JPS64931B2 - - Google Patents

Info

Publication number
JPS64931B2
JPS64931B2 JP58058548A JP5854883A JPS64931B2 JP S64931 B2 JPS64931 B2 JP S64931B2 JP 58058548 A JP58058548 A JP 58058548A JP 5854883 A JP5854883 A JP 5854883A JP S64931 B2 JPS64931 B2 JP S64931B2
Authority
JP
Japan
Prior art keywords
cyclodextrin
culture
fraction
pertussis
item
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58058548A
Other languages
Japanese (ja)
Other versions
JPS59184132A (en
Inventor
Akihiro Ginnaga
Hiroshi Kiba
Susumu Sakuma
Hisashi Kitagawa
Akira Yamada
Yoji Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP58058548A priority Critical patent/JPS59184132A/en
Priority to CA000450495A priority patent/CA1213234A/en
Priority to KR1019840001645A priority patent/KR900007658B1/en
Priority to AT84103504T priority patent/ATE65028T1/en
Priority to ES531112A priority patent/ES8505818A1/en
Priority to DE8484103504T priority patent/DE3484778D1/en
Priority to AU26230/84A priority patent/AU564634B2/en
Priority to EP84103504A priority patent/EP0121249B1/en
Publication of JPS59184132A publication Critical patent/JPS59184132A/en
Priority to US06/874,670 priority patent/US4687738A/en
Publication of JPS64931B2 publication Critical patent/JPS64931B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、百日ぜき菌の感染防御抗原HA画分
(F―HA:Filamentous Hemagglutininおよび
LPF―HA:Leucocytosis―promoting Factor
Hemagglutininを含んだ画分)を採取し、該HA
画分をアミノ酸の存在下に無毒化することにより
百日ぜきワクチンを製造する方法、さらに詳しく
は、百日ぜき菌をシクロデキストリンまたはその
誘導体を添加した液状倍地にて通気撹拌培養する
に際し、培養温度および溶存酸素量を特定範囲に
制御しかつ消泡条件下で行なうことにより百日ぜ
き菌の感染防御抗原HA画分を採取し、これをア
ミノ酸の存在下に無毒化して百日ぜきワクチンを
工業的規模にて製造する方法に関する。 産業上の利用分野 百日ぜきは我が国では屈出伝染病に指定されて
おり、乳児〜幼児に多発する公衆衛生上重要な感
染症である。とくに乳児では重症経過をたどるこ
とが多く、時には死亡例もみられる。この疾病は
古くからワクチンによる予防が効果的であること
が知られており、原因菌である百日ぜき菌相菌
の全菌体の不活性ワクチンが広く用いられてい
た。しかし、このような菌体不活化ワクチンは副
作用が強く、そのため一時期にはワクチンの接種
が中止されていた。その一方、百日ぜきによる乳
幼児の疾病は大きな問題となつており、副作用の
ないワクチンの製造が熱望されていた。 従来技術 先に、佐藤らは感染防御抗原に関する基礎的研
究をもとにして画期的なコンポーネントワクチン
である沈降百日ぜき精製ワクチンの製造に成功し
た(特公昭57−5203号を参照)。このワクチンは
F―HAおよびLPF―HAを含んだHA画分を主
な感染防御抗原とし、副作用をほとんど示すこと
がなく優れた予防効果を有するものであつてすで
に実用化されている。 この実用化されているワクチンの製造には、百
日ぜき相菌を適当な培地に接種し、35℃前後で
5日間静置培養し、培養液を遠心し、その上清に
硫酸アンモニウムを約50%飽和になるように加え
るかアルコール添加し、生じた沈殿を10000rpm、
30分間遠心して離し、この沈殿を塩化ナトリウム
添加緩衝液にて抽出し、その抽出画分を常法によ
りシヨ糖密度勾配遠心にかけて百日ぜきHA画分
を回収し、ホルマリンで無毒化処理してワクチン
としており、所望によりこれにジフテリアトキソ
イド、破傷風トキソイドを加え、さらに必要によ
りアルミニウムアジユバント処理し、ゼラチン、
グルコースなどの安定剤を添加して沈降精製百日
ぜき・ジフテリア・破傷風混合ワクチンとしてい
る。 しかしながら、この方法ではとくに培養に難点
があり、大規模な培養が不可能でワクチンの量産
が困難である。すなわち、この公知の沈降百日ぜ
き精製ワクチンの製造法では、ルー瓶などの小容
器の液状培地を100〜300ml程度入れて横臥位置で
35℃前後にて5日間静置培養するもので、きわめ
て小規模でかつ長期間を要する。一般に微生物の
大量培養には液状倍地による撹拌培養方式が採用
されることが多い。百日ぜき菌は液状倍地による
振盪培養を行なうと菌自身の増殖はある程度まで
は達成されるが、たとえばF―HA画分の産生は
きわめて低いといわれている(Arai,H.&
Munoz,J.J.,Infect.Immun.25764―767,1979
を参照)。このことは精製ワクチンの構成成分の
少なくとも一方は量産し難いことを示唆するもの
である。したがつて、この佐藤らの百日ぜきワク
チンは画期的なワクチンであるがその製造には小
規模で長時間を要する静置培養に頼らざるを得
ず、その製法の改良が熱望されている。 最近、鈴木らは百日ぜき相菌の増殖を促進し
かつLPR―HAの産生を促進しうる添加物の検索
を試み、シクロデキストリンおよびその誘導体、
とくにメチル化β―シクロデキストリン(2,6
―ジ(O―メチル)―β―シクロデキストリン、
以下メチル化β―CDと略称する)の添加が百日
ぜき相菌のステイナーシヨルテ液体倍地
(Stainer,D.W.&Scholte,M.J.;J.Gen.
Microbiol.63,211―220,1971を参照)を用いた
撹拌培養における菌増殖およびLPF―HA産生を
促進すること、さらに培養液中でのLPF―HAの
安定性にも寄与することを報告している(冷木
ら、第29回毒素シンポジウム予稿集、1〜5、
1982を参照)。 しかしながら、かかる方法を10あるいはそれ
以上のスケールの発酵槽を用いる工業的規模の百
日ぜきワクチンの製造に適用した場合には、従来
の撹拌培養にもとづく知見からは全く類推できな
い結果が得られた。すなわち、撹拌条件を一定と
する振盪培養や撹拌培養系では菌数の増加は知ら
れる場合もあるが、LPF―HAの産出量は充分で
ないことを知つたのである。 また、WHOの1977年刊行の資料(Manual
for the production and control of vaccine、
Pertussis vaccine、WHOを参照)によれば、百
日ぜきワクチンの製造に関して発酵槽を用いた百
日ぜき菌の大量培養について記載されており、空
気を上方からの表面通気によりあるいはグリツド
を通して培地中に入れ、特殊な羽根で撹拌して培
養液内に巻込む方式で、一定の通気撹拌によつて
百日ぜき菌菌体を得ることができるとしている。
しかしながら、本発明者らは、ステイナー・シヨ
ルテ培地あるいは後述のその改良培地10の培養
規模においてWHOの記述に準じ、槽底からの通
気量を0.2VVM(空気流量()/培地容量
()/時間(分))、羽根の回転数を500あるいは
600rpmの一定とし、いわゆる槽底からの一定通
気撹拌培養系について検討を加えたところ、菌数
の増加は期待できるが、百日ぜき菌HA画分の産
生は不充分であり、到底、精製百日ぜきワクチン
の工業的生産には適さないことを知つた。 そこで、本発明者らは、大規模な培養装置、と
くに通常の発酵槽を用いた通気撹拌培養において
も菌の増殖とともに所望のHA画分の大量生産に
適した培養条件を見い出すべく種々研究を重ねた
結果、ある範囲の培養温度において溶存酸素量
(以下、DOと略記することがある)を特定の範
囲に制御しかつ消泡処理をしながら、さらに望ま
しくは、PHの制御条件下に培養することにより、
大規模な培養、とくに通常の発酵槽を用いた通気
撹拌培養においても、百日ぜき菌の著しい増殖と
ともに、百日ぜき菌HA画分を著しく増大しうる
ことを見い出し、さらにこのHA画分にアミノ酸
の存在下でホルマリンを加えることにより無毒化
が達成され、37℃長期間加温経過しても毒性復帰
現象(リバース)がおこらないことを見出した。
この無毒化処理におけるアミノ酸の添加系ではア
ミノ酸非添加系に比して凝集塊沈殿を生成するこ
とはなく、音波処理等の工程が不要でそのまま無
毒化HA画分をメンブレンフイルターを用いて無
菌過できることを見出し、本発明を完成するに
至つた。 発明の構成および効果 本発明によれば、百日ぜき菌をシクロデキスト
リンまたはその誘導体を添加した液状倍地に接種
し、消泡処理しながら、培養温度20〜37℃におい
て溶存酸素量を0.7〜6.0ppmの範囲に保ち、さら
に望ましくはPHをたとえば6.0〜9.0にて通気撹拌
培養し、対数増殖期ないし定常期の菌発育段階で
感染防御抗原HA画分を採取し、該HA画分をア
ミノ酸の存在下でホルマリンで無毒化し、これを
用いて所望の精製百日ぜきワクチン、沈降精製百
日ぜきワクチン、沈降精製百日ぜき・ジフテリ
ア・破傷風混合ワクチン等が大量かつ経済的に製
造される。 本発明で用いられる百日ぜき菌株としては、通
常ワクチン株として知られているものであればい
ずれでもよく、一般にその相菌のボルデ・ジヤ
ング培地継代菌あるいは振盪培養菌が用いられ、
これを種菌として液状倍地に接種する。なお、百
日ぜき菌相菌も適用することができる。接種量
はとくに限定されないが、通常、最終濃度が0.2
〜10IOU/ml(IOU:International opacity
unit,生物学的製剤基準、238,1979、厚生省を
参照)、好ましくは約1.0IOU/mlとなる程度であ
る。 液状倍地としては公知のいずれの培地も用いら
れるが、好ましくはステイナー・シヨルテ培地、
とくに好ましくは、該ステイナー・シヨルテ培地
を基本とし、これがカザミノ酸を0.1〜20g/
添加し、アスコルビン酸を0.01〜1g/、グル
タチオンを0.1〜5g/の範囲に調整したステ
イナー・シヨルテ改良培地(以下、単に改良培地
という)が用いられる。 培地に添加されるシクロデキストリン(以下、
CDと略称する)またはその誘導体としては、α
―CD,β―CD,γ―CDなどの異性体、メチル
化α―CD、メチル化β―CD(前掲)、メチル化γ
―CDなどのエーテル化誘導体のほか、アミノ化
誘導体かエステル化誘導体などが挙げられ、それ
らは単独でまたは2種以上を併用して用いられ
る。これらのうち、メチル化β―CDがもつとも
良好な添加効果を示す。その添加量はとくに限定
されないが、通常、0.001/5g/、好ましく
は約0.5〜2.5g/である。 本発明者らは百日ぜき菌の大規模培養における
菌増殖、F―HAおよびLPF―HA産生量の増大
には培養温度ならびにDOの制御が大きな要因と
なることを初めて認め、かつ消泡操作の有無さら
には培地のPHの制御も大きく影響することを明ら
かにした。これらの成績について以下説明する。 培養温度については、百日ぜき菌相菌東浜株
をボルデ・ジヤング培地で継代したものを種菌と
し、メチル化β―CD1.0g/を添加した改良培
地10mlに0.2IOU/mlになるように接種し、温度
勾配培養装置TN112D(東洋科学産業製)を用い、
培養温度を17℃から42℃の範囲で振盪速度60回/
分にて48時間振盪培養して至適範囲を調べた。増
殖した菌数は光電比色計コールマンジユニア6D
型(コールマン社製)を用い、OD650における
測定値から換算して求めた。なお、この実験は実
験室的小規模にて振盪培養で行なつたが、培養温
度に関しては大規模な通気撹拌培養でも同傾向を
示す。 その結果を第1図に示したが、菌の増殖は20〜
37℃の範囲が望ましく、より好ましくは23〜37℃
であつた。 培地の溶存酸素量(DO)は0.7〜6.0ppm、好
ましくは1.0〜5.5ppmの範囲に保持される。この
範囲内に制御することにより、百日ぜき菌の増殖
が増大するとともに、所望のLPF―HAおよびF
―HAの産生も著しく増大する。 なお、DO制御には通気量と撹拌速度の制御を
組合せて行なうのがもつともよく、通気量と撹拌
速度はとくに限定されないが、通常の通気撹拌槽
を用いた場合には、空気の通気量は3VVM以下、
通常0.1〜2VVM、好ましくは0.1〜1.5VVMの範
囲であり、撹拌速度は600rpm以下、通常50〜
350rpm、好ましくは100〜250rpmの範囲である。
ただし、純酸素を併用する場合は通気量あるいは
撹拌速度は減ずることができる。 また、消泡操作の有無によつても培養液中の菌
数増加およびF―HA、LPF―HA量の収率が大
きく影響され、後述の実施例1と同様の実験条件
で培養した場合、消泡を行わないときには泡に付
着した菌体がそのまま槽壁に累積されたり、排気
ノズルから流出されたりして培養液中の菌数、F
―HAおよびLPF―HA量ともに数〜80%程度の
減弱が認められた。なお、消泡は機械的消泡と化
学的消泡剤のいずれも適用され、例えば回転デイ
スク式、スプレーノズル方式などの公知の消泡用
装置を用いるか、あるいは通常の脂肪酸エステル
系、シリコン系、アルコール系などの化学的消泡
剤を用いることができる。なお、培養液からの
HA画分の採取、精製等の点からは機械的消泡手
段を用いるのがより好ましい。 培地PHの至適範囲を知るため、PHを種々に変え
て菌の増殖を調べた。DOを2.5ppmと一定にした
以外は後述の実施例1と同様の実験条件で培養し
た。PH6.0〜9.0の範囲ではいずれも菌増殖は達せ
られ、PH6.5〜8.5、とくにPH6.8〜7.5の範囲では
菌増殖速度が若干増大することが認められた。 本発明による培養温度、溶存酸素量さらには消
泡、PHなどの制御は自動制御および手動制御のい
ずれも採用される。 また、目的とするHA画分を高収率で得るには
菌の培養状態のチエツクが重要であり、対数増殖
期から転換期を経て定常期に至るまでの菌発育段
階において採取するのがもつとも望ましく、それ
は接種菌によつて変るが、通常7〜40時間に相当
し、例えば、1.0IOU/mlの接種菌量の場合には
通常24〜35時間である。 上記のようにして産生されるHA含有培養液か
ら沈降精製百日ぜきワクチンが調製される。 すなわち、得られた培養液には直接または連続
遠心処理したのち、硫酸アンモニウムを約1/3飽
和になるように加え、生じた沈殿を遠心分離また
は過して収集し、これを1モル塩化ナトリウム
添加リン酸緩衝液、PH7.2に溶解する。この溶液
に硫酸アンモニウムを約1/2飽和になるまで加え、
生じた沈殿を遠心分離または過などにより収集
し、これを透析チユーブに入れて1モル塩化ナト
リウム添加リン酸緩衝液、PH7.2に対して透析し
溶解する。これを超遠心分離にかけ、得られる上
清をさらにシヨ糖密度勾配遠心にかけて、その上
清(百日ぜき菌HA画分)を得る。これらの一連
の精製工程は4℃以下で行なうのが望ましい。得
られた上清には、大量のLPF―HAとF―HAが
含まれている。これを電気泳動法により調べたと
ころ、従来の静置培養法由来のF―HAやLPF―
HAと同程度の分子量および電荷をもち、さらに
同等の形態(電子顕微鏡所見)、抗原性(ゲル内
沈降反応所見)およびマウスLPF毒素活性を有
している。 このHA画分を適宜希釈し、これにホルマリン
を0.1〜1.2v/v%、好ましくは0.4〜0.8v/v%
の濃度に添加し、20〜43℃、好ましくは37〜40℃
で3〜60日間処理する。このホルマリン無毒化処
理によりHA画分中のLPF活性、HSF活性
(Histamine―sensitizing factor)等が減毒され
る。本発明者らは、この無毒化処理においてアミ
ノ酸を添加すれば、無毒化に要する時間が著しく
短縮され、凝集塊沈殿を生成することなく、毒性
復帰現象(リバース)が起こらないことを見出し
た。なお、この際アミノ酸とともに安定剤として
ツイーン80、ゼラチンを適宜添加することができ
る。 アミノ酸としては、グリシン、メチオニン、シ
ステイン、グルタミン酸ナトリウム、アスパラギ
ン酸、セリン、アラニン、ロイシン、イソロイシ
ン、バリン、スレオニン、γ―アミノ酪酸、リジ
ンなどから1種または2種以上が選ばれて用いら
れる。 シクロデキストリンあるいはその誘導体を添加
した液状倍地で発酵槽を用いて得られる培養液か
ら精製したHA画分を、上記のアミノ酸を添加し
てホルマリンで無毒化する場合には、凝集塊沈殿
を生成しないのでメンブランフイルターによる無
菌過を行なうことが可能である。一方、アミノ
酸を実質的に存在しない状態でホルマリン無毒化
処理を適用すると、シクロデキストリンを添加し
ない液状倍地で静置培養して得られる培養液から
精製したHA画分を無毒化する場合と同様に、凝
集塊沈殿を生じ、以後の工程において音波処理に
よつてこの沈殿を破砕する必要がある。この場合
無毒化後の工程における無菌過は困難である。 上記無毒化処理後、適当な蛋白濃度に調製(通
常、最終蛋白窒素濃度8〜20μgTCAPN/ml)
し、所望によりさらにジフテリアトキソイド、破
傷風トキソイドを加え、そのまままたは必要によ
りアジユバンドとして水酸化アルミニウムまたは
リン酸アルミニウムを最終濃度0.15〜0.3μg/ml
程度に加えて処理する。最後に安定剤としてゼラ
チン、グルコース、保存剤としてチメロサールな
どを適当量加えてワクチンとする。 実施例 つぎに実験例および実施例を挙げて本発明をさ
らに具体的に説明するが本発明はこれらに限定さ
れない。 実験例 1 50の発酵槽(丸菱理化(株)製)に、下記第1表
に示す組成を有する改良培地にメチル化β―CD
を最終濃度1.0g/になるように添加した培地
35を加え、百日ぜき菌相菌を1.0IOU/mlの
量で接種し、スパージヤーによる槽底からの通気
撹拌培養系でDOの制御範囲を種々変え、温度35
℃、PH7.2に制御し、消泡手段として機械的消泡
を用い、それぞれ24時間培養を行なつた。
The present invention is directed to the infection-protective antigen HA fraction (F-HA: Filamentous Hemagglutinin) of Bordetella pertussis.
LPF―HA:Leucocytosis―promoting Factor
The fraction containing Hemagglutinin) was collected, and the HA
