JP5207380B2 - Whole cell bacterial vaccine with characteristics that do not return to toxicity even after long-term storage and its use - Google Patents
Whole cell bacterial vaccine with characteristics that do not return to toxicity even after long-term storage and its use Download PDFInfo
- Publication number
- JP5207380B2 JP5207380B2 JP2008507503A JP2008507503A JP5207380B2 JP 5207380 B2 JP5207380 B2 JP 5207380B2 JP 2008507503 A JP2008507503 A JP 2008507503A JP 2008507503 A JP2008507503 A JP 2008507503A JP 5207380 B2 JP5207380 B2 JP 5207380B2
- Authority
- JP
- Japan
- Prior art keywords
- vaccine
- pertussis
- whole cell
- bacterial
- bacteria
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229960001212 bacterial vaccine Drugs 0.000 title claims description 53
- 231100000419 toxicity Toxicity 0.000 title claims description 43
- 230000001988 toxicity Effects 0.000 title claims description 43
- 238000003860 storage Methods 0.000 title claims description 26
- 230000007774 longterm Effects 0.000 title claims description 19
- 238000011282 treatment Methods 0.000 claims description 123
- 229960005486 vaccine Drugs 0.000 claims description 112
- 229940066827 pertussis vaccine Drugs 0.000 claims description 104
- 238000004519 manufacturing process Methods 0.000 claims description 71
- 238000000034 method Methods 0.000 claims description 71
- 238000001784 detoxification Methods 0.000 claims description 55
- 229940024606 amino acid Drugs 0.000 claims description 39
- 150000001413 amino acids Chemical class 0.000 claims description 39
- 230000001580 bacterial effect Effects 0.000 claims description 39
- 235000001014 amino acid Nutrition 0.000 claims description 38
- 241000894006 Bacteria Species 0.000 claims description 37
- 230000009089 cytolysis Effects 0.000 claims description 32
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 30
- 201000005702 Pertussis Diseases 0.000 claims description 24
- 108091007433 antigens Proteins 0.000 claims description 24
- 102000036639 antigens Human genes 0.000 claims description 24
- 239000000427 antigen Substances 0.000 claims description 23
- 150000001408 amides Chemical class 0.000 claims description 20
- 230000002265 prevention Effects 0.000 claims description 19
- 150000001412 amines Chemical class 0.000 claims description 18
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 claims description 14
- 239000004472 Lysine Substances 0.000 claims description 14
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 claims description 12
- 238000002156 mixing Methods 0.000 claims description 12
- 206010011224 Cough Diseases 0.000 claims description 11
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 claims description 10
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 claims description 10
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 10
- UCMIRNVEIXFBKS-UHFFFAOYSA-N beta-alanine Chemical compound NCCC(O)=O UCMIRNVEIXFBKS-UHFFFAOYSA-N 0.000 claims description 10
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 10
- 229940124726 Japanese encephalitis vaccine Drugs 0.000 claims description 9
- 229960003983 diphtheria toxoid Drugs 0.000 claims description 8
- 229960000814 tetanus toxoid Drugs 0.000 claims description 8
- 229940001442 combination vaccine Drugs 0.000 claims description 7
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 claims description 6
- 239000004475 Arginine Substances 0.000 claims description 6
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 claims description 6
- 239000004471 Glycine Substances 0.000 claims description 6
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 claims description 6
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 claims description 6
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 claims description 6
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 claims description 6
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 claims description 6
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 claims description 6
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 claims description 6
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 claims description 6
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 claims description 6
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 claims description 6
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 claims description 6
- 239000004473 Threonine Substances 0.000 claims description 6
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 claims description 6
- 241000700605 Viruses Species 0.000 claims description 6
- 235000004279 alanine Nutrition 0.000 claims description 6
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 claims description 6
- 239000004220 glutamic acid Substances 0.000 claims description 6
- 235000013922 glutamic acid Nutrition 0.000 claims description 6
- 229960000310 isoleucine Drugs 0.000 claims description 6
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 claims description 6
- 239000004474 valine Substances 0.000 claims description 6
- OGNSCSPNOLGXSM-UHFFFAOYSA-N (+/-)-DABA Natural products NCCC(N)C(O)=O OGNSCSPNOLGXSM-UHFFFAOYSA-N 0.000 claims description 5
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 claims description 5
- WUGQZFFCHPXWKQ-UHFFFAOYSA-N Propanolamine Chemical compound NCCCO WUGQZFFCHPXWKQ-UHFFFAOYSA-N 0.000 claims description 5
- 235000003704 aspartic acid Nutrition 0.000 claims description 5
- 229940000635 beta-alanine Drugs 0.000 claims description 5
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 claims description 5
- 239000004202 carbamide Substances 0.000 claims description 5
- 238000010894 electron beam technology Methods 0.000 claims description 5
- 229960003692 gamma aminobutyric acid Drugs 0.000 claims description 5
- BEBCJVAWIBVWNZ-UHFFFAOYSA-N glycinamide Chemical compound NCC(N)=O BEBCJVAWIBVWNZ-UHFFFAOYSA-N 0.000 claims description 5
- 229960002520 hepatitis vaccine Drugs 0.000 claims description 5
- 229940124731 meningococcal vaccine Drugs 0.000 claims description 5
- 238000003672 processing method Methods 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 4
- RSDOASZYYCOXIB-UHFFFAOYSA-N beta-alaninamide Chemical compound NCCC(N)=O RSDOASZYYCOXIB-UHFFFAOYSA-N 0.000 claims description 3
- 201000010099 disease Diseases 0.000 claims description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 2
- 229960001539 poliomyelitis vaccine Drugs 0.000 claims 4
- 229940124855 Haemophilus influenzae vaccine Drugs 0.000 claims 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 claims 2
- 210000004027 cell Anatomy 0.000 description 113
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 65
- 238000012360 testing method Methods 0.000 description 21
- 239000000126 substance Substances 0.000 description 20
- 229960000074 biopharmaceutical Drugs 0.000 description 19
- 229940030156 cell vaccine Drugs 0.000 description 19
- 108700012359 toxins Proteins 0.000 description 19
- 241000699666 Mus <mouse, genus> Species 0.000 description 14
- 208000015181 infectious disease Diseases 0.000 description 14
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 13
- 230000000694 effects Effects 0.000 description 13
- 239000002953 phosphate buffered saline Substances 0.000 description 13
- NTYJJOPFIAHURM-UHFFFAOYSA-N Histamine Chemical compound NCCC1=CN=CN1 NTYJJOPFIAHURM-UHFFFAOYSA-N 0.000 description 12
- 108090000623 proteins and genes Proteins 0.000 description 12
- 230000002829 reductive effect Effects 0.000 description 12
- 239000003053 toxin Substances 0.000 description 12
- 231100000765 toxin Toxicity 0.000 description 12
- 230000002779 inactivation Effects 0.000 description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 229910052782 aluminium Inorganic materials 0.000 description 10
- 239000002609 medium Substances 0.000 description 10
- 235000018102 proteins Nutrition 0.000 description 10
- 102000004169 proteins and genes Human genes 0.000 description 10
- 239000007921 spray Substances 0.000 description 10
- 241000588832 Bordetella pertussis Species 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 238000005119 centrifugation Methods 0.000 description 8
- 239000002158 endotoxin Substances 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 101100422771 Caenorhabditis elegans sup-9 gene Proteins 0.000 description 7
- 241000699670 Mus sp. Species 0.000 description 7
- 241000191967 Staphylococcus aureus Species 0.000 description 7
- 241000607626 Vibrio cholerae Species 0.000 description 7
- 239000002671 adjuvant Substances 0.000 description 7
- 229960005004 cholera vaccine Drugs 0.000 description 7
- 241000588780 Bordetella parapertussis Species 0.000 description 6
- 229960001340 histamine Drugs 0.000 description 6
- 230000006872 improvement Effects 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 244000052616 bacterial pathogen Species 0.000 description 5
- 238000012258 culturing Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 238000011081 inoculation Methods 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 241000588724 Escherichia coli Species 0.000 description 4
- 108010081690 Pertussis Toxin Proteins 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- 241000293871 Salmonella enterica subsp. enterica serovar Typhi Species 0.000 description 4
- 241000193998 Streptococcus pneumoniae Species 0.000 description 4
- 239000000443 aerosol Substances 0.000 description 4
- 239000007853 buffer solution Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000005251 gamma ray Effects 0.000 description 4
- 150000004676 glycans Polymers 0.000 description 4
- 230000036039 immunity Effects 0.000 description 4
- 230000005847 immunogenicity Effects 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 238000007086 side reaction Methods 0.000 description 4
- 229940031000 streptococcus pneumoniae Drugs 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 206010070834 Sensitisation Diseases 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 238000013019 agitation Methods 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 231100000673 dose–response relationship Toxicity 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 229940029583 inactivated polio vaccine Drugs 0.000 description 3
- 210000000265 leukocyte Anatomy 0.000 description 3
- 210000004072 lung Anatomy 0.000 description 3
- 238000010172 mouse model Methods 0.000 description 3
- 229940127241 oral polio vaccine Drugs 0.000 description 3
- 244000052769 pathogen Species 0.000 description 3
- 229920001282 polysaccharide Polymers 0.000 description 3
- 239000005017 polysaccharide Substances 0.000 description 3
- 231100000654 protein toxin Toxicity 0.000 description 3
- 230000008313 sensitization Effects 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- 230000004580 weight loss Effects 0.000 description 3
- 208000035404 Autolysis Diseases 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- 206010057248 Cell death Diseases 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 229940032046 DTaP vaccine Drugs 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 229940124873 Influenza virus vaccine Drugs 0.000 description 2
