examples, but the present invention is not limited to these examples.
Example 1
Y 2 O 3 , Gd 2 O 3 , Bi 2 O 3 , Al 2 O 3 , H 3 BO 3 are used as raw materials, and the final Y: Gd: Bi: Al: B molar ratio is 0.695: 0.3. : 0.005: 3: 4 and weighed and mixed using a mortar. This mixture was placed in an alumina crucible and baked in an electric furnace at 1200 ° C. in the atmosphere for 10 hours. The fired product was washed with warm water, dried and crushed in a mortar to obtain the intended ultraviolet light-emitting phosphor Y 0.695 Gd 0.3 Bi 0.005 Al 3 (BO 3 ) 4 .

実施例2−実施例10
原料としてY、Gd、Bi、Al、HBOを最終的なY:Gd:Bi:Al:Bのモル比が0.795:0.2:0.005:3:4(実施例2)、0.595:0.4:0.005:3:4(実施例3)、0.495:0.5:0.005:3:4(実施例4)、0.6975:0.3:0.0025:3:4(実施例5)、0.6925:0.3:0.0075:3:4(実施例6)、0.69:0.3:0.01:3:4(実施例7)、0.68:0.3:0.02:3:4(実施例8)、0.699:0.3:0.001:3:4(実施例9)、0.6995:0.3:0.0005:3:4(実施例10)になるように秤量し、乳鉢を用いて混合した。この混合物をアルミナ製るつぼに入れ、電気炉にて大気中1200℃で10時間保持し焼成した。この焼成物を温水で洗浄後、乾燥して乳鉢で解砕し、目的の組成の紫外線発光蛍光体を得た。
Example 2-Example 10
Y 2 O 3 , Gd 2 O 3 , Bi 2 O 3 , Al 2 O 3 , H 3 BO 3 are used as raw materials, and the final Y: Gd: Bi: Al: B molar ratio is 0.795: 0.2. : 0.005: 3: 4 (Example 2), 0.595: 0.4: 0.005: 3: 4 (Example 3), 0.495: 0.5: 0.005: 3: 4 (Example 4), 0.6975: 0.3: 0.0025: 3: 4 (Example 5), 0.6925: 0.3: 0.0075: 3: 4 (Example 6),. 69: 0.3: 0.01: 3: 4 (Example 7), 0.68: 0.3: 0.02: 3: 4 (Example 8), 0.699: 0.3: 0. 001: 3: 4 (Example 9), 0.6995: 0.3: 0.0005: 3: 4 (Example 10) were weighed and mixed using a mortar. This mixture was placed in an alumina crucible and baked in an electric furnace at 1200 ° C. in the atmosphere for 10 hours. The fired product was washed with warm water, dried and crushed in a mortar to obtain an ultraviolet light-emitting phosphor having the desired composition.

比較例
原料としてY、Gd、Al、HBOを最終的なY:Gd:Al:Bのモル比が0.7:0.3:3:4になるように秤量し、乳鉢を用いて混合した。この混合物をアルミナ製るつぼに入れ、大気中1200℃で10時間保持し焼成した。この焼成物を湯水で洗浄後、乾燥して乳鉢で解砕し、目的の蛍光体Y0.7Gd0.3Al(BOを得た。
As a comparative example raw material, Y 2 O 3 , Gd 2 O 3 , Al 2 O 3 , and H 3 BO 3 were used at a final Y: Gd: Al: B molar ratio of 0.7: 0.3: 3: 4 And weighed and mixed using a mortar. This mixture was placed in an alumina crucible and kept at 1200 ° C. for 10 hours in the atmosphere for firing. The fired product was washed with hot water, dried and crushed in a mortar to obtain the target phosphor Y 0.7 Gd 0.3 Al 3 (BO 3 ) 4 .