A method for producing a pertussis vaccine by detoxifying the fraction in the presence of amino acids, more specifically, a method for producing a pertussis vaccine by cultivating Bordetella pertussis in a liquid medium containing cyclodextrin or its derivatives with aeration and stirring. By controlling the amount of oxygen within a specific range and performing under antifoaming conditions, the infection-protective antigen HA fraction of Bacillus pertussis is collected, and this is detoxified in the presence of amino acids to produce a pertussis vaccine on an industrial scale. Regarding the method. Industrial Application Fields Pertussis is designated as a contagious disease in Japan, and is an infectious disease of public health importance that frequently occurs in infants and young children. Infants in particular often develop a severe course, and sometimes even die. It has been known for a long time that this disease can be effectively prevented by vaccination, and inactivated vaccines containing the whole body of the causative bacteria, the pertussis fungus, have been widely used. However, such inactivated bacterial vaccines have strong side effects, and as a result, vaccination was discontinued for a period of time. On the other hand, the disease of infants and children caused by pertussis has become a major problem, and the production of a vaccine without side effects has been eagerly awaited. Prior Art Earlier, Sato et al. succeeded in producing a purified precipitated pertussis vaccine, which is an epoch-making component vaccine, based on basic research on infectious protective antigens (see Japanese Patent Publication No. 57-5203). This vaccine uses the HA fraction containing F-HA and LPF-HA as the main infection-protective antigen, exhibits almost no side effects, has an excellent preventive effect, and has already been put into practical use. To manufacture this practical vaccine, pertussis bacteria are inoculated into a suitable medium, cultured for 5 days at around 35°C, the culture solution is centrifuged, and the supernatant is saturated with ammonium sulfate to approximately 50% saturation. Add or add alcohol so that the resulting precipitate is
The precipitate was separated by centrifugation for 30 minutes, extracted with a buffer solution containing sodium chloride, and the extracted fraction was subjected to sucrose density gradient centrifugation using a conventional method to recover the pertussis HA fraction, which was detoxified with formalin and used as a vaccine. If desired, diphtheria toxoid and tetanus toxoid are added to this, and further treated with aluminum adjuvant if necessary, gelatin,
Stabilizers such as glucose are added to create a precipitated and purified pertussis, diphtheria, and tetanus combined vaccine. However, this method has particular difficulties in culturing, making large-scale culture impossible and making mass production of vaccines difficult. In other words, in this known production method for purified precipitated pertussis vaccine, a small container such as a Roux bottle containing approximately 100 to 300 ml of liquid medium is placed in a lying position.
The culture is statically cultured at around 35°C for 5 days, which requires a very small scale and a long period of time. Generally, a stirring culture method using a liquid medium is often adopted for mass culture of microorganisms. When B. pertussis is cultured with shaking in a liquid medium, the bacterium itself can grow to a certain extent, but the production of the F-HA fraction, for example, is said to be extremely low (Arai, H. &
Munoz, JJ, Infect.Immun. 25 764―767, 1979
). This suggests that at least one of the components of a purified vaccine is difficult to mass produce. Therefore, although the pertussis vaccine of Sato et al. is an innovative vaccine, its production must rely on static culture, which is small-scale and takes a long time, and improvements in the production method are eagerly awaited. Recently, Suzuki et al. have attempted to search for additives that can promote the growth of pertussis bacteria and the production of LPR-HA.
In particular, methylated β-cyclodextrin (2,6
-di(O-methyl)-β-cyclodextrin,
Stainer, DW & Scholte, MJ; J.Gen.
Microbiol. 63 , 211-220, 1971) was reported to promote bacterial growth and LPF-HA production in agitation culture, and also to contribute to the stability of LPF-HA in the culture solution. (Hiroki et al., Proceedings of the 29th Toxin Symposium, 1-5,
(see 1982). However, when this method was applied to the production of pertussis vaccine on an industrial scale using 10 or more scale fermenters, results were obtained that could not be inferred from the knowledge based on conventional agitation culture. In other words, although it is known that the number of bacteria increases in shaking culture or agitation culture systems in which stirring conditions are kept constant, the amount of LPF-HA produced is not sufficient. In addition, the WHO's 1977 publication (Manual
for the production and control of vaccines,
Pertussis vaccine (see WHO) describes the mass cultivation of B. pertussis in fermenters for the production of pertussis vaccines, in which air is introduced into the medium by surface aeration from above or through a grid, and special It is said that pertussis bacteria can be obtained by stirring with a blade and incorporating it into the culture solution through constant aeration and agitation.
However, at the culture scale of Steiner-Schjorte medium or its modified medium 10 described below, the aeration rate from the bottom of the tank was set at 0.2VVM (air flow rate ()/medium volume ()/hour) according to the WHO description. (minutes)), set the number of revolutions of the blade to 500 or
When we investigated a so-called constant aeration agitation culture system from the bottom of the tank at a constant speed of 600 rpm, an increase in the number of bacteria could be expected, but the production of the B. pertussis HA fraction was insufficient, making it impossible to produce a purified pertussis vaccine. I learned that it is not suitable for industrial production. Therefore, the present inventors conducted various studies in order to find culture conditions suitable for bacterial growth and mass production of the desired HA fraction even in aerated agitation culture using large-scale culture equipment, especially ordinary fermenters. As a result of repeated experiments, the amount of dissolved oxygen (hereinafter sometimes abbreviated as DO) can be controlled within a specific range at a certain range of culture temperature, while antifoaming treatment is performed, and more preferably, the culture can be carried out under PH controlled conditions. By doing so,
We found that even in large-scale culture, especially in aerated agitation culture using a conventional fermenter, B. pertussis can significantly proliferate and the B. pertussis HA fraction can be significantly increased. It was found that detoxification was achieved by adding formalin, and no reversal of toxicity occurred even after long-term heating at 37°C.
In this detoxification treatment, the amino acid addition system does not produce aggregate precipitates compared to the amino acid non-addition system, and there is no need for steps such as sonication, and the detoxified HA fraction is directly passed through sterile filtration using a membrane filter. They discovered what they could do and completed the present invention. Structure and Effects of the Invention According to the present invention, Bordetella pertussis is inoculated into a liquid medium supplemented with cyclodextrin or its derivative, and the amount of dissolved oxygen is reduced to 0.7 to 6.0 ppm at a culture temperature of 20 to 37° C. while being subjected to defoaming treatment. Aerated agitation culture is carried out at a pH of 6.0 to 9.0, preferably at a pH of 6.0 to 9.0, and an infection-protecting antigen HA fraction is collected during the logarithmic growth phase or stationary phase of bacterial growth. The vaccine is then detoxified with formalin and used to economically produce a desired purified pertussis vaccine, precipitated purified pertussis vaccine, precipitated purified pertussis/diphtheria/tetanus combined vaccine, etc. in large quantities. The pertussis strain used in the present invention may be any strain that is commonly known as a vaccine strain, and in general, Bordet-Jeyang medium-subcultured bacteria or shake-cultured bacteria of its compatible bacteria are used.
This is used as a seed fungus to inoculate liquid medium. In addition, pertussis bacteria can also be applied. The amount of inoculation is not particularly limited, but usually the final concentration is 0.2
~10IOU/ml (IOU: International opacity
unit, Biological Products Standards, 238, 1979, Ministry of Health and Welfare), preferably about 1.0 IOU/ml. Any known medium can be used as the liquid medium, but Steiner-Scholte medium is preferably used.
Particularly preferably, the Steiner-Scholte medium is used as the basis, and this contains casamino acids in an amount of 0.1 to 20 g/
A Steiner-Schorte improved medium (hereinafter simply referred to as improved medium) is used, in which ascorbic acid and glutathione are adjusted to a range of 0.01 to 1 g/0.1 to 5 g/. Cyclodextrin (hereinafter referred to as
(abbreviated as CD) or its derivatives, α