- HQMLIDZJXVVKCW-REOHCLBHSA-N L-alaninamide Chemical compound C[C@H](N)C(N)=O HQMLIDZJXVVKCW-REOHCLBHSA-N 0.000 description 2
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 description 2
- 206010037660 Pyrexia Diseases 0.000 description 2
- 206010057190 Respiratory tract infections Diseases 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 238000005273 aeration Methods 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 230000000890 antigenic effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 210000005056 cell body Anatomy 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010255 intramuscular injection Methods 0.000 description 2
- 239000007927 intramuscular injection Substances 0.000 description 2
- -1 lysine is added Chemical class 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- YFZOUMNUDGGHIW-UHFFFAOYSA-M p-chloromercuribenzoic acid Chemical compound OC(=O)C1=CC=C([Hg]Cl)C=C1 YFZOUMNUDGGHIW-UHFFFAOYSA-M 0.000 description 2
- 239000008363 phosphate buffer Substances 0.000 description 2
- 231100000614 poison Toxicity 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000003908 quality control method Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000028043 self proteolysis Effects 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 238000010254 subcutaneous injection Methods 0.000 description 2
- 239000007929 subcutaneous injection Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 2
- 229940033663 thimerosal Drugs 0.000 description 2
- 239000003440 toxic substance Substances 0.000 description 2
- 238000002255 vaccination Methods 0.000 description 2
- 229940118696 vibrio cholerae Drugs 0.000 description 2
- YYGNTYWPHWGJRM-UHFFFAOYSA-N (6E,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene Chemical compound CC(C)=CCCC(C)=CCCC(C)=CCCC=C(C)CCC=C(C)CCC=C(C)C YYGNTYWPHWGJRM-UHFFFAOYSA-N 0.000 description 1
- QCDWFXQBSFUVSP-UHFFFAOYSA-N 2-phenoxyethanol Chemical compound OCCOC1=CC=CC=C1 QCDWFXQBSFUVSP-UHFFFAOYSA-N 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 231100000699 Bacterial toxin Toxicity 0.000 description 1
- 208000014644 Brain disease Diseases 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- 108010049048 Cholera Toxin Proteins 0.000 description 1
- 102000009016 Cholera Toxin Human genes 0.000 description 1
- GUTLYIVDDKVIGB-OUBTZVSYSA-N Cobalt-60 Chemical compound [60Co] GUTLYIVDDKVIGB-OUBTZVSYSA-N 0.000 description 1
- 229940032024 DPT vaccine Drugs 0.000 description 1
- 208000032274 Encephalopathy Diseases 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 241000710198 Foot-and-mouth disease virus Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 241000606768 Haemophilus influenzae Species 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- BELBBZDIHDAJOR-UHFFFAOYSA-N Phenolsulfonephthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2S(=O)(=O)O1 BELBBZDIHDAJOR-UHFFFAOYSA-N 0.000 description 1
- 206010035664 Pneumonia Diseases 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 206010043376 Tetanus Diseases 0.000 description 1
- BHEOSNUKNHRBNM-UHFFFAOYSA-N Tetramethylsqualene Natural products CC(=C)C(C)CCC(=C)C(C)CCC(C)=CCCC=C(C)CCC(C)C(=C)CCC(C)C(C)=C BHEOSNUKNHRBNM-UHFFFAOYSA-N 0.000 description 1
- 241001467018 Typhis Species 0.000 description 1
- 229940124832 acellular pertussis vaccine Drugs 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 102000030621 adenylate cyclase Human genes 0.000 description 1
- 108060000200 adenylate cyclase Proteins 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 230000006229 amino acid addition Effects 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 230000002358 autolytic effect Effects 0.000 description 1
- 239000000688 bacterial toxin Substances 0.000 description 1
- 230000001420 bacteriolytic effect Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 239000008364 bulk solution Substances 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000006037 cell lysis Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000001332 colony forming effect Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000432 density-gradient centrifugation Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 206010013023 diphtheria Diseases 0.000 description 1
- PRAKJMSDJKAYCZ-UHFFFAOYSA-N dodecahydrosqualene Natural products CC(C)CCCC(C)CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C PRAKJMSDJKAYCZ-UHFFFAOYSA-N 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 230000005714 functional activity Effects 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 231100000171 higher toxicity Toxicity 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 230000008774 maternal effect Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 230000000508 neurotrophic effect Effects 0.000 description 1
- 239000006916 nutrient agar Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 229960003531 phenolsulfonphthalein Drugs 0.000 description 1
- 229960005323 phenoxyethanol Drugs 0.000 description 1
- 238000011197 physicochemical method Methods 0.000 description 1
- 150000004804 polysaccharides Polymers 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 229930182490 saponin Natural products 0.000 description 1
- 150000007949 saponins Chemical class 0.000 description 1
- 235000017709 saponins Nutrition 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 231100000458 skin sensitization testing Toxicity 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229940031439 squalene Drugs 0.000 description 1
- TUHBEKDERLKLEC-UHFFFAOYSA-N squalene Natural products CC(=CCCC(=CCCC(=CCCC=C(/C)CCC=C(/C)CC=C(C)C)C)C)C TUHBEKDERLKLEC-UHFFFAOYSA-N 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000012289 standard assay Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 231100000820 toxicity test Toxicity 0.000 description 1
- 230000007888 toxin activity Effects 0.000 description 1
- 230000001018 virulence Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/02—Bacterial antigens
- A61K39/099—Bordetella
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Epidemiology (AREA)
- Mycology (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Virology (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Description
本発明は長期保存においても毒性復帰がおこらない特徴を持った全菌体細菌ワクチン、該全菌体細菌ワクチンと同じ細菌由来の細菌成分ワクチンを混合した混合細菌ワクチン、ならびに該混合細菌ワクチンと他のワクチンとの混合ワクチンに関する。また、それらの製造方法ならびに用途に関する。 The present invention relates to a whole cell bacterial vaccine having characteristics that do not return to toxicity even in long-term storage, a mixed bacterial vaccine in which a bacterial component vaccine derived from the same bacteria as the whole cell bacterial vaccine is mixed, and the mixed bacterial vaccine and others It is related with the combination vaccine with the vaccine. Moreover, it is related with those manufacturing methods and uses.
百日せきは百日せき菌(Bordetella pertussis)の感染により発症し、罹患すると特徴的な咳が長期に続く感染症である。幼児期に罹患すると重篤となり、肺炎や脳症を併発することがある。百日せきは母子免疫による発症防除効果がほとんど期待できないので、生後の早期から罹患しうる。その予防の為には乳児早期からワクチンによる免疫を付与する事が求められる。
百日せきの予防に使用されるワクチンとして全菌体百日せきワクチンと無細胞百日せきワクチンがある。以下に全菌体百日せきワクチンと無細胞百日せきワクチンについて従来の学説を簡単に説明する(KM Edwards, MD Decker, EA Mortimer Jr. Vaccine 3rd ed, SA Plotkin and WA Orenstein Ed, WB Saunders co,1999 pp.293-344)。Pertussis is an infection that develops due to Bordetella pertussis infection and, when affected, has a characteristic cough that lasts for a long time. Severe in early childhood, may be accompanied by pneumonia and encephalopathy. Pertussis can hardly be affected by maternal and child immunity, so it can be affected early in life. In order to prevent this, it is necessary to give immunity by vaccine from the early stage of infants.
There are a whole cell pertussis vaccine and a cell-free pertussis vaccine as vaccines used for prevention of pertussis. The following is a brief explanation of conventional theories about whole cell pertussis vaccine and cell-free pertussis vaccine (KM Edwards, MD Decker, EA Mortimer Jr. Vaccine 3rd ed, SA Plotkin and WA Orenstein Ed, WB Saunders co 1999 pp.293-344).
全菌体百日せきワクチンは1930年代から臨床使用され、1950年代からDTP三種混合ワクチンとして世界的に今日まで使用されてきた。全菌体百日せきワクチンの有効性に関しては多数の文献に記載されている(M Kimura, Dev. Bio. Stand. 73: 5-9, 1991 )。全菌体百日せきワクチンは百日せき菌を培養し、全菌体を無毒化して出来るワクチンである。従って製法が簡便でありかつ、製造費用が安価であるため、現在も世界中で使用されている。しかし、全菌体百日せきワクチンは全菌体を無毒化して製造されるので、ワクチン中に菌体由来のエンドトキシンなど毒性物質が少量混入している。そして無毒化しても長期保存の間に毒性復帰が起こりやすい欠点があった。そのためワクチン接種後の発熱、接種部位の硬結など望ましくない副反応を生じやすく、安全性に関する問題が指摘されてきた。 The whole cell pertussis vaccine has been used clinically since the 1930s, and since the 1950s, it has been used worldwide as a DTP triple vaccine. The effectiveness of the whole cell pertussis vaccine is described in many literatures (M Kimura, Dev. Bio. Stand. 73: 5-9, 1991). The whole cell pertussis vaccine is a vaccine produced by culturing pertussis and detoxifying the whole cell. Therefore, since the production method is simple and the production cost is low, it is still used all over the world. However, since the whole cell pertussis vaccine is produced by detoxifying the whole cell, a small amount of toxic substances such as endotoxin derived from the cell are mixed in the vaccine. And even if it was detoxified, there was a defect that toxicity return was likely to occur during long-term storage. For this reason, undesirable side reactions such as fever after vaccination and hardening of the inoculated site are likely to occur, and safety issues have been pointed out.
これに対し、無細胞百日せきワクチンは日本で開発され、1980年代から今日まで使用されている。無細胞百日せきワクチンを開発した主な目的は全菌体百日せきワクチンの安全性に関する欠点を改善することであった。無細胞百日せきワクチンの有効性に関しては多数の文献に記載されている。無細胞百日せきワクチンは、百日せき菌を培養し、培養液から有効成分を採取、精製し、無毒化して出来るワクチンである。従って製法が複雑であり製造に長時間を要し、製造費用が高価である。しかしながら無細胞百日せきワクチンは上記の通り有効成分を精製し、無毒化して製造されるので、全菌体百日せきワクチンに比較し、ワクチンに含まれる菌体由来のエンドトキシンなど毒性物質が大幅に減少させられている。従って、安全性の高いワクチンであり、ワクチン接種後の発熱、接種部位の硬結などの副反応も少ない。ここ数年、世界的に要望が高まり、日本以外でも先進国、発展途上国を問わず世界的に使用され始めている。 On the other hand, a cell-free pertussis vaccine was developed in Japan and used from the 1980s to today. The main purpose of developing the cell-free pertussis vaccine was to improve the safety-related drawbacks of whole cell pertussis vaccine. Numerous references have documented the effectiveness of cell-free pertussis vaccines. A cell-free pertussis vaccine is a vaccine produced by culturing pertussis bacteria, collecting and purifying active ingredients from the culture, and detoxifying them. Therefore, the manufacturing method is complicated, it takes a long time to manufacture, and the manufacturing cost is expensive. However, since the cell-free pertussis vaccine is manufactured by purifying and detoxifying the active ingredient as described above, toxic substances such as endotoxin derived from the cells contained in the vaccine are greatly increased compared to the whole cell pertussis vaccine. Has been reduced. Therefore, it is a highly safe vaccine, and there are few side reactions such as fever after vaccination and hardening of the inoculated site. In recent years, demand has increased worldwide, and it has begun to be used globally, both in developed and developing countries, outside of Japan.