実施例1〜10および比較例で得られた蛍光体の発光特性を、光源として重水素ランプ(浜松ホトニクス製)、検出器に光電子倍増管(R374:浜松ホトニクス製)を用いて測定した。すなわち、Gd3+のf−f遷移に起因する313nmの発光を検出しながら励起光の波長を変化させることにより励起スペクトル測定を行った。表1の値は、比較例の147nm励起と172nm励起の発光ピーク強度をそれぞれ100%として規格化して、各実施例の発光ピーク強度を示している。また、図1は、励起波長130nmから300nmの領域の励起スペクトルを例示している。 The emission characteristics of the phosphors obtained in Examples 1 to 10 and the comparative example were measured using a deuterium lamp (manufactured by Hamamatsu Photonics) as a light source and a photomultiplier tube (R374: manufactured by Hamamatsu Photonics) as a detector. That is, the excitation spectrum was measured by changing the wavelength of the excitation light while detecting 313 nm emission resulting from the ff transition of Gd 3+ . The values in Table 1 show the emission peak intensities of the respective examples by standardizing the emission peak intensities of 147 nm excitation and 172 nm excitation of the comparative example as 100%. FIG. 1 exemplifies an excitation spectrum in a region with an excitation wavelength of 130 nm to 300 nm.

表1から明らかなように、実施例に示したYの一部をBiに置換した紫外線発光蛍光体は172nm励起における発光特性が比較例に示した紫外線発光蛍光体に比べて大幅に改善している。172nm励起での発光特性が最も改善しているのは実施例6に示したBi=0.0075の場合で、比較例に比べて約1.9倍の改善が見られた。その際の147nm励起での発光特性は比較例に比べ約3%の低下しか見られなかった。   As is apparent from Table 1, the ultraviolet light emitting phosphors obtained by substituting part of Y with Bi in the examples have significantly improved emission characteristics at 172 nm excitation compared to the ultraviolet light emitting phosphors shown in the comparative examples. Yes. The light emission characteristics with 172 nm excitation were most improved when Bi = 0.005 shown in Example 6 and an improvement of about 1.9 times was observed compared to the comparative example. At that time, the emission characteristic at 147 nm excitation was only about 3% lower than the comparative example.

さらに、図1から明らかなように、本発明に従う実施例の紫外線発光蛍光体は比較例のものに比べて、172nm励起の特性のみではなく、170nmから300nmのほとんどの領域で発光特性が大幅に向上していることがわかる。そのため、本発明は光源としてXe放電を用いた真空紫外線発光以外の光源(例えば、低圧水銀ランプの185nmと254nmやKrClエキシマレーザーの222nm)を利用することもできる産業上の有用性の高い蛍光体およびそれを用いる発光素子を提供する。   Further, as is clear from FIG. 1, the ultraviolet light emitting phosphor of the example according to the present invention has not only the characteristic of excitation at 172 nm but also the light emission characteristic in most of the region from 170 nm to 300 nm as compared with the comparative example. It can be seen that it has improved. For this reason, the present invention can use a light source other than vacuum ultraviolet light emission using Xe discharge as a light source (for example, 185 nm and 254 nm of a low-pressure mercury lamp or 222 nm of a KrCl excimer laser), which is highly industrially useful phosphor. And a light-emitting element using the same.

なお、本明細書で使用している用語と表現はあくまで説明上のものであって、限定的なものではなく、上記用語、表現と等価の用語、表現を除外するものではない。
Note that the terms and expressions used in this specification are merely explanatory and are not restrictive, and do not exclude terms and expressions equivalent to the above terms and expressions.

Claims (2)

一般式Y1−x−yGdBiAl(BO)(0<x<0.6,0.0005<y<0.01)で表される組成を有することを特徴とする、真空紫外線により励起されて紫外線を発光する蛍光体。 It has a composition represented by the general formula Y 1-xy Gd x Bi y Al 3 (BO 3 ) 4 (0 <x <0.6, 0.0005 <y < 0.01 ). A phosphor that emits ultraviolet light when excited by vacuum ultraviolet light. 請求項1に記載された蛍光体を用いることを特徴とする発光素子。   A light-emitting element using the phosphor according to claim 1.
JP2012104497A 2012-05-01 2012-05-01 Ultraviolet light emitting phosphor and light emitting device using the same Active JP5692727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012104497A JP5692727B2 (en) 2012-05-01 2012-05-01 Ultraviolet light emitting phosphor and light emitting device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012104497A JP5692727B2 (en) 2012-05-01 2012-05-01 Ultraviolet light emitting phosphor and light emitting device using the same