-isomers such as CD, β-CD, γ-CD, methylated α-CD, methylated β-CD (listed above), methylated γ
In addition to etherified derivatives such as -CD, aminated derivatives and esterified derivatives may be mentioned, and these may be used alone or in combination of two or more. Among these, methylated β-CD exhibits the best addition effect. The amount added is not particularly limited, but is usually 0.001/5 g/, preferably about 0.5 to 2.5 g/. The present inventors were the first to recognize that culture temperature and DO control are major factors in bacterial growth and increase in F-HA and LPF-HA production in large-scale culture of Bordetella pertussis. Furthermore, it was revealed that controlling the PH of the culture medium also has a large effect. These results will be explained below. Regarding the culture temperature, a strain of Higashihama strain of Bordetella pertussis subcultured in Bordet-Jeyang medium was used as a seed, and inoculated at 0.2 IOU/ml into 10 ml of an improved medium supplemented with 1.0 g/ml of methylated β-CD. , using temperature gradient culture device TN112D (manufactured by Toyo Kagaku Sangyo),
Culture temperature ranged from 17℃ to 42℃ with shaking speed 60 times/
The optimal range was investigated by culturing with shaking for 48 hours. The number of bacteria grown was measured using a photoelectric colorimeter Coleman Giunia 6D.
It was calculated by converting the measured value at OD650 using a mold (manufactured by Coleman). Although this experiment was conducted on a small scale in the laboratory using shaking culture, the same tendency can be observed in large-scale aerated culture with regard to culture temperature. The results are shown in Figure 1, and the growth of bacteria is 20~
Desirably a range of 37°C, more preferably 23-37°C
It was hot. The amount of dissolved oxygen (DO) in the medium is maintained in the range of 0.7 to 6.0 ppm, preferably 1.0 to 5.5 ppm. By controlling within this range, the growth of Bordetella pertussis will increase and the desired LPF-HA and F
- Production of hyaluronan also increases significantly. Note that DO control can be carried out in combination with controlling the aeration amount and stirring speed, and the aeration amount and stirring speed are not particularly limited, but when a normal aeration stirring tank is used, the amount of air aeration is 3VVM or less,
Usually ranges from 0.1 to 2 VVM, preferably from 0.1 to 1.5 VVM, stirring speed is below 600 rpm, usually from 50 to
350 rpm, preferably in the range of 100-250 rpm.
However, if pure oxygen is used in combination, the aeration amount or stirring speed can be reduced. In addition, the increase in the number of bacteria in the culture solution and the yield of F-HA and LPF-HA are greatly affected by the presence or absence of defoaming operation, and when cultured under the same experimental conditions as in Example 1 described below, If defoaming is not performed, the bacterial cells attached to the foam may accumulate on the tank wall or flow out from the exhaust nozzle, reducing the number of bacteria in the culture solution and F.
- HA and LPF - A decrease of several to 80% in both HA amounts was observed. For defoaming, both mechanical defoaming and chemical defoaming agents can be used. For example, known defoaming devices such as a rotating disk type or a spray nozzle type can be used, or conventional fatty acid ester-based or silicone-based defoaming agents can be used. Chemical antifoaming agents such as , alcohol-based, etc. can be used. In addition, from the culture solution
From the viewpoint of collection and purification of the HA fraction, it is more preferable to use mechanical defoaming means. In order to find out the optimal range of medium PH, we examined bacterial growth by varying the PH. Culture was carried out under the same experimental conditions as in Example 1 described below, except that DO was kept constant at 2.5 ppm. Bacterial growth was achieved in the pH range of 6.0 to 9.0, and a slight increase in bacterial growth rate was observed in the pH range of 6.5 to 8.5, particularly PH6.8 to 7.5. Control of culture temperature, amount of dissolved oxygen, defoaming, pH, etc. according to the present invention can be carried out either automatically or manually. In addition, in order to obtain the desired HA fraction with a high yield, it is important to check the culture state of the bacteria, and it is important to collect the bacteria at the growth stage from the logarithmic growth phase through the conversion phase to the stationary phase. Desirably, it will vary depending on the inoculum, but usually corresponds to 7 to 40 hours, for example, for an inoculum of 1.0 IOU/ml, usually 24 to 35 hours. A sedimentation-purified pertussis vaccine is prepared from the HA-containing culture solution produced as described above. That is, after directly or continuously centrifuging the obtained culture solution, ammonium sulfate is added to approximately 1/3 saturation, and the resulting precipitate is collected by centrifugation or filtration, and then added with 1M sodium chloride. Dissolve in phosphate buffer, PH7.2. Add ammonium sulfate to this solution until it is about 1/2 saturated,
The resulting precipitate is collected by centrifugation or filtration, placed in a dialysis tube, and dialyzed against 1M sodium chloride-added phosphate buffer, pH 7.2, to dissolve. This is subjected to ultracentrifugation, and the resulting supernatant is further subjected to sucrose density gradient centrifugation to obtain the supernatant (B. pertussis HA fraction). These series of purification steps are desirably carried out at 4°C or lower. The obtained supernatant contains a large amount of LPF-HA and F-HA. When this was investigated by electrophoresis, it was found that F-HA and LPF-derived from the conventional static culture method.
It has the same molecular weight and charge as HA, and also has the same morphology (electron microscopy findings), antigenicity (in-gel precipitation reaction findings), and mouse LPF toxin activity. This HA fraction is diluted appropriately, and formalin is added to it at 0.1 to 1.2 v/v%, preferably 0.4 to 0.8 v/v%.
Add to a concentration of 20-43℃, preferably 37-40℃
Process for 3 to 60 days. This formalin detoxification treatment reduces the toxicity of LPF activity, HSF activity (Histamine-sensitizing factor), etc. in the HA fraction. The present inventors have found that if amino acids are added in this detoxification treatment, the time required for detoxification is significantly shortened, and no aggregate precipitation occurs and toxicity reversion phenomenon (reverse) does not occur. At this time, Tween 80 and gelatin may be added as stabilizers along with the amino acids as appropriate. As the amino acid, one or more amino acids are selected and used from glycine, methionine, cysteine, monosodium glutamate, aspartic acid, serine, alanine, leucine, isoleucine, valine, threonine, γ-aminobutyric acid, lysine, and the like. When the HA fraction purified from a culture solution obtained using a fermenter in a liquid medium containing cyclodextrin or its derivatives is detoxified with formalin after adding the above amino acids, aggregate precipitates are generated. Therefore, it is possible to perform sterilization using a membrane filter. On the other hand, applying formalin detoxification treatment in the substantial absence of amino acids is similar to the case of detoxifying the HA fraction purified from the culture medium obtained by static culture in a liquid medium without the addition of cyclodextrin. In this case, an agglomerate precipitate is formed, and it is necessary to crush this precipitate by sonication in a subsequent step. In this case, it is difficult to carry out sterilization in the process after detoxification. After the above detoxification treatment, adjust to an appropriate protein concentration (usually final protein nitrogen concentration 8-20 μg TCAPN/ml)
Then, if desired, diphtheria toxoid and tetanus toxoid are further added, and aluminum hydroxide or aluminum phosphate is added as is or as an adjuvant if necessary to a final concentration of 0.15 to 0.3 μg/ml.
Treat in addition to the degree. Finally, appropriate amounts of gelatin and glucose as stabilizers and thimerosal as a preservative are added to prepare the vaccine. EXAMPLES Next, the present invention will be explained in more detail with reference to experimental examples and examples, but the present invention is not limited thereto. Experimental Example 1 Methylated β-CD was added to an improved medium having the composition shown in Table 1 below in 50 fermenters (manufactured by Marubishi Rika Co., Ltd.).
to a final concentration of 1.0 g/medium
35 and inoculated with pertussis bacteria at an amount of 1.0 IOU/ml. The control range of DO was varied in an aerated culture system with a sparger from the bottom of the tank, and the temperature was increased to 35.
℃ and pH 7.2, and cultured for 24 hours using mechanical defoaming as a defoaming means.