上記のように、全菌体百日せきワクチンの欠点であった安全性は、無細胞百日せきワクチンにおいて改善された。しかし、全菌体百日せきワクチンの利点であった製法の簡便性、安価な製造費用の点はかえって損なわれることとなった。このような背景から、全菌体百日せきワクチンの持つ有効性と安価な製造費用を維持しつつ、無細胞百日せきワクチンに匹敵する安全性を兼ね備えた全菌体百日せきワクチンの開発が求められている。
世界保健機構(WHO)は全菌体百日せきワクチンの品質規格を作成し各国政府に準拠するよう求めている。しかし、無細胞百日せきワクチンの製法や品質規格は各国で異なり、世界的な統一規格は確率されていない。
また、百日せきワクチンと同様に、他の細菌由来の全菌体細菌ワクチンにおいても、安価な製造費用を維持しつつ、無細胞細菌ワクチンに匹敵する安全性を兼ね備えた全菌体細菌ワクチンの開発が現在世界中で求められている。As described above, the safety that was a drawback of the whole cell pertussis vaccine was improved in the cell-free pertussis vaccine. However, the advantages of the whole cell pertussis vaccine, such as the simplicity of the production method and the low production cost, were impaired. Against this background, the development of a whole cell pertussis vaccine that is safe and comparable to a cell-free pertussis vaccine while maintaining the effectiveness and low-cost manufacturing costs of a whole cell pertussis vaccine. Is required.
The World Health Organization (WHO) has created a quality standard for whole cell pertussis vaccines and is seeking to comply with governments. However, the manufacturing method and quality standard of the cell-free pertussis vaccine are different in each country, and no global standard is probable.
In addition, as with the pertussis vaccine, the whole bacterial bacterial vaccine derived from other bacteria is a whole bacterial bacterial vaccine that has safety comparable to that of a cell-free bacterial vaccine while maintaining low manufacturing costs. Development is currently being sought worldwide.
尚、本出願の発明に関連する先行技術文献情報を以下に示す。
本発明は、このような状況に鑑みてなされたものであり、その目的は、長期保存においても毒性復帰がおこらない特徴を持ち、安全性の改善された全菌体細菌ワクチンを提供することにある。また、上記ワクチンに同じ細菌由来の細菌成分ワクチンを混合した混合細菌ワクチンの提供、およびこれらの混合細菌ワクチンと他のワクチン抗原とからなる安全で有効な混合ワクチンを提供することも目的とする。また、それらの製造方法ならびに使用方法を提供することも目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a whole cell bacterial vaccine having a feature that does not return to toxicity even during long-term storage and has improved safety. is there. Another object of the present invention is to provide a mixed bacterial vaccine obtained by mixing the above-mentioned vaccine with a bacterial component vaccine derived from the same bacteria, and to provide a safe and effective mixed vaccine comprising these mixed bacterial vaccine and other vaccine antigens. It is another object of the present invention to provide a production method and a usage method thereof.
上記課題を解決するために、本発明者らは全菌体百日せきワクチンの無毒化処理方法の改良や、複数のワクチンを混合し、製造されたワクチンの安全性の検討を行った。
まず、全菌体百日せきワクチンの無毒化処理方法の改良を行った。その結果、アミノ酸などの存在下で無毒化処理を行うことにより、または百日せき菌体に溶菌防止処理と簡便な精製処理を施す事により、毒性復帰しにくく、かつその他の安全性も改善された全菌体百日せきワクチンを製造出来ることを見いだした。次に、上記の方法で得た安全性の改善された全菌体百日せきワクチンと無細胞百日せきワクチンをそれぞれ有効量以下の濃度で混合し、混合ワクチンの安全性の評価を行った。その結果、無細胞百日せきワクチンに匹敵する安全性を兼ね備えた混合百日せきワクチンを製造出来ることを見いだした。
また、他の細菌由来の菌株においても、百日せきワクチンと同様の製造方法でワクチンの製造を行った所、保存安定性の良好な全菌体細菌ワクチンが製造されることがわかった。In order to solve the above-mentioned problems, the present inventors have investigated the detoxification treatment method for whole cell pertussis vaccine, and examined the safety of a vaccine produced by mixing a plurality of vaccines.
First, the method for detoxifying the whole cell pertussis vaccine was improved. As a result, by performing detoxification treatment in the presence of amino acids or by carrying out lysis prevention treatment and simple purification treatment on pertussis cells, toxicity recovery is difficult and other safety is also improved. We found that we could produce a whole cell pertussis vaccine. Next, the whole cell pertussis vaccine and the cell-free pertussis vaccine with improved safety obtained by the above method were each mixed at a concentration below the effective amount, and the safety of the mixed vaccine was evaluated. . As a result, it has been found that a mixed pertussis vaccine having safety comparable to a cell-free pertussis vaccine can be produced.
In addition, in the case of other bacterial strains, it was found that when the vaccine was produced by the same production method as that of the pertussis vaccine, a whole cell bacterial vaccine having good storage stability was produced.
即ち、本発明者らは、従来の細菌ワクチンよりも安全性の高いワクチンを、簡便・安価に製造することに成功し、これにより本発明を完成するに至った。
本発明は、より具体的には以下の〔1〕〜〔23〕を提供するものである。
〔1〕以下の(a)および(b)に記載の処理により得られる、長期保存においても毒性復帰がおこらない特徴を持つ全菌体細菌ワクチン。
(a)アミノ酸、アミン類、および/またはアミド類の存在下における菌体の無毒化処理
(b)菌体の溶菌防止処理
〔2〕長期保存の期間が一年以上、好ましくは3年以上、さらに好ましくは5年以上、6年未満である、〔1〕に記載の全菌体細菌ワクチン。
〔3〕(a)に記載のアミノ酸が、アスパラギン酸、γ―アミノ酪酸、アラニン、β-アラニン、アルギニン、グリシン、グルタミン酸、イソロイシン、ロイシン、リジン、セリン、スレオニン、およびバリンから選定される少なくとも一つのアミノ酸である、〔1〕または〔2〕に記載の全菌体細菌ワクチン。
〔4〕(a)に記載のアミン類がエチルアミン、エタノールアミン、およびプロパノールアミンから選定される少なくとも一つのアミン類であり、または(a)に記載のアミド類が尿素、グリシンアミド、およびβ-アラニルアミドから選定される少なくとも一つのアミド類である、〔1〕から〔3〕のいずれかに記載の全菌体細菌ワクチン。
〔5〕(b)に記載の溶菌防止処理がアセトン処理、加温、γ線照射、電子線照射、およびレーザー光照射から選定される少なくとも一つの処理方法である、〔1〕から〔4〕のいずれかに記載の全菌体細菌ワクチン。
〔6〕細菌が臨床分離株、その人工変異株、または遺伝子組換え株である〔1〕から〔5〕のいずれかに記載の全菌体細菌ワクチン。
〔7〕〔1〕から〔6〕のいずれかに記載の全菌体細菌ワクチン、およびそれらと同じ細菌由来の細菌成分ワクチンを含む混合細菌ワクチン。
〔8〕全菌体ワクチンおよび/または細菌成分ワクチンが単独では有効量以下であることを特徴とする〔7〕に記載の混合細菌ワクチン。
〔9〕細菌が百日せき菌(Bordetella pertussis)、パラ百日せき菌(Bordetella parapertussis)、チフス菌(Salmonella typhi)、毒素産生大腸菌(Escherichia coli)、コレラ菌(Vibrio cholera)、黄色ブドー状球菌(Staphylococcus aureus)、または肺炎球菌(Streptococcus pneumoniae)のいずれかである、〔1〕から〔8〕のいずれかに記載の細菌ワクチン。
〔10〕少なくとも一種類以上の〔9〕に記載の細菌ワクチン、および他の細菌および/またはウイルス由来のワクチン抗原を少なくとも一種類以上含む混合ワクチン。
〔11〕ワクチン抗原が、ジフテリアトキソイド、破傷風トキソイド、インフルエンザ菌ワクチン、髄膜炎菌ワクチン、経口ポリオワクチン、不活化ポリオワクチン、肝炎ワクチン、および日本脳炎ワクチンから選定される少なくとも一つの抗原である、〔10〕に記載の混合ワクチン。
〔12〕以下の(a)および(b)に記載の処理により得られる、長期保存においても毒性復帰がおこらない特徴を持つ全菌体細菌ワクチンの製造方法。
(a)アミノ酸、アミン類、および/またはアミド類の存在下における菌体の無毒化処理
(b)菌体の溶菌防止処理
〔13〕(a)に記載のアミノ酸が、アスパラギン酸、γ―アミノ酪酸、アラニン、β-アラニン、アルギニン、グリシン、グルタミン酸、イソロイシン、ロイシン、リジン、セリン、スレオニン、およびバリンから選定される少なくとも一つのアミノ酸である、〔12〕に記載の全菌体細菌ワクチンの製造方法。
〔14〕(a)に記載のアミン類がエチルアミン、エタノールアミン、およびプロパノールアミンから選定される少なくとも一つのアミン類であり、または(a)に記載のアミド類が尿素、グリシンアミド、およびβ-アラニルアミドから選定される少なくとも一つのアミド類である、〔12〕または〔13〕に記載の全菌体細菌ワクチンの製造方法。
〔15〕(b)に記載の溶菌防止処理がアセトン処理、加温、γ線照射、電子線照射、およびレーザー光照射から選定される少なくとも一つの処理方法である、〔12〕から〔14〕のいずれかに記載の全菌体細菌ワクチンの製造方法。
〔16〕細菌が臨床分離株、その人工変異株、または遺伝子組換え株である〔12〕から〔15〕のいずれかに記載の全菌体細菌ワクチンの製造方法。
〔17〕〔1〕から〔6〕のいずれかに記載の全菌体細菌ワクチン、およびそれらと同じ細菌由来の無細胞細菌ワクチンを混合する工程を含む、混合細菌ワクチンの製造方法。
〔18〕全菌体ワクチンおよび/または無細胞ワクチンが単独では有効量以下であることを特徴とする〔17〕に記載の混合細菌ワクチンの製造方法。
〔19〕細菌が百日せき菌(Bordetella pertussis)、パラ百日せき菌(Bordetella parapertussis)、チフス菌(Salmonella typhi)、毒素産生大腸菌(Escherichia coli)、コレラ菌(Vibrio cholera)、黄色ブドー状球菌(Staphylococcus aureus)、または肺炎球菌(Streptococcus pneumoniae)のいずれかである、〔12〕から〔18〕のいずれかに記載の混合細菌ワクチンの製造方法。
〔20〕少なくとも一種類以上の〔9〕に記載の細菌ワクチン、および他の細菌および/またはウイルス由来のワクチン抗原を少なくとも一種類以上含む混合ワクチンの製造方法。
〔21〕ワクチン抗原が、ジフテリアトキソイド、破傷風トキソイド、インフルエンザ菌ワクチン、髄膜炎菌ワクチン、経口ポリオワクチン、不活化ポリオワクチン、肝炎ワクチン、および日本脳炎ワクチンから選定される少なくとも一つの抗原である、〔20〕に記載の混合ワクチンの製造方法。
〔22〕細菌および/またはウイルスに起因する疾患に対して用いる、〔1〕から〔11〕に記載のワクチン。
〔23〕細菌が百日せき菌(Bordetella pertussis)、パラ百日せき菌(Bordetella parapertussis)、チフス菌(Salmonella typhi)、毒素産生大腸菌(Escherichia coli)、コレラ菌(Vibrio cholera)、黄色ブドー状球菌(Staphylococcus aureus)、または肺炎球菌(Streptococcus pneumoniae)のいずれかである〔22〕に記載のワクチン。That is, the present inventors have succeeded in producing a vaccine that is safer than conventional bacterial vaccines easily and inexpensively, thereby completing the present invention.