Publications (2)

Publication Number Publication Date
JP2013231142A JP2013231142A (en) 2013-11-14
JP5692727B2 true JP5692727B2 (en) 2015-04-01

Family

ID=49677872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012104497A Active JP5692727B2 (en) 2012-05-01 2012-05-01 Ultraviolet light emitting phosphor and light emitting device using the same

Country Status (1)

Country Link
JP (1) JP5692727B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079661A1 (en) * 2016-10-28 2018-05-03 大電株式会社 Ultraviolet light-emitting phosphor, light-emitting element, and light-emitting device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL186707C (en) * 1978-03-10 1991-02-01 Philips Nv LUMINESCENT FABRIC, LUMINESCREEN SCREEN EQUIPPED WITH SUCH SUBSTANCE AND LOW-PRESSURE MERCURY DISCHARGE LAMP EQUIPPED WITH SUCH SCREEN.
JP2002348571A (en) * 2001-05-28 2002-12-04 Toshiba Corp Vacuum ultraviolet-excited fluorescent substance and light-emitting device using the same
CN1947213B (en) * 2004-04-22 2010-09-01 皇家飞利浦电子股份有限公司 Dielectric barrier discharge lamp comprising an UV-b phosphor
EP1874895B1 (en) * 2005-04-14 2008-09-10 Philips Intellectual Property & Standards GmbH Device for generating uvc radiation

Also Published As

Publication number Publication date
JP2013231142A (en) 2013-11-14

Similar Documents

Publication Publication Date Title
Singh et al. Recent advancements in luminescent materials and their potential applications
US7128849B2 (en) Phosphors containing boron and metals of Group IIIA and IIIB
JP5461752B2 (en) Phosphor containing alkaline earth metal and Group 13 metal oxide and light source incorporating the phosphor
JP5225539B2 (en) Phosphors containing phosphates and / or boric acid of group IIIA, IVA, and lanthanide series metals, and light sources incorporating the phosphors
JP2005206841A (en) Phosphor containing boron and rare earth metal, and light source incorporating the phosphor
JP4396016B2 (en) Aluminate phosphor, phosphor paste composition, and vacuum ultraviolet light-excited light emitting device
US6761837B2 (en) Europium-activated phosphors containing oxides of rare-earth and group-IIIB metals and method of making the same
JP2007077365A (en) Long afterglow phosphor
JP2006342336A (en) UVC-EMITTING Sr(Al,Mg)12019:Pr PHOSPHOR AND LAMP CONTAINING THE SAME
Yoo et al. Preparation and photoluminescence properties of YAl3 (BO3) 4: Tb3+, Bi3+ phosphor under VUV/UV excitation
US20050279969A1 (en) Europium-activated phosphors containing oxides of rare-earth and group-iiib metals and method of making the same
TWI551668B (en) Verbesserter granatleuchtstoff und verfahren zu dessen herstellung sowie lichtquelle
JP2007238938A (en) Uv radiation phosphor and lamp containing it
JP2003096445A (en) Improved quantum splitting oxide fluorescent substance and method of production for the same
JP5916599B2 (en) Ultraviolet light emitting phosphor and light emitting device using the same
JP5692727B2 (en) Ultraviolet light emitting phosphor and light emitting device using the same
US8531098B2 (en) Phosphor blends for fluorescent lamps
JP4205936B2 (en) Aluminate phosphor, method for producing the same, phosphor paste composition, and vacuum ultraviolet light-emitting device
EP1258520B1 (en) Quantum-splitting oxide-based phosphors
JP2011207934A (en) Ultraviolet-emitting phosphor
JP3754701B2 (en) Phosphor and light emitting device using the same
JPWO2007034609A1 (en) Ultraviolet emission afterglow phosphor
US9758725B2 (en) Fluorescent material and light-emitting device
JP4244265B2 (en) Aluminate phosphor, phosphor paste composition, and vacuum ultraviolet light-excited light emitting device
JP4523003B2 (en) VUV excitation device having blue-emitting phosphor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141225

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20141225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150127

R150 Certificate of patent or registration of utility model

Ref document number: 5692727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250