【表】 して用いる。
得られた培養液について、先と同様にして菌数
を測定し、またF―HAを血球凝集試験(Sato,
Y.et.Infect.Immun.,929〜999、1973を参照)
により測定、LPF―HAをin vitroではHp―
ELISA法(左藤ら、第28回毒素シンポジウム予
稿集、141〜144、1981を参照)による単位
(LPEu/mlと略記する)を測定し、in vivoでは
dd/Yマウス(4週令、雌)を用いてLPF―HA
静注3日後の白血球数をカウントする方法(冷木
ら、第29回毒素シンポジウム予稿集、1〜5、
1982を参照)によつて測定した。その結果を第2
図に示す。 第2図から明らかなように、菌増殖ならびに
HA画分の高単位の産生が見られるのはDOが0.7
〜60ppmであり、DO1.0〜5.5ppmではとくに良
好な結果が得られた。 比較例1〜10および実験例2〜5 培養条件を種々かえて百日ぜき菌HA画分の産
生量を比較検討した。すなわち、従来の通気撹拌
を一定とする方法と本発明に基づく通気撹拌を連
続的に変化させる方法について比較した。 14の通気撹拌培養装置(NBS社製)に、実
験例1で用いたものと同じメチル化β―CDを最
終濃度1.0g/添加した改良培地10を加え、
百日ぜき菌相菌を1.0IOU/mlの量で接種し、
スパージヤーによる槽底からの通気撹拌培養系
で、第2表に示す条件下に、すべて35℃で36時間
培養した。 通気撹拌を一定とし消泡処理を行なわない培養
は第2表中の比較実験例(以下単に比較例とい
う)1〜5,7および8である。その中では比較
例5の100rpmで0.5rrmという条件がHA画分の
産生量は良好であつた。しかしながら、その場合
においても培養10時間まではある程度の対数増殖
(約10IOU/ml)を示したが、その後急激に増殖
速度が減じ36時間後においても約15IOU/mlにと
どまり、HA画分産生量はF―HAが16HA/ml、
LPF―HAが100IOU/mlできわめて低く、48時
間後まで培養を続けた場合においてもほとんど増
加しなかつた。 また、0.2vvmで通気し、撹拌を500rpmあるい
は600rpmの一定とし、消泡処理をしない培養系
は、比較例7,8であるが、いずれの場合も培養
5〜10時間で、激しい発泡のために菌体が槽壁上
部に付着するか培養液が槽外へ流失し、それを36
時間後にすべて回収混合した場合においてもHA
画分量はきわめて低かつた。 DOを制御する消泡処理を行なわない培養系の
比較例10においても、同様の培養液の流失や菌体
の槽壁への付着がおこり、HA画分量は低かつ
た。 通気撹拌を一定とし、かつ消泡処理を行なう培
養系は比較例6および9である。いずれの場合
も、培養初期のDOがHA画分産生にとつて不適
当な6.0ppm以上にあり、培養の進行に伴ないDO
は連続的に下降しつづけ36時間以前に菌増殖およ
びHA産生に不適当な0.7ppm以下の状態に達して
いた。本発明の方法を一部加味して化学的消泡処
理を行なつた比較例9では、36時間培養後におい
て80IOU/mlに達したが、F―HAは128HA/
ml、LPF―HAは500LPEU/ml程度であつた。
[Table]
The number of bacteria in the obtained culture solution was measured in the same manner as before, and F-HA was subjected to a hemagglutination test (Sato,
Y.et.Infect.Immun. 7 , 929-999, 1973)
In vitro, LPF−HA was measured by Hp−
The unit (abbreviated as LPEu/ml) was measured by the ELISA method (see Sato et al., Proceedings of the 28th Toxin Symposium, 141-144, 1981), and in vivo
LPF-HA using dd/Y mice (4 weeks old, female)
Method for counting white blood cells 3 days after intravenous injection (Hyoshiki et al., Proceedings of the 29th Toxin Symposium, 1-5,
1982). The second result is
As shown in the figure. As is clear from Figure 2, bacterial growth and
High unit production of HA fraction is observed at DO of 0.7.
~60ppm, and particularly good results were obtained for DO1.0-5.5ppm. Comparative Examples 1 to 10 and Experimental Examples 2 to 5 The production amount of the Bordetella pertussis HA fraction was comparatively studied by changing various culture conditions. That is, a comparison was made between a conventional method in which aeration and agitation are kept constant and a method in which aeration and agitation are continuously varied based on the present invention. An improved medium 10 containing the same methylated β-CD as used in Experimental Example 1 at a final concentration of 1.0 g was added to a 14 aerated stirring culture device (manufactured by NBS).
Inoculate the pertussis bacteria at an amount of 1.0 IOU/ml,
All cultures were cultured at 35°C for 36 hours under the conditions shown in Table 2 in a culture system with aeration and agitation from the bottom of the tank using a sparger. Comparative Experimental Examples (hereinafter simply referred to as Comparative Examples) 1 to 5, 7, and 8 in Table 2 are cultures in which aeration and agitation are constant and no defoaming treatment is performed. Among them, the conditions of Comparative Example 5 of 100 rpm and 0.5 rrm produced a good amount of HA fraction. However, even in this case, although a certain degree of logarithmic growth (approximately 10 IOU/ml) was shown up to 10 hours of culture, the growth rate decreased rapidly after that and remained at approximately 15 IOU/ml even after 36 hours, indicating that the production amount of the HA fraction F-HA is 16HA/ml,
LPF-HA was extremely low at 100 IOU/ml, and hardly increased even when culture was continued for 48 hours. In addition, Comparative Examples 7 and 8 are culture systems with aeration at 0.2 vvm, constant stirring at 500 rpm or 600 rpm, and no antifoaming treatment, but in both cases, after 5 to 10 hours of culture, intense foaming occurred. If the bacterial cells adhere to the upper part of the tank wall or the culture solution flows out of the tank,
HA even when all collected and mixed after hours
The fraction amount was extremely low. In Comparative Example 10, a culture system in which no antifoam treatment for controlling DO was performed, similar flow-off of the culture solution and adhesion of bacterial cells to the tank wall occurred, and the amount of HA fraction was low. Comparative Examples 6 and 9 are culture systems in which aeration and agitation are constant and defoaming treatment is performed. In either case, the DO at the initial stage of culture was over 6.0 ppm, which is inappropriate for HA fraction production, and as the culture progressed, the DO
The concentration continued to decrease and reached a level of 0.7 ppm or less, which is inappropriate for bacterial growth and HA production, within 36 hours. In Comparative Example 9, in which chemical defoaming treatment was carried out in part by the method of the present invention, F-HA reached 80 IOU/ml after 36 hours of culture, but F-HA was 128 HA/ml.
ml, LPF-HA was approximately 500 LPEU/ml.