More specifically, the present invention provides the following [1] to [23].
[1] A whole bacterial cell vaccine obtained by the treatment described in the following (a) and (b), which has a characteristic that the toxicity does not return even in long-term storage.
(A) Cell detoxification treatment in the presence of amino acids, amines, and / or amides (b) Cell lysis prevention treatment [2] Long-term storage period is 1 year or more, preferably 3 years or more, More preferably, the whole bacterial cell vaccine according to [1], which is 5 years or longer and less than 6 years.
[3] The amino acid described in (a) is at least one selected from aspartic acid, γ-aminobutyric acid, alanine, β-alanine, arginine, glycine, glutamic acid, isoleucine, leucine, lysine, serine, threonine, and valine. The whole bacterial cell vaccine according to [1] or [2], which is one amino acid.
[4] The amine described in (a) is at least one amine selected from ethylamine, ethanolamine, and propanolamine, or the amide described in (a) is urea, glycinamide, and β- The whole bacterial cell vaccine according to any one of [1] to [3], which is at least one amide selected from alanylamide.
[5] The lysis prevention treatment according to (b) is at least one treatment method selected from acetone treatment, heating, γ-ray irradiation, electron beam irradiation, and laser light irradiation, [1] to [4] The whole bacterial cell vaccine according to any one of the above.
[6] The whole bacterial cell vaccine according to any one of [1] to [5], wherein the bacterium is a clinical isolate, an artificial mutant thereof, or a gene recombinant strain.
[7] A mixed bacterial vaccine comprising the whole bacterial cell vaccine according to any one of [1] to [6] and a bacterial component vaccine derived from the same bacteria.
[8] The mixed bacterial vaccine of [7], wherein the whole cell vaccine and / or the bacterial component vaccine alone is an effective amount or less.
[9] Bacteria are Bordetella pertussis, Bordetella parapertussis, Salmonella typhi, Escherichia coli, Vibrio cholera, Staphylococcus aureus The bacterial vaccine according to any one of [1] to [8], which is any one of (Staphylococcus aureus) or Streptococcus pneumoniae.
[10] A mixed vaccine comprising at least one bacterial vaccine according to [9] and at least one vaccine antigen derived from other bacteria and / or viruses.
[11] The vaccine antigen is at least one antigen selected from diphtheria toxoid, tetanus toxoid, H. influenzae vaccine, meningococcal vaccine, oral polio vaccine, inactivated polio vaccine, hepatitis vaccine, and Japanese encephalitis vaccine. [10] The combination vaccine according to [10].
[12] A method for producing a whole cell bacterial vaccine, which is obtained by the treatment described in (a) and (b) below and has a characteristic that toxicity recovery does not occur even during long-term storage.
(A) Detoxification treatment of bacterial cells in the presence of amino acids, amines and / or amides (b) Bacterial lysis prevention treatment [13] The amino acid described in (a) is an aspartic acid, γ-amino acid Production of whole bacterial cell vaccine according to [12], which is at least one amino acid selected from butyric acid, alanine, β-alanine, arginine, glycine, glutamic acid, isoleucine, leucine, lysine, serine, threonine, and valine Method.
[14] The amine described in (a) is at least one amine selected from ethylamine, ethanolamine, and propanolamine, or the amide described in (a) is urea, glycinamide, and β- The method for producing a whole cell bacterial vaccine according to [12] or [13], which is at least one amide selected from alanylamide.
[15] The lysis prevention treatment according to (b) is at least one treatment method selected from acetone treatment, heating, γ-ray irradiation, electron beam irradiation, and laser light irradiation, [12] to [14] A method for producing a whole bacterial cell vaccine according to any one of the above.
[16] The method for producing a whole cell bacterial vaccine according to any one of [12] to [15], wherein the bacterium is a clinical isolate, an artificial mutant thereof, or a gene recombinant strain.
[17] A method for producing a mixed bacterial vaccine, comprising a step of mixing the whole bacterial cell vaccine according to any one of [1] to [6] and a cell-free bacterial vaccine derived from the same bacteria.
[18] The method for producing a mixed bacterial vaccine of [17], wherein the whole cell vaccine and / or the cell-free vaccine alone is an effective amount or less.
[19] Bacteria are Bordetella pertussis, Bordetella parapertussis, Salmonella typhi, Escherichia coli, Vibrio cholera, Staphylococcus aureus The method for producing a mixed bacterial vaccine according to any one of [12] to [18], which is any one of (Staphylococcus aureus) or Streptococcus pneumoniae.
[20] A method for producing a mixed vaccine comprising at least one bacterial vaccine according to [9] and at least one vaccine antigen derived from other bacteria and / or viruses.
[21] The vaccine antigen is at least one antigen selected from diphtheria toxoid, tetanus toxoid, influenza virus vaccine, meningococcal vaccine, oral polio vaccine, inactivated polio vaccine, hepatitis vaccine, and Japanese encephalitis vaccine, [20] The method for producing a combination vaccine according to [20].
[22] The vaccine according to [1] to [11], which is used for diseases caused by bacteria and / or viruses.
[23] Bacteria are Bordetella pertussis, Bordetella parapertussis, Salmonella typhi, Escherichia coli, Vibrio cholera, Staphylococcus aureus The vaccine according to [22], which is either (Staphylococcus aureus) or Streptococcus pneumoniae.
本発明は、長期保存においても毒性復帰がおこらない特徴を持ち、安全性の改善された全菌体細菌ワクチンを提供する。また本発明は、上記の安全性の改善された全菌体細菌ワクチンの製造方法に関する。
本発明において「毒性復帰」とは、無毒化処理後の保存過程において、病原細菌本来の毒性が再度出現するようになる現象である。病原菌の無毒化処理を行った細菌ワクチンであっても、保存過程においてしばしば毒性復帰を起こすことがこれまでにわかっており、長期間毒性復帰が起こらないことは、ワクチンの安全性を維持する上で非常に重要なことである。本発明において、長期保存の期間としては、好ましくは1年以上の期間であり、より好ましくは3年以上6年未満の期間である。本発明の細菌ワクチンの由来となる病原細菌としては、伝染能力を持った病原細菌を挙げることが出来、好ましくは、百日せき菌(Bordetella pertussis)、パラ百日せき菌(Bordetella parapertussis)、チフス菌(Salmonella typhi)、毒素産生大腸菌(Escherichia coli)、コレラ菌(Vibrio cholera)、黄色ブドー状球菌(Staphylococcus aureus)、または肺炎球菌(Streptococcus pneumoniae)を挙げることができる。これら全菌体細菌ワクチンの製造に使用する菌株は抗原性があれば、臨床分離株、野生株、人口変異株、遺伝子組換え株の何れでも使用できる。The present invention provides a whole cell bacterial vaccine having the characteristics that the toxicity does not return even after long-term storage and has improved safety. The present invention also relates to a method for producing the whole bacterial cell vaccine with improved safety.
In the present invention, “return to toxicity” is a phenomenon in which the original toxicity of pathogenic bacteria reappears in the preservation process after detoxification treatment. Even bacterial vaccines that have undergone detoxification of pathogenic bacteria have been known to frequently revert to toxicity during the storage process, and the absence of reversal of toxicity for a long period of time is necessary to maintain the safety of the vaccine. It is very important. In the present invention, the long-term storage period is preferably a period of 1 year or more, more preferably a period of 3 years or more and less than 6 years. Examples of pathogenic bacteria from which the bacterial vaccine of the present invention is derived include pathogenic bacteria having an infectious ability, and preferably Bordetella parapertussis, Bordetella parapertussis, and Typhi. Mention may be made of fungi (Salmonella typhi), toxin-producing Escherichia coli, Vibrio cholera, Staphylococcus aureus, or Streptococcus pneumoniae. Any of clinical isolates, wild strains, artificial mutants and genetically modified strains can be used as long as the strain used for the production of these whole bacterial vaccines is antigenic.
ここでは、上記細菌ワクチンの一つである百日せきワクチンに関する発明について詳細な説明をおこなう。
従来の全菌体百日せきワクチン製造法の概略は以下の通りである。まず、百日せき菌(I相菌)を適当な培地(例 コーエンウイーラー変法液体培地)に接種し、35℃前後で1日間通気撹拌しながらタンク培養する。培養液を遠心して菌体を集め、菌体画分を適当な緩衝液に懸濁して菌体濃度を調節し、次に、0.5 %(v/v)前後のホルマリン存在下で数週間放置することにより無毒化する。その後、菌体を遠心洗浄してホルマリン除去し、菌体濃度を(10 - 20) x 10sup9/mLに調節して全菌体百日せきワクチンとしていた。Here, the invention relating to the pertussis vaccine, which is one of the bacterial vaccines, will be described in detail.
The outline of the conventional whole cell pertussis vaccine production method is as follows. First, pertussis bacteria (phase I) are inoculated into an appropriate medium (eg, Cohen Wheeler modified liquid medium), and cultured in a tank with aeration and agitation at around 35 ° C. for 1 day. Centrifuge the culture to collect the cells, suspend the cell fraction in an appropriate buffer to adjust the cell concentration, and then leave it in the presence of formalin around 0.5% (v / v) for several weeks. Detoxify by Thereafter, the bacterial cells were washed by centrifugation to remove formalin, and the bacterial cell concentration was adjusted to (10-20) × 10sup9 / mL to obtain a whole cell pertussis vaccine.