【表】 一方、培養液中のDOをDOコントローラ
(NBS社製)を用いて自動的に連続的に通気量あ
るいは撹拌速度を変化させて、1.6〜3.5ppmとな
るように制御しかつ消泡処理をしながら培養を行
なつたものが実施例2〜5であるが、それらは培
養10時間後においても対数増殖を維持し、最終的
には36時間できわめて高い菌数、F―HA量およ
びLPF―HA量を得ることができた。 なお、上方からの表面通気による方法では、
HA画分の産生は全く認められなかつた。 これらの成績から明らかなように、発酵槽を用
いた通気撹拌培養では、DO非制御下においては
消泡処理をした場合に菌増殖は認められるが、そ
れらの例ではF―HAおよびLPF―HAはいずれ
も産生量が低いことがわかつた。一方、DO制御
下で行つた場合には菌増殖のみならずF―HA量
およびLPF―HA量ともに著しく増大した。この
ように発酵槽を用いた通気撹拌培養では、DO制
御によつて菌増殖は勿論、目的とする百日ぜき菌
HA生産量の著しい増大が図れることが判明し
た。 比較実験例11ならびに実験例6および7 上述のように、本発明による特定の条件制御下
に培養することにより目的とする百日ぜき菌HA
画分の大量産生が達成されるが、これを従来公知
の静置培養における場合と比較すると第3表に示
すとおりである。なお、表に示す各培養の条件は
下記のとおりである。ただし、菌接種量と培養温
度はそれぞれ1.0IOU/ml、および35℃で共通と
した。 (A) 静置培養(比較例11) 培養容器:ルー瓶、1.5容 培地:実施例1で用いたものと同じ改良培地
0.2 培養時間:120時間 (B) 制御培養(本発明の方法)(実験例6および
7) 培養容器:300容発酵槽(丸菱理化製) 培地:実験例1で用いたものと同じ改良培地、
200;メチル化β―CD(実験例6)ま
たはメチル化α―CD(実験例7)1.0
g/を添加 DO制御:2.2―2.4ppm 消泡:機械的消泡手段(回転デイスク方式によ
る) PH制御:PH7.3 培養時間:35時間 上記結果を第3表に示す。
[Table] On the other hand, the DO controller (manufactured by NBS) was used to automatically and continuously change the aeration rate or stirring speed to control the DO in the culture solution to 1.6 to 3.5 ppm and defoaming. Examples 2 to 5 were cultured while being treated, and they maintained logarithmic growth even after 10 hours of culture, and finally reached extremely high bacterial counts and F-HA amounts within 36 hours. and LPF-HA amount could be obtained. In addition, in the method using surface ventilation from above,
No production of HA fraction was observed. As is clear from these results, in aerated agitation culture using a fermenter, bacterial growth is observed when antifoaming is applied in the absence of DO control, but in these examples, F-HA and LPF-HA It was found that the production amount was low in both cases. On the other hand, when the experiment was carried out under DO control, not only bacterial growth but also the amount of F-HA and LPF-HA significantly increased. In this way, in the aerated agitation culture using a fermenter, DO control not only allows for bacterial growth but also for the target pertussis bacteria.
It was found that the amount of HA produced could be significantly increased. Comparative Experimental Example 11 and Experimental Examples 6 and 7 As described above, the target Bordetella pertussis HA is cultivated under specific controlled conditions according to the present invention.
A large amount of fractions can be produced, as shown in Table 3, when compared with conventional static culture. The conditions for each culture shown in the table are as follows. However, the bacterial inoculation amount and culture temperature were 1.0 IOU/ml and 35°C, respectively. (A) Static culture (Comparative Example 11) Culture container: Lou bottle, 1.5 volume Medium: Same improved medium as used in Example 1
0.2 Culture time: 120 hours (B) Controlled culture (method of the present invention) (Experimental Examples 6 and 7) Culture container: 300 volume fermenter (manufactured by Marubishi Rika) Medium: Same improved medium as used in Experimental Example 1 ,
200; Methylated β-CD (Experimental Example 6) or Methylated α-CD (Experimental Example 7) 1.0
DO control: 2.2-2.4 ppm Defoaming: Mechanical defoaming means (by rotating disk method) PH control: PH7.3 Culture time: 35 hours The above results are shown in Table 3.