上記の通りの従来法で製造して得られる全菌体百日せきワクチンは、有効であり、かつ製造方法が簡便なので大量製造に適している長所があった。しかし、(1)長期保存の間に毒性復復帰が起こりやすい(2)長期保存の間に溶菌が起きるか、または品質が低下しやすい(3)エンドトキシン含量が高く、望ましくない副反応を生じやすい、等の安全上の問題があると指摘されてきた。 The whole cell pertussis vaccine obtained by the conventional method as described above has an advantage of being effective and suitable for mass production because the production method is simple. However, (1) toxic reversion is likely to occur during long-term storage (2) lysis is likely to occur during long-term storage, or quality is likely to deteriorate (3) endotoxin content is high, and undesirable side reactions are likely to occur It has been pointed out that there are safety problems such as.
本発明の全菌体百日せきワクチンではこの主要な問題点が解決される。特に注目されるのは長期保存における毒性復帰現象が顕著に低下することである。本発明の改良全菌体百日せきワクチンの製造方法は、従来法の無毒化処理方法の改良である。本発明で行った改良は下記三つの処理を無毒化の際に行うものである。
本発明における無毒化処理方法における第1の改良点としては、無毒化処理の際にアミノ酸等を存在させることが挙げられる。本発明では百日せき菌体の無毒化処理に際して緩衝液中に無毒化剤(例えばホルマリン)と共にアミノ酸またはアミン類、アミド類を存在させる。これにより長期保存により毒性復帰しにくい全菌体百日せきワクチンを製造することができる。タンパク質トキシンの不活化に際してアミノ酸やアンモニア、アミン類などを存在させて、不活化の進行度を制御する方法は公知である(Formaldehyde inactivation of foot-and-mouth disease virus. Conditions for the preparation of safe vaccine. SJ Barteling , R. Woortmeyer. Arch Virol. 1984;80(2-3):103-17.)。The whole cell pertussis vaccine of the present invention solves this major problem. Of particular note is that the toxicity reversal phenomenon during long-term storage is significantly reduced. The method for producing an improved whole cell pertussis vaccine of the present invention is an improvement of the conventional detoxification treatment method. The improvement made in the present invention is to perform the following three treatments during detoxification.
A first improvement in the detoxification treatment method of the present invention is the presence of amino acids and the like during the detoxification treatment. In the present invention, at the time of detoxification treatment of pertussis cells, an amino acid, an amine or an amide is present in a buffer together with a detoxifying agent (for example, formalin). This makes it possible to produce a whole cell pertussis vaccine that is unlikely to return to toxicity due to long-term storage. A method for controlling the degree of inactivation by the presence of amino acids, ammonia, amines, etc. during inactivation of protein toxins is known (Formaldehyde inactivation of foot-and-mouth disease virus. Conditions for the preparation of safe vaccine). SJ Barteling, R. Woortmeyer. Arch Virol. 1984; 80 (2-3): 103-17.).
リジンなどのアミノ酸はホルマリンと反応して、過剰なホルマリンを捕捉し、ホルマリンの作用を中和し、不活化が過度に進行するのを制御し、ないしは不活化を事実上停止させる効果があることが広く受け入れられてきた。また、ホルマリンとアミノ基との反応でシッフ塩の形成されることが証明されている。
全菌体百日せきワクチン製造においては、毒性を取り除き、毒性復帰を防止するため、無毒化処理は出来るだけ完全に進行すること、すなわちトキシンを完全に不活化させることが望ましい。そのため、これまで全菌体百日せき菌のホルマリンによる無毒化処理の際には、トキシンの不活化を妨げる効果があると考えられていたアミノ酸添加は行われていなかった。Amino acids such as lysine react with formalin to capture excess formalin, neutralize the action of formalin, control excessive inactivation, or effectively stop inactivation Has been widely accepted. It has also been demonstrated that a Schiff salt is formed by the reaction of formalin and an amino group.
In producing a whole cell pertussis vaccine, it is desirable that the detoxification process proceeds as completely as possible, that is, the toxin is completely inactivated in order to remove toxicity and prevent reversion of toxicity. Therefore, amino acid addition, which has been considered to have an effect of preventing inactivation of toxins, has not been carried out in the past in the detoxification treatment of whole cell pertussis with formalin.
本発明者らは、全菌体百日せきワクチンの製造において、ホルマリン濃度や処理時間を変化させ、無毒化の程度との相関を調べた。その中で、無毒化を制御する一つの方法としてアミノ酸を添加したところ、予想外の新規の効果としてトキシンの不活化が進み、無毒化が完全に行われることを見いだし、毒性復帰がおこらない全菌体百日せきワクチンの開発に成功した。
全菌体細菌ワクチンの無毒化に際してアミノ酸またはアミン類、アミド類の添加効果は本発明者らが見いだした新規で有用な知見である。The present inventors examined the correlation with the degree of detoxification by changing the formalin concentration and the treatment time in the production of whole cell pertussis vaccine. Among them, when amino acid was added as one method for controlling detoxification, it was found that toxin inactivation progressed as an unexpected new effect, and that detoxification was completely performed, and toxicity recovery did not occur. Succeeded in developing a pertussis vaccine.
The addition effect of amino acids, amines and amides upon detoxification of whole bacterial vaccine is a new and useful finding found by the present inventors.
本発明の無毒化処理の際に使用するアミノ酸の種類は入手可能なアミノ酸なら何れでも良く、中でもタンパク質構成アミノ酸が好ましい。また、塩基性アミノ酸がより好ましい。しばしば、水溶性アミノ酸が好ましいが、バリンなど非水溶性アミノ酸が効果的な場合もある。天然型(L−型)、非天然型(D−型)何れも使用可能である。より好ましいアミノ酸としては、アスパラギン酸、γ―アミノ酪酸、アラニン、β-アラニン、アルギニン、グリシン、グルタミン酸、イソロイシン、ロイシン、リジン、セリン、スレオニン、バリン、これらを含むペプチド、アミノ酸オリゴマー、等が上げられるが、これらに限定されるものではない。また、好適なアミン類、アミド類としては、エチルアミン、エタノールアミン、プロパノールアミンなどのアルキルアミン類、尿素、グリシンアミド、β-アラニルアミドなどのアミド類、アンモニア、上記物質の無機塩類、等が挙げられるが、これらに限定されるものではない。 The amino acid used in the detoxification treatment of the present invention may be any available amino acid, and among them, protein-constituting amino acids are preferred. Moreover, a basic amino acid is more preferable. Often, water-soluble amino acids are preferred, but water-insoluble amino acids such as valine may be effective. Both natural type (L-type) and non-natural type (D-type) can be used. More preferred amino acids include aspartic acid, γ-aminobutyric acid, alanine, β-alanine, arginine, glycine, glutamic acid, isoleucine, leucine, lysine, serine, threonine, valine, peptides containing these, amino acid oligomers, and the like. However, it is not limited to these. Suitable amines and amides include alkylamines such as ethylamine, ethanolamine and propanolamine, amides such as urea, glycinamide and β-alanylamide, ammonia and inorganic salts of the above substances. However, it is not limited to these.
本発明で使用するアミノ酸またはアミン類、アミド類の濃度は、0.005 M-0.5 Mの範囲が実用的に使用可能であり、好ましくは0.02 M-0.2 Mの範囲である。ただし、最適の濃度は全菌体百日せき菌の濃度、緩衝液のpH、無毒化反応液の温度などにより異なるが、ワクチン従事者には最適濃度を決定する方法は公知である。
本処理におけるアミノ酸またはアミン類、アミド類の添加方法は、最初から一度に添加して良いし、あるいは一週間に1−2回程度の間隔で分割添加しても良い。
本発明の百日せきワクチンを製造するのに適した百日せき菌はとくに制限されない。すなわち、ワクチン製造に使用した場合に抗原性を示す能力があれば、臨床分離株(すなわち野生株)、人工変異株、遺伝子組換え株の何れでも使用可能である。
本発明で製造された百日せきワクチンの毒性(無毒化後なら、復帰毒性)は生物製剤基準に規定されている方法(マウス体重減少試験、マウス白血球増加試験、ヒスタミン増感試験、および異常毒性否定試験など)により調べることができる。この中でヒスタミン増感試験法の検出感度が相対的に高く、このことはワクチンを取り扱う専門家にとって公知である。The concentration of amino acids or amines and amides used in the present invention is practically usable in the range of 0.005 M-0.5 M, and preferably in the range of 0.02 M-0.2 M. However, the optimum concentration varies depending on the concentration of whole cell pertussis, the pH of the buffer solution, the temperature of the detoxification reaction solution, etc., but methods for determining the optimum concentration are known to vaccine workers.
The method for adding amino acids, amines, or amides in this treatment may be added at once from the beginning, or may be added at intervals of about 1-2 times per week.
The pertussis bacteria suitable for producing the pertussis vaccine of the present invention is not particularly limited. That is, any of clinical isolates (ie, wild strains), artificial mutants, and genetically modified strains can be used as long as they have the ability to exhibit antigenicity when used for vaccine production.
The toxicity (reversal toxicity after detoxification) of the pertussis vaccine produced by the present invention is determined according to the biologics standards (mouse weight loss test, mouse leukocyte increase test, histamine sensitization test, and abnormal toxicity) It can be examined by negative tests). Among them, the detection sensitivity of the histamine sensitization test method is relatively high, and this is known to those who handle vaccines.