【表】 第3表の結果からも明らかなように、本発明方
法によれば従来静置法に比べて菌増殖および
LPF―HA量ともに著しく増大しており、F―
HA量は同等かそれ以上で、例えば菌数は2〜3
倍、LPF―HA量は10倍以上増大し、培養時間は
120時間から35時間へと大幅に短縮されている。 なお、実験例6および7におけるDO制御下で
の培養の場合の菌数、F―HA量およびLPF―
HA量の経時的な推移を第3図および、第4
図およびにそれぞれ示した。これらの図から
も明らかなように、本発明によるDO制御下に培
養した場合には菌数の増大とともにF―HA量お
よびLPF―HA量も著しく増大される。 実施例 1 前記実験例1で得られたHA画分を蛋白濃度が
30μgTCAPN/mlとなるように希釈し、これに
ホルマリン0.6または1.0v/v%の濃度に添加し、
37℃または39℃で5〜21日間処理する。このホル
マリンによる無毒化処理の際、第4表に示す各種
アミノ酸を表示の濃度にて添加する。 この無毒化処理の凝集塊沈殿の有無、また無毒
化処理後、透析チユーブを用いて透析してホルマ
リンを除去したのち、マウス毒性を検査した。さ
らに、37℃で3週間加温して毒性復帰現象の有無
を検査した。また得られたワクチンの力価も測定
した。それらの結果を第4表に示す。
[Table] As is clear from the results in Table 3, the method of the present invention reduces bacterial growth and
Both LPF and HA amount increased significantly, and F-
The amount of HA is the same or higher, for example, the number of bacteria is 2 to 3.
times, the amount of LPF-HA increased more than 10 times, and the culture time
The time has been significantly reduced from 120 hours to 35 hours. In addition, the number of bacteria, amount of F-HA, and LPF- in the case of culture under DO control in Experimental Examples 6 and 7
Figures 3 and 4 show the changes in HA amount over time.
The figures are shown in Figs. As is clear from these figures, when cultured under DO control according to the present invention, as the number of bacteria increases, the amounts of F-HA and LPF-HA also increase significantly. Example 1 The HA fraction obtained in Experimental Example 1 was
Dilute to 30 μg TCAPN/ml, add formalin to a concentration of 0.6 or 1.0 v/v%,
Process at 37°C or 39°C for 5-21 days. During this detoxification treatment with formalin, various amino acids shown in Table 4 are added at the indicated concentrations. The presence or absence of agglomerate precipitation during this detoxification treatment was examined, and after the detoxification treatment, the samples were dialyzed using a dialysis tube to remove formalin, and then toxicity to mice was examined. Furthermore, the samples were heated at 37°C for 3 weeks and the presence or absence of toxicity recovery was examined. The titer of the obtained vaccine was also measured. The results are shown in Table 4.