本処理方法において、リジンを使用した場合を例にアミノ酸またはアミン類、アミド類の毒性復帰抑制効果のメカニズムを考察すると以下の通りである。百日せき菌体表面には蛋白トキシンとともに、エンドトキシンなどの大きな多糖構造物やその他の高分子量の酸性分子が入り組んで存在するので、トキシンの一部は覆い隠されていると考えられる。また、ホルマリン分子は多糖にも親和性があるので、ここに捕捉されてトキシンの遊離アミノ基の一部に到達しにくい。従って、アミノ酸非存在下、従来法による無毒化において、ホルマリンは菌体表面に露出した部分のトキシンを不活化するものの、隠れた部分のトキシンを不活化することができず、一部トキシンは活性を保持したまま隠れて残存するものと考えられる。これは毒性復帰の起こりやすい半無毒化製品である。遊離の蛋白トキシンを不活化する場合と比較し、全菌体を処理する場合には一部トキシンが活性を保持したまま残存する可能性が高い。ここで本発明のとおり、リジンなどの塩基性アミノ酸を添加した場合、リジンが酸性物質と塩を形成する性質があり、また一部の多糖にも親和性があるので、塩基性アミノ酸が細胞表面のエンドトキシンやその他の大きな構造物のどこかと結合しうる。この際、それまで結合していた一部のホルマリンと塩基性アミノ酸が入れ替わる事が容易に想像される。事実、本発明者らは、百日せき菌体懸濁液にホルマリン添加し、一週間後にリジンを添加するとホルマリンの一部が遊離するのを観察した。リジンが新たにどこかに結合すると菌体表面上の入り組んだ多糖分子に構造変化がおこり、これまで隠れていた部分のトキシンが露出する。この時、近傍に存在する遊離ホルマリンが新たに露出した部分に結合する。つまり、ホルマリンによる無毒化がより完全になるものと想像される。このように考えると、アミノ酸などの存在下で処理することにより、毒性復帰しにくい全菌体百日せきワクチンが製造できる事を説明できる。 In this treatment method, the mechanism of the inhibitory effect on the reversion of toxicity of amino acids, amines, and amides is considered as follows, using lysine as an example. A large polysaccharide structure such as endotoxin and other high molecular weight acidic molecules are present together with protein toxins on the surface of pertussis cells, so it is considered that a part of the toxin is masked. In addition, since formalin molecules also have an affinity for polysaccharides, they are trapped here and hardly reach a part of the free amino group of the toxin. Therefore, in the absence of amino acids, in the conventional method of detoxification, formalin inactivates the part of the toxin exposed on the cell surface, but cannot inactivate the hidden part of the toxin. It is thought that it remains hidden while holding. This is a semi-detoxified product that is prone to reversion of toxicity. Compared with the case of inactivating free protein toxins, when whole cells are treated, there is a high possibility that some toxins remain active. Here, as in the present invention, when a basic amino acid such as lysine is added, lysine has a property of forming a salt with an acidic substance and also has affinity for some polysaccharides. Can bind to endotoxins and other large structures. At this time, it is easily imagined that a part of the formalin and the basic amino acid that have been bound so far are replaced. In fact, the present inventors observed that a part of formalin was released when formalin was added to a pertussis cell suspension and lysine was added after one week. When lysine is newly bound somewhere, a structural change occurs in the complex polysaccharide molecule on the surface of the cell, exposing the toxin that was previously hidden. At this time, free formalin present in the vicinity binds to the newly exposed part. In other words, it is envisioned that formalin detoxification will become more complete. In view of this, it can be explained that a whole cell pertussis vaccine that is difficult to recover from toxicity can be produced by treatment in the presence of an amino acid or the like.
本発明における無毒化処理方法における第2の改良点としては、菌体に溶菌防止処理を施すことが挙げられる。すなわち本発明の全菌体百日せきワクチンの製造においてホルマリンなどによる無毒化処理以外の溶菌防止処理を施す。
溶菌防止処理は化学品処理と物理化学的処理、ならびにこれらを組み合わせても良い。後述する通り、溶菌防止処理の具体的な方法は実質的に無毒化処理と区別できない場合がある。従って、第2無毒化処理と呼ぶことができる。しかし、本発明者らは無毒化処理とは別に溶菌防止を目的に上記の処理を実施し、溶菌防止効果を確認したので、溶菌防止処理と呼ぶことにする。As a second improvement point in the detoxification treatment method of the present invention, a lysis preventing treatment is given to the cells. That is, in the production of the whole cell pertussis vaccine of the present invention, lysis prevention treatment other than detoxification treatment with formalin or the like is performed.
The lysis prevention treatment may be a chemical treatment, a physicochemical treatment, or a combination thereof. As will be described later, the specific method of the lysis preventing treatment may be substantially indistinguishable from the detoxification treatment. Therefore, it can be called a second detoxification process. However, since the present inventors performed the above-described treatment for the purpose of preventing lysis separately from the detoxification treatment and confirmed the lysis prevention effect, they will be referred to as lysis prevention treatment.
従来、百日菌の無毒化処理においては物理化学的処理法および化学処理法が使用されてきた。しかし、ホルマリンやグルタルアルデヒドによる化学的無毒化処理、またはγ線処理や紫外線処理などの物理化学的手段による無毒化処理においても、ただ1種類の処理のみ実施し、複数の方法を組み合わせて無毒化が行われることはなかった。これまでは、全菌体の無毒化処理の場合は細胞死とトキシンの不活化を確認できれば、また、遊離タンパク質の不活化においては機能活性の消失を確認できれば、不活化が完了すると理解されてきた。従って、複数の無毒化処理を組み合わせて実施するのは無駄であると考えられ、あえて試みられることは無かった。本発明者らは化学的手段の無毒化で製造した全菌体百日せきワクチンが毒性復帰を起こす原因の一つは溶菌にあると考え、その防止方法を検討した。その結果化学的無毒化処理に加えて物理化学的手段による溶菌防止処理を追加実施することがワクチンの品質安定化に有効であることを見いだした。 Conventionally, physicochemical treatment methods and chemical treatment methods have been used in the detoxification treatment of Bordetella pertussis. However, in chemical detoxification treatment with formalin and glutaraldehyde, or detoxification treatment by physicochemical means such as γ-ray treatment and ultraviolet treatment, only one type of treatment is performed and detoxification is performed by combining multiple methods. Was never done. Until now, it has been understood that inactivation is completed if cell death and toxin inactivation can be confirmed in the case of detoxification treatment of whole cells, and if loss of functional activity can be confirmed in inactivation of free protein. It was. Therefore, it is considered useless to carry out a combination of a plurality of detoxification processes, and no attempt has been made. The present inventors considered that the whole cell pertussis vaccine produced by detoxification of chemical means is one of the causes of reversion of virulence, and examined the prevention method. As a result, it was found that in addition to the chemical detoxification treatment, additional lysis prevention treatment by physicochemical means is effective in stabilizing the quality of the vaccine.
溶菌防止処理は種々の化学品処理と、物理化学的処理の方法で実施できる。溶菌防止処理を目的として菌体を処理するのに用いる化学処理物質として以下の薬品と、使用可能な濃度例を合わせて以下に示すが、これらに限定されるものではない。
<化学処理物質およびその濃度>
ホルマリン(0.1-10 v/v % )、フェノール(0.1-5 v/v %)、クロロホルム
(10-60 v/v %)、アセトン(10-80 v/v %)、SH試薬 (1-100 mM)、
過酸化水素 (0.1-5 %)、過酢酸(0.5-10 w/v %)、二酸化炭素 (5-90 v/v %)、
オゾン(0.1-10 v/v %)、界面活性剤(0.01-5 w/v %)、The lysis prevention treatment can be carried out by various chemical treatments and physicochemical treatment methods. Examples of chemical treatment substances used for treating bacterial cells for the purpose of preventing lysis and the following chemicals and usable concentration examples are shown below, but are not limited thereto.
<Chemically treated substances and their concentrations>
Formalin (0.1-10 v / v%), phenol (0.1-5 v / v%), chloroform
(10-60 v / v%), acetone (10-80 v / v%), SH reagent (1-100 mM),
Hydrogen peroxide (0.1-5%), peracetic acid (0.5-10 w / v%), carbon dioxide (5-90 v / v%),
Ozone (0.1-10 v / v%), surfactant (0.01-5 w / v%),
また、物理化学的処理法には下記の手段を使用できる。使用可能な条件の一例を合わせて示すが、これらに限定されるものではない。
<物理化学的処理法およびその条件>
加温処理(温度:30-70 ℃;加温時間:10-120 分)、γ線照射(線源:コバルト60;5-50 kGy (キログレー))、レーザー光照射(光源:各種レーザー照射装置;波長500-700 mn;光量:0.01-1 J(ジュール)/cm2)、電子線照射(電子レンジ)、超音波照射
また、全菌体をマイクロカプセル化することにより見かけ上溶菌を防止することも可能である。これらの1種または複数の方法を組み合わせて用いることができる。同じ方法を複数回繰り返し実施してもよい。Moreover, the following means can be used for the physicochemical processing method. An example of conditions that can be used is shown together, but the present invention is not limited to these.
<Physicochemical treatment method and conditions>
Heating treatment (temperature: 30-70 ° C; heating time: 10-120 minutes), gamma irradiation (radiation source: cobalt 60; 5-50 kGy (kilo gray)), laser light irradiation (light source: various laser irradiation devices) ; Wavelength: 500-700 mn; Light quantity: 0.01-1 J (joule) / cm 2 ), electron beam irradiation (microwave oven), ultrasonic irradiation In addition, apparently prevent lysis by microencapsulating whole cells It is also possible. One or more of these methods can be used in combination. The same method may be repeated several times.
処理条件は固定的ではなく、菌体量、温度、緩衝液のpH、処理時間、などを変化させて、好適な条件を設定することができる。通常、無菌条件下で操作する。
溶菌防止処理条件によっては、処理の結果、抗原タンパク質が過度に変性して抗原性を失う場合がある。そのため、処理後に免疫原性、その他の性質を調べ、最適の手段と最適の処理条件を総合的に考慮して選択する。
本発明のワクチン製造工程において、溶菌処理の時期として、好ましくは無毒化の前が良い。しかし、無毒化の後でも実施することができる。The treatment conditions are not fixed, and suitable conditions can be set by changing the amount of cells, temperature, pH of the buffer solution, treatment time, and the like. It is usually operated under aseptic conditions.
Depending on the lysis prevention treatment conditions, the antigen protein may be excessively denatured and lose antigenicity as a result of the treatment. Therefore, the immunogenicity and other properties are examined after the treatment, and the optimum means and the optimum treatment conditions are comprehensively selected.
In the vaccine production process of the present invention, the lysis treatment time is preferably before detoxification. However, it can be carried out even after detoxification.
本発明の溶菌防止処理は、化学的無毒化処理と物理化学的無毒化処理の少なくとも一つの処理を行うものである。両方の処理を組み合わせて無毒化を行う場合は、化学的無毒化処理の後、物理化学的無毒化処理を行ってもよいし、物理化学的無毒化処理の後、化学的無毒化処理を行ってもよい。
本発明により製造された全菌体百日せきワクチン製品の保存中に溶菌が起こるかどうかは、製品の濁度を計測して判定することができる。この方法は微生物を扱う専門家にとって公知である。The lysis-preventing treatment of the present invention performs at least one of a chemical detoxification treatment and a physicochemical detoxification treatment. When detoxification is performed by combining both treatments, physicochemical detoxification treatment may be performed after chemical detoxification treatment, or chemical detoxification treatment is performed after physicochemical detoxification treatment. May be.
Whether or not lysis occurs during storage of the whole cell pertussis vaccine product produced according to the present invention can be determined by measuring the turbidity of the product. This method is well known to specialists dealing with microorganisms.