【表】 実施例 2 百日ぜき菌相菌東浜株をボルデ・ジヤング培
地で継代したものを種菌とし、これをメチル化β
―CD10mg/mlを添加した実験例1で用いたもの
と同じ改良培地0.4を入れた2容三角コルベ
ンに、菌数の最終濃度1.0IOU/mlで接種し、こ
れを35℃で18時間培養して元培養菌を得た。 上記と同じ培地200を入れた300容槽型発酵
槽(丸菱理化製)に上記元培養菌を1.0IOU/ml
接種し、通気撹拌培養する。 この培養はDO1.8〜2.7ppmになるように通気
量と撹拌速度の双方を自動制御した。また培養温
度35℃、PH7.2に自動制御し、さらに機械的消泡
(回転デイスク方式)を行なつた。 35時間培養後、培養液を採取する。このように
して得られた培養液について菌数およびHA画分
量を測定したところ、菌数210IOU/ml、F―
HA量1.024HA/ml、LPF―HA量2400LPEU/
mlであつた。 上記で得られた培養液を遠心して上清を集め、
その上清に硫酸アンモニウムを1/3飽和になるよ
うに加え、生じた沈殿を10000rpm30分間遠心し
て集め、これを1モル塩化ナトリウム添加リン酸
緩衝液(PH7.2)に溶解し、不溶の沈殿部分を
10000rpm、30分間遠心した除去した。この上清
に硫酸アンモニウムを約1/2飽和に加え、生じた
沈殿を同様に遠心分離して集め、再び上記と同じ
緩衝液に溶解、透析チユーブに入れて4℃で透析
し不溶の沈殿部分を同様に遠心分離して除去し
た。これを超遠心にかけて、得られた上清をさら
に10〜30%シヨ糖密度勾配遠心(39000rpm、20
時間)にかけて、その上清(HA画分)を回収し
た。これをメンブランフイルターにて除菌した。
このHA画分の蛋白濃度を30μgTCAPN/mlに
上記と同じ緩衝液を用いて調整した。なお、上記
採取した培養液の処理工程およびHA画分の精製
工程はおもに2〜4℃にて行なつた。 得られたHA画分にホルマリンを0.6v/v%、
ツイーン80を0.05v/v%、ゼラチンを0.02w/v
およびグリシンを0.25M加え、39℃で7日間加温
した。 0.7w/v%塩化ナトリウム添加リン酸緩衝液
(PH7.2)に対して透析チユーブに入れて透析して
ホルマリンを除去し、これを上記緩衝液にて蛋白
濃度8μgTCAPN/mlとなるように希釈し、無毒
化HA画分希釈液を得た。 この希釈液に水酸化アルミニウムゲルを0.20
mg/ml(アルミニウム換算)になるように加えて
HA画分を吸着させた。これにさらに保存剤とし
てチメロサール0.01w/v%添加して沈降精製百
日ぜきワクチンを調製した。 このワクチンは国家検定規準(生物学的製剤基
準、薬発第287号、1971を参照)に従つて検定を
行なつたところ、第5表に示すとおりすべて適合
していることが判明した。
[Table] Example 2 The pertussis bacteria Higashihama strain was subcultured in Bordet-Jeyang medium and used as a seed strain, and the methylated β
- Inoculated into a 2-volume triangular container containing 0.4 of the same improved medium used in Experimental Example 1, supplemented with 10 mg/ml of CD, at a final bacterial concentration of 1.0 IOU/ml, and cultured at 35°C for 18 hours. The original cultured bacteria was obtained. Add 1.0 IOU/ml of the above original culture to a 300-capacity fermenter (manufactured by Marubishi Rika) containing 200 of the same medium as above.
Inoculate and culture with aeration and agitation. In this culture, both the aeration amount and stirring speed were automatically controlled so that the DO was 1.8 to 2.7 ppm. In addition, the culture temperature was automatically controlled to 35°C and pH to 7.2, and mechanical defoaming (rotating disk method) was also performed. After culturing for 35 hours, collect the culture medium. When the number of bacteria and the amount of HA fraction were measured for the culture solution obtained in this way, the number of bacteria was 210 IOU/ml, F-
HA amount 1.024HA/ml, LPF-HA amount 2400LPEU/
It was hot in ml. Centrifuge the culture solution obtained above and collect the supernatant.
Add ammonium sulfate to the supernatant to 1/3 saturation, collect the resulting precipitate by centrifugation at 10,000 rpm for 30 minutes, dissolve it in phosphate buffer (PH7.2) containing 1M sodium chloride, and remove the undissolved precipitate. of
Removed by centrifugation at 10,000 rpm for 30 minutes. Ammonium sulfate was added to this supernatant to approximately 1/2 saturation, and the resulting precipitate was similarly centrifuged and collected, dissolved again in the same buffer as above, placed in a dialysis tube, and dialyzed at 4°C to remove the undissolved precipitate. It was removed by centrifugation in the same manner. This was subjected to ultracentrifugation, and the resulting supernatant was further centrifuged with 10-30% sucrose density gradient (39,000 rpm, 20
time), and the supernatant (HA fraction) was collected. This was sterilized using a membrane filter.
The protein concentration of this HA fraction was adjusted to 30 μg TCAPN/ml using the same buffer as above. Incidentally, the treatment process of the collected culture solution and the purification process of the HA fraction were mainly performed at 2 to 4°C. 0.6v/v% formalin was added to the obtained HA fraction.
Tween 80 at 0.05v/v%, gelatin at 0.02w/v
0.25M of glycine was added to the mixture, and the mixture was heated at 39°C for 7 days. Place in a dialysis tube and dialyze against 0.7w/v% sodium chloride-added phosphate buffer (PH7.2) to remove formalin, and dilute this with the above buffer to a protein concentration of 8μgTCAPN/ml. Then, a diluted detoxified HA fraction was obtained. Add 0.20% aluminum hydroxide gel to this diluted solution.
mg/ml (aluminum equivalent)
The HA fraction was adsorbed. A precipitated and purified pertussis vaccine was prepared by adding 0.01 w/v % of thimerosal as a preservative. This vaccine was tested in accordance with the national testing standards (see Biological Product Standards, Yakuhin No. 287, 1971) and was found to comply with all the requirements as shown in Table 5.

【表】 実施例 3 前記実施例1で得られた無毒化画分希釈液に、
ジフテリアトキソイド33Lf/mlおよび破傷風ト
キソイド5Lf/mlを添加し、これに水酸化アルミ
ニウムを0.20mg/ml(アルミニウム換算)加えて
ゲル吸着させた。これに安定剤としてゼラチン
0.02w/w、ブドウ糖0.1w/v%、保存剤として
チメロサール0.01w/v%を加え、沈降精製百日
ぜき・ジフテリア・破傷風混合ワクチンを調製し
た。 この混合ワクチンは国家検定規準(生物学的製
剤基準、薬発第287号、1981を参照)に従つて検
定を行なつたところ、第6表に示すとおりすべて
適合していることが判明した。
[Table] Example 3 To the detoxified fraction diluted solution obtained in Example 1,
Diphtheria toxoid (33 Lf/ml) and tetanus toxoid (5 Lf/ml) were added thereto, and aluminum hydroxide (0.20 mg/ml (in terms of aluminum)) was added thereto for gel adsorption. Gelatin is used as a stabilizer
0.02w/w, glucose 0.1w/v%, and thimerosal 0.01w/v% as a preservative were added to prepare a precipitated and purified pertussis/diphtheria/tetanus combined vaccine. This combination vaccine was tested in accordance with the national testing standards (see Biological Product Standards, Yakuhin No. 287, 1981) and was found to comply with all the requirements as shown in Table 6.

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は百日ぜき菌の増殖と培養温度の関係を
示すグラフ、第2図は培養液中のDO制御範囲と
24時間培養後、F―HA量およびLPF―HA量を
示すグラフ、第3図およびならびに第4図
およびはDO2.2〜2.4ppmの制御下に培養した
場合の菌数、F―HA量およびLPF―HA量の経
時的な推移を示すグラフである。
Figure 1 is a graph showing the relationship between the growth of Bordetella pertussis and culture temperature, and Figure 2 is a graph showing the DO control range in the culture solution.
Graphs showing the F-HA amount and LPF-HA amount after 24-hour culture, Figures 3 and 4 show the number of bacteria, F-HA amount, and It is a graph showing the change in LPF-HA amount over time.

Claims (1)

【特許請求の範囲】 1 百日ぜき菌をシクロデキストリンまたはその
誘導体を添加した液状培地に接種し、培養温度20
〜37℃で培地の溶存酸素量を0.7〜6.0ppmの範囲
に保ちかつ消泡処理をしながら通気撹拌培養し、
対数増殖期ないし定常期の菌発育段階で感染防御
抗原HA画分を採取し、ついで該HA画分をアミ
ノ酸の存在下に無毒化することを特徴とする百日
ぜきワクチンの製造方法。 2 アミノ酸がグリシン、メチオニン、システイ
ン、グルタミン酸ナトリウム、アスパラギン酸、
セリン、アラニン、ロイシン、イソロイシン、バ
リン、スレオニン、γ―アミノ酪酸、リジンから
選ばれる1種または2種以上である前記第1項の
方法。 3 液状培地がカザミノ酸を0.1〜20g/、ア
スコルビン酸を0.01〜1g/、グルタチオンを
0.1〜50g/およびシクロデキストリンまたは
その誘導体を0.001〜5g/含有している前記
第1項の方法。 4 シクロデキストリンまたはその誘導体がメチ
ル化α―シクロデキストリン、メチル化β―シク
ロデキストリン、メチル化γ―シクロデキストリ
ン、α―シクロデキストリン、β―シクロデキス
トリンおよびγ―シクロデキストリンから選ばれ
る1種または2種以上である前記第1項の方法。 5 培養時間を7〜40時間とする前記第1項の方
法。 6 消泡処理が、機械的消泡手段、化学的消泡剤
の添加またはそれらの組合わせによる前記第1項
の方法。 7 PHが6.0〜9.0の範囲である前記第1項の方
法。
[Claims] 1. Bordetella pertussis is inoculated into a liquid medium supplemented with cyclodextrin or its derivatives, and cultured at a temperature of 20°C.
Cultivate with aeration at ~37°C while maintaining the amount of dissolved oxygen in the medium within the range of 0.7 to 6.0 ppm and performing antifoaming treatment.
1. A method for producing a pertussis vaccine, which comprises collecting a protective antigen HA fraction during the bacterial growth stage of logarithmic growth phase or stationary phase, and then detoxifying the HA fraction in the presence of amino acids. 2 Amino acids are glycine, methionine, cysteine, monosodium glutamate, aspartic acid,
1. The method according to item 1, wherein one or more selected from serine, alanine, leucine, isoleucine, valine, threonine, γ-aminobutyric acid, and lysine. 3. The liquid medium contains 0.1 to 20 g of casamino acid, 0.01 to 1 g of ascorbic acid, and glutathione.
The method according to the above item 1, containing 0.1 to 50 g/and 0.001 to 5 g/of cyclodextrin or its derivative. 4 Cyclodextrin or its derivative is one or two selected from methylated α-cyclodextrin, methylated β-cyclodextrin, methylated γ-cyclodextrin, α-cyclodextrin, β-cyclodextrin, and γ-cyclodextrin The method of item 1 above. 5. The method of item 1 above, wherein the culture time is 7 to 40 hours. 6. The method according to item 1 above, wherein the defoaming treatment is performed by adding a mechanical defoaming means, a chemical defoaming agent, or a combination thereof. 7. The method of item 1 above, wherein the pH is in the range of 6.0 to 9.0.
JP58058548A 1983-03-30 1983-04-02 Production of pertussis vaccine Granted JPS59184132A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP58058548A JPS59184132A (en) 1983-04-02 1983-04-02 Production of pertussis vaccine
CA000450495A CA1213234A (en) 1983-03-30 1984-03-26 Method for the production of ha fraction containing protective antigens of bordetella pertussis and pertussis vaccine
DE8484103504T DE3484778D1 (en) 1983-03-30 1984-03-29 METHOD FOR PRODUCING THE BORDETELLA-PERTUSSIS-PROTECTIVE-ANTI-CONTAINING HA FACTION AND Pertussis Vaccine.
AT84103504T ATE65028T1 (en) 1983-03-30 1984-03-29 PROCEDURE FOR PREPARATION OF THE HA FRACTION CONTAINING BORDETELLAPERTUSSIS PROTECTIVE ANTIGENS AND WHOOPING COUGH VACCINE.
ES531112A ES8505818A1 (en) 1983-03-30 1984-03-29 Method for the production of HA fraction containing protective antigens of Bordetella pertussis and pertussis vaccine.
KR1019840001645A KR900007658B1 (en) 1983-03-30 1984-03-29 Method for the production of ha fraction containing protective antigens of bordetella pertussis and pertussis vaccine
AU26230/84A AU564634B2 (en) 1983-03-30 1984-03-29 Method for production of ha fraction containing protective antigens
EP84103504A EP0121249B1 (en) 1983-03-30 1984-03-29 Method for the production of ha fraction containing protective antigens of bordetella pertussis and pertussis vaccine
US06/874,670 US4687738A (en) 1983-03-30 1986-06-16 Method for the production of HA fraction containing protective antigens of Bordetella pertussis and pertussis vaccine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58058548A JPS59184132A (en) 1983-04-02 1983-04-02 Production of pertussis vaccine

Publications (2)

Publication Number Publication Date
JPS59184132A JPS59184132A (en) 1984-10-19
JPS64931B2 true JPS64931B2 (en) 1989-01-10

Family

ID=13087507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58058548A Granted JPS59184132A (en) 1983-03-30 1983-04-02 Production of pertussis vaccine

Country Status (1)

Country Link
JP (1) JPS59184132A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61271986A (en) * 1985-05-27 1986-12-02 Agency Of Ind Science & Technol Culture medium for lymphatic cell
JP5207380B2 (en) * 2006-03-27 2013-06-12 北里第一三共ワクチン株式会社 Whole cell bacterial vaccine with characteristics that do not return to toxicity even after long-term storage and its use
WO2013113729A1 (en) * 2012-02-01 2013-08-08 Glaxosmithkline Biologicals S.A. Fermentation process

Also Published As

Publication number Publication date
JPS59184132A (en) 1984-10-19

Similar Documents

Publication Publication Date Title
US4687738A (en) Method for the production of HA fraction containing protective antigens of Bordetella pertussis and pertussis vaccine
KR840001512B1 (en) Method for producing pertussis toxid
JP2549225B2 (en) Method for purifying pertussis outer membrane protein
JP2011201913A (en) Ipv-dpt vaccine
JPS58167517A (en) Bacteria toxoid and gram-negative immunogloblin
EP0528635A1 (en) Process for converting lipid-containing polysaccharide into lipid-free polysaccharide
JPS64931B2 (en)
EP0077646B1 (en) Method of culturing microbes belonging to the genus bordetella and culture medium
JP3724821B2 (en) Method for producing antigen and vaccine for hepatitis A (HAV)
CN1112356A (en) Novel attenuated pseudomonas aeruginosa strains
JPS64930B2 (en)
Barta Soluble protective antigen from Bordetella pertussis prepared with sodium desoxycholate
WO1991012019A1 (en) Enzyme treated bcg vaccine and process therefor
CN111588842A (en) Preparation method of multivalent pneumococcal polysaccharide protein conjugate vaccine
WO2007135941A1 (en) Method for production of acetic acid bacterium-type ceramide
JP2593147B2 (en) Medium composition for protective antigen-producing bacteria
JPS5852227A (en) Immunogenic composite body from gonococcus
RU2407792C1 (en) METHOD FOR PRODUCING IgAl-PROTEASE FROM SEROGROUP A NEISSERIA MENINGITIDIS AND RELATED IMMUNOGENIC PREPARATION
JPS5867188A (en) Production of biologically active substance and culture medium used therefor
JP2000500006A (en) A new method for the propagation of B. pertussis
KR810001317B1 (en) Process for preparing combined vaccine
RU2089215C1 (en) Method of preparing meningococcus lipopolysaccharide of serogroup b
JP4162308B2 (en) Medium composition and culture method for Bordetella bacteria
Bronzino et al. Vaccine Production
JPS58180426A (en) Antitumor substance