本発明の溶菌防止処理効果のメカニズムを考察すると以下の通りである
全菌体の化学的無毒化処理では細胞表層の機能蛋白質が失活して、細胞は死亡するが、細胞膜近傍の自己溶解活性は未処理菌体より低下するものの一部活性を保持したまま残存する場合がある。残存する自己溶解活性はワクチンが保存される低温条件下では十分活性を発現しないが、数ヶ月ないし数年にわたる長期保存の間に少しずつ作用し、ついには死菌体を溶菌させる。これに対し、化学的無毒化処理の後、物理化学的方法で追加処理を行った場合、残存自己溶解活性がさらに低下する結果、長期に渡って溶菌を起こさなくなると考えられる。この推定を支持する事実としては、処理効果の認められた加温処理、γ線処理、PCMB処理は何れも、酵素タンパク質に不可逆的変化を起こさせる作用のある点で共通している。The mechanism of the effect of the lysis preventing treatment of the present invention is considered as follows. In the chemical detoxification treatment of the whole cell body, the functional protein in the cell surface layer is inactivated and the cell dies, but the autolysis activity in the vicinity of the cell membrane May be lower than untreated cells, but may remain partly active. The remaining autolytic activity does not develop sufficiently under low temperature conditions where the vaccine is stored, but acts gradually during long-term storage over several months to several years, and finally kills dead cells. On the other hand, when additional treatment is performed by a physicochemical method after the chemical detoxification treatment, the residual autolysis activity is further reduced, and as a result, lysis is not caused for a long period of time. As a fact that supports this estimation, heating treatment, γ-ray treatment, and PCMB treatment, which have been confirmed to have a treatment effect, are common in that they have the effect of causing irreversible changes in enzyme proteins.
本発明における第3の無毒化処理方法における改良点としては、菌体に精製純化処理を施すことが挙げられる。すなわち本発明の全菌体百日せきワクチンの製造において無毒化の前または後に精製純化処理を施す。 An improvement in the third detoxification treatment method of the present invention is that the cells are subjected to purification and purification treatment. That is, in the production of the whole cell pertussis vaccine of the present invention, purification and purification treatment is performed before or after detoxification.
本発明は、上記の改良全菌体ワクチンと同じ細菌由来の細菌成分ワクチンを混合した、混合細菌ワクチンを提供する。また本発明は、上記の混合細菌ワクチンの製造方法に関する。
ここでは、上記細菌ワクチンの一つである百日せきワクチンに関する発明について詳細な説明をおこなう。
以下の記述においてしばしば省略記号を使用するが、その意味は以下の通りとする。全菌体百日せきワクチンを「wP」と記す。無細胞百日せきワクチンを「aP」 と記す。また本発明の全菌体百日せきワクチンと無細胞百日せきワクチンの混合百日せきワクチンを「awP」と記す。
本発明の混合百日せきワクチン(awP)について説明する。本発明のawPは有効量以下の全菌体百日せきワクチン(wP)と有効量以下の無細胞百日せきワクチン(aP)を混合して製造される。実施例4および5において説明している通り、awPは全菌体百日せきワクチンと同等の有効性と無細胞百日せきワクチンに匹敵する安全性を兼ね備えている。The present invention provides a mixed bacterial vaccine in which a bacterial component vaccine derived from the same bacteria as the above improved whole cell vaccine is mixed. The present invention also relates to a method for producing the above mixed bacterial vaccine.
Here, the invention relating to the pertussis vaccine, which is one of the bacterial vaccines, will be described in detail.
In the following description, ellipsis is often used, and its meaning is as follows. The whole cell pertussis vaccine is written as “wP”. The acellular pertussis vaccine is referred to as “aP”. Also, the mixed pertussis vaccine of the whole cell pertussis vaccine and the cell-free pertussis vaccine of the present invention is referred to as “awP”.
The mixed pertussis vaccine (awP) of the present invention will be described. The awP of the present invention is produced by mixing a whole cell pertussis vaccine (wP) of an effective amount or less and a cell-free pertussis vaccine (aP) of an effective amount or less. As described in Examples 4 and 5, awP has the same efficacy as whole cell pertussis vaccine and safety comparable to cell-free pertussis vaccine.
本発明のawPの製造に用いるwPは、上記に述べた無毒化法を改良した改良全菌体百日せきワクチンが好適である。しかし従来法で製造された全菌体百日せきワクチンも使用することが出来る。
本発明のawPの製造に用いるaPの製造方法は公知の文献に記載されている方法を利用できる。従来の製法の一例として本発明者らの採用した方法の概略を以下に示す。
百日せき菌(I相菌)を適当な培地(例 コーエンウイーラー変法液体培地)に接種し、35℃前後で4-5日間静置培養する。培養液を遠心し、遠心上清に塩析剤を加える。すなわち硫酸アンモニウムなら約50 %飽和になるように添加し、またはアルコールなら約60 % (v/v)になる量を添加し、生じた沈殿を10,000 rpm程度の速度で、約30分遠心して集め、この沈殿を塩化ナトリウム添加緩衝液で抽出し、その抽出画分を蔗糖密度勾配遠心にかけて、百日せきトキシンその他をふくむ蛋白画分を回収する。次に回収した蛋白画分をホルマリンで無毒化して、無細胞百日せきワクチンとする。必要に応じてアルミゲルに吸着させることができる。As the wP used in the production of the awP of the present invention, an improved whole cell pertussis vaccine obtained by improving the detoxification method described above is suitable. However, whole cell pertussis vaccine produced by a conventional method can also be used.
The method described in the well-known literature can be utilized for the manufacturing method of aP used for manufacture of awP of this invention. An outline of the method employed by the present inventors as an example of a conventional production method is shown below.
Inoculate Bordetella pertussis (Phase I) into a suitable medium (eg Cohen Wheeler modified liquid medium) and incubate statically at around 35 ° C. for 4-5 days. Centrifuge the culture and add a salting-out agent to the supernatant. In other words, ammonium sulfate is added so that it is about 50% saturated, or alcohol is added in an amount that is about 60% (v / v), and the resulting precipitate is collected by centrifugation at a speed of about 10,000 rpm for about 30 minutes, This precipitate is extracted with a sodium chloride addition buffer, and the extracted fraction is subjected to sucrose density gradient centrifugation to recover a protein fraction containing pertussis toxin and the like. Next, the collected protein fraction is detoxified with formalin to obtain a cell-free pertussis vaccine. If necessary, it can be adsorbed on aluminum gel.
本発明のawPの製造に用いるwPとaPの量について説明する。認可されているwPは、通常およそ20 x 10 sup 9個細胞/mLの菌体を含む。WHO基準によれば、wPは、1mLに20 x 10 sup 9個以下の菌体を含み、力価は8国際単位/mL以上でなければならない。これに対し本発明のワクチンは(1 - 20) x 10 sup 9細胞/mLの細菌細胞を含む。すなわち、認可されているワクチン中の細胞数以下でよい。これにより、このままでは有効性が低下するが、全菌体ワクチンであることに付随するエンドトキシンなどによる毒性を軽減できる。特に本発明の改良全菌体百日せきワクチンを使用すれば、その改善効果は顕著である。 The amount of wP and aP used in the production of the awP of the present invention will be described. Approved wP usually contains approximately 20 x 10 sup 9 cells / mL. According to WHO standards, wP should contain no more than 20 x 10 sup 9 cells per mL, and the titer should be at least 8 international units / mL. In contrast, the vaccine of the present invention comprises (1-20) × 10 sup 9 cells / mL bacterial cells. That is, it may be less than the number of cells in the approved vaccine. As a result, the effectiveness is reduced as it is, but the toxicity due to endotoxin associated with the whole cell vaccine can be reduced. In particular, when the improved whole cell pertussis vaccine of the present invention is used, the improvement effect is remarkable.
一方、認可されているaPはトキシンを含むタンパク質を通常15 mcgPN/mL 程度(蛋白質窒素含量として)含んでいる。日本の生物製剤基準によれば、aPはタンパク質窒素 (PNと表記する)として20 mcg/mL 以下を含み、力価は8国際単位/mL以上でなければならない。これに対し本発明のワクチン(awP)は、apを0.1 - 20 mcgPN/mL 含む様に混合する。すなわち日本生物製剤基準に従い認可されたワクチンに含まれる量以下を用いることができる。これにより、aPの有効性を保持しつつ、安全性が確保される。 On the other hand, approved aP usually contains about 15 mcgPN / mL of protein containing toxin (as protein nitrogen content). According to Japanese biopharmaceutical standards, aP must contain no more than 20 mcg / mL as protein nitrogen (denoted as PN), and the titer must be no less than 8 international units / mL. In contrast, the vaccine of the present invention (awP) is mixed so that ap is contained in 0.1-20 mcgPN / mL. That is, the amount contained in the vaccine approved according to the Japanese Biopharmaceutical Standard can be used. This ensures safety while maintaining the effectiveness of aP.
wPとaPの混合比率はワクチンとして有効性が保持される限り、自由に変えられる。こうして製造される本発明のawPは、wPと同等の有効性とaPに匹敵する安全性を兼ね備えている。またwPを含むので製造費用は安価である。製造費用を考慮した場合、aPの含量が少ない場合により安価である。
本発明において、wPとaPの混合方法は特に限定されない。通常は各々のバルク溶液を製造し、その後、所望の比率となるように、物理的に混合する。その後、分注、栓締してワクチンが完成する。ワクチンの性状は溶液でも良いし、必要なら凍結乾燥などにより粉末にしても良い。新規百日せきワクチンawPの品質に関しては、監督官庁の認定する品質基準に適合しなければならない。The mixing ratio of wP and aP can be freely changed as long as the effectiveness as a vaccine is maintained. The awP of the present invention thus produced has the same effectiveness as wP and safety comparable to aP. Moreover, since wP is included, the manufacturing cost is low. Considering the manufacturing cost, it is cheaper when the aP content is low.
In the present invention, the method for mixing wP and aP is not particularly limited. Usually, each bulk solution is manufactured and then physically mixed to the desired ratio. After that, dispensing and stoppering complete the vaccine. The vaccine may be in the form of a solution or, if necessary, powdered by freeze drying. The quality of the new pertussis vaccine awP must meet the quality standards approved by the supervisory authority.
本発明のワクチンに使用するwPとaPは、単独では有効量以下の量であってもよい。本発明において、有効量とはwPにおいては1- 20 x 10 sup 9細胞/mL、aPにおいては0.1-20 mcg PN/mLの範囲を示す。それにもかかわらず、本発明のawPは従来の濃度のワクチンと同じ程度の免疫原性を示す。その理由は以下のように説明される。本ワクチンは百日せき菌体と百日せきトキシンを含むため、被接種者にとって自然感染により近い状態を生じると考えられる。また、トキシン蛋白濃度とトキシン活性との関係からも説明できる。トキシンタンパク質の用量作用曲線は多くの場合直線関係ではない。百日せきトキシンの場合、その変化はS字型である。ある範囲では用量の減少に係わらず抗原性は実質的に維持され、それ以上減少すると幾何級数的に減少する。wPに含まれるエンドトキシンの用量作用曲線は用量の低下と共に幾何級数的に減少する。wPの用量作用曲線も幾何級数的に変化する。aPを少量増加させれば、抗原作用が幾何級数的に増加する範囲が存在する。さてwP とaP二種類のワクチンを少量ずつ混合する場合、ある適当な濃度範囲内では、wPの減少で免疫原生と毒性は低下する。しかしaPの添加で免疫原生は回復し、一方低下した毒性はそのまま維持される。本発明のawPワクチンにおいて、wPに相当する有効性を有し、しかも、wPに伴う毒性は低下することは、上記のように考えれば説明される。 The amount of wP and aP used in the vaccine of the present invention alone may be an effective amount or less. In the present invention, the effective amount indicates a range of 1-20 × 10 sup 9 cells / mL for wP and 0.1-20 mcg PN / mL for aP. Nevertheless, the awP of the present invention exhibits the same degree of immunogenicity as conventional concentrations of vaccine. The reason is explained as follows. Since this vaccine contains pertussis cells and pertussis toxin, it is considered that a state closer to natural infection is produced for the recipient. It can also be explained from the relationship between toxin protein concentration and toxin activity. Toxin protein dose response curves are often not linearly related. In the case of pertussis toxin, the change is sigmoidal. To a certain extent, antigenicity is substantially maintained despite dose reduction, with further reduction in geometrical series. The dose-response curve of endotoxin contained in wP decreases geometrically with decreasing dose. The dose-response curve of wP also changes geometrically. If aP is increased by a small amount, there is a range where the antigenic action increases exponentially. Now, when two vaccines of wP and aP are mixed in small amounts, within a certain appropriate concentration range, the decrease in wP will reduce immunogenicity and toxicity. However, the addition of aP restores immunogenicity while maintaining the reduced toxicity. The awP vaccine of the present invention has an effect equivalent to that of wP, and that the toxicity associated with wP is reduced as explained above.
含まれる毒素タンパク質の性質から説明する。本発明に用いるaPの中に含まれる百日せきトキシンは標的細胞においてアデニル酸シクラーゼ活性を活性化する作用を有するタンパク質であり、アジュバント作用が強い。この点を考えれば少量の添加により有効性が顕著に回復することが説明される。
上記の混合細菌ワクチンの製造方法は、他の細菌由来の細菌ワクチンについても適用できる。
本発明は、上記に記載の少なくとも一種類以上の混合細菌ワクチンと、他の少なくとも一種類以上のワクチン抗原とからなる、安全で有効な混合ワクチンを提供する。また本発明は、上記の混合ワクチンの製造方法に関する。It explains from the nature of the toxin protein contained. Pertussis toxin contained in aP used in the present invention is a protein having an action of activating adenylate cyclase activity in target cells, and has a strong adjuvant action. Considering this point, it is explained that the effectiveness is remarkably recovered by adding a small amount.
The above method for producing a mixed bacterial vaccine can be applied to bacterial vaccines derived from other bacteria.
The present invention provides a safe and effective combination vaccine comprising at least one type of mixed bacterial vaccine described above and at least one other type of vaccine antigen. Moreover, this invention relates to the manufacturing method of said mixed vaccine.
本発明の改良全菌体細菌ワクチンと本発明の混合細菌ワクチンは、何れも別のワクチン抗原と混合して混合ワクチンとして使用できる。
例えば従来百日せきワクチンは破傷風トキソイド、ジフテリアトキソイドと混合したDTP三種混合ワクチンとして使用される場合がある。本発明のwPならびにawPも同様に破傷風トキソイド、ジフテリアトキソイドと混合した後、DTawPワクチンとして利用可能である。また、そのDTPワクチンが第4の抗原と混合使用することが可能である。第4のワクチン抗原として、インフルエンザ菌ワクチン、髄膜炎菌ワクチン、経口ポリオワクチン、不活化ポリオワクチン、肝炎ワクチン、および日本脳炎ワクチン等が挙げられるが、これらに限定されるわけではない。The improved whole cell bacterial vaccine of the present invention and the mixed bacterial vaccine of the present invention can be mixed with another vaccine antigen and used as a mixed vaccine.
For example, conventional pertussis vaccine may be used as a DTP triple vaccine mixed with tetanus toxoid and diphtheria toxoid. Similarly, wP and awP of the present invention can be used as a DTawP vaccine after being mixed with tetanus toxoid and diphtheria toxoid. In addition, the DTP vaccine can be used in combination with a fourth antigen. Examples of the fourth vaccine antigen include, but are not limited to, influenza virus vaccine, meningococcal vaccine, oral polio vaccine, inactivated polio vaccine, hepatitis vaccine, and Japanese encephalitis vaccine.
有効なアジュバントをワクチンに添加してワクチンの効果を増強させることは公知である。従って本発明のワクチン(混合ワクチンを含む)にも適切なアジュバントを添加しうる。本発明のワクチンに用いられるアジュバントとしては、水酸化アルミとその無機塩類、スクワレンやオイルなどの炭化水素類、コレラトキシンなど細菌トキシン類、サポニン類、等が挙げられるが、これらに限定されるわけではない。一般にあるワクチン抗原の免疫作用を増強させるのに有効なアジュバントの種類に規則性は見いだせない。また、有効なアジュバントの種類は投与方法によっても異なる。しかし、当業者にとって公知の試行錯誤法により、ワクチンに有効なワクチンの種類と濃度を決定できる。 It is known to add effective adjuvants to vaccines to enhance the effectiveness of the vaccines. Therefore, an appropriate adjuvant can be added to the vaccine of the present invention (including a combination vaccine). Examples of the adjuvant used in the vaccine of the present invention include aluminum hydroxide and its inorganic salts, hydrocarbons such as squalene and oil, bacterial toxins such as cholera toxin, and saponins, but are not limited thereto. is not. In general, there is no regularity in the type of adjuvant effective for enhancing the immunity of a vaccine antigen. The type of effective adjuvant varies depending on the administration method. However, the type and concentration of vaccine effective for the vaccine can be determined by trial and error methods known to those skilled in the art.
無細胞百日せきワクチン(aP)は通常アルミゲルに結合している。本発明のワクチンawPに使用するaPはアルミアジュバントと結合していても良い。本発明のawPは、アルミゲルがawP中に存在するが、認可されたワクチンの抗原量より減量したaPを含むのでそれに比例してアルミ量も減量される。また、本発明のワクチンawPに使用するaPは、遊離型でも良い。遊離型aPを使用した場合にはawPにはアルミは存在しない。アルミ含量の減量されたワクチンはアルミに基づくと考えられる望ましくない副反応が減少する効果が期待される。例えば、接種部位のしこりが少ない、アルミニウムによると言われることのある向神経作用の可能性が少ない、などである。
ワクチンの通例として、本発明のワクチン製品には抗原の他に、安定剤(ゲラチン)、保存剤(チメロサール、フェノキシエタノール、)、着色剤(フェノールレッド)などを存在させる事が出来る。Cell-free pertussis vaccine (aP) is usually bound to aluminum gel. The aP used for the vaccine awP of the present invention may be combined with an aluminum adjuvant. In the awP of the present invention, the aluminum gel is present in the awP, but the amount of aluminum is also reduced in proportion to the amount of aP reduced from the antigen amount of the approved vaccine. Moreover, aP used for the vaccine awP of the present invention may be free. When free aP is used, aluminum is not present in awP. A vaccine with reduced aluminum content is expected to have the effect of reducing undesirable side reactions that are believed to be based on aluminum. For example, there are few lumps at the site of inoculation, and there is a low possibility of neurotrophic action that is sometimes said to be due to aluminum.
As a customary vaccine, the vaccine product of the present invention may contain a stabilizer (gelatin), a preservative (thimerosal, phenoxyethanol), a colorant (phenol red), etc. in addition to the antigen.
本発明の細菌ワクチンの接種法としては、公知の種々の方法が使用できる。すなわち全菌体細菌ワクチンも無細胞細菌ワクチンも皮下注射、筋肉注射で接種されるので、本発明のワクチンも皮下注射、筋肉注射で接種することが可能である。さらに適切な剤型を選べば、経鼻接種、経口接種、経皮接種も可能である。
なお本明細書において引用されたすべての先行技術文献は、参照として本明細書に組み入れられる。Various known methods can be used as the method for inoculating the bacterial vaccine of the present invention. That is, since the whole bacterial cell vaccine and the cell-free bacterial vaccine are inoculated by subcutaneous injection or intramuscular injection, the vaccine of the present invention can also be inoculated by subcutaneous injection or intramuscular injection. Furthermore, nasal inoculation, oral inoculation, and percutaneous inoculation are possible if an appropriate dosage form is selected.
It should be noted that all prior art documents cited in the present specification are incorporated herein by reference.
〔実施例1〕 アミノ酸などの存在下で無毒化した全菌体百日せきワクチンの製造
アミノ酸などの存在下の無毒化により得られる改良全菌体百日せきワクチンを長期保存し、この間に毒性復帰が起こるかどうかを調べた。試験実施の方法は以下の通りである。
菌株 ボルデテラ・パタシス(Bordetella pertussis)(I相菌)
培地: コーエンウイーラー 変法液体培地
培養:試験菌株を培地に接種し、35℃前後で1日間 通気撹拌しながらタンク培養した。
得られた菌体を遠心法で洗浄し、塩化ナトリウム添加リン酸緩衝液(PBS)(0.01M, pH 7)に650 nmの濁度が 20となるように懸濁した。この100mLを500mLのガラス容器に移した。(液面の高さ約2cm)。ここに0.05 Mの濃度の各種アミノ酸または他の試験物質を、各々一種類添加した。その後、全菌体百日せきワクチンの製造方法の通り0.5 %(v/v)ホルマリンで5週間放置することにより無毒化した。次に、遠心法によりホルマリンと添加物質を除去した後、PBS中で菌数を20 x 10sup9/mLに調整した。その後、チメロサール(0.01 w/v %)を添加し、1.3 mLずつバイアルに分注して全菌体百日せきワクチンを作成した。
各バイアルを2-10℃の冷所に保存した。半年後と2年後にバイアルを開封し、同一条件で作成した試料のバイアル5本分を合わせて1検体とした。5検体を使用し、日本生物製剤基準に従い品質管理試験を実施した。試験のうち、毒性復帰を検出できるヒスタミン増感試験の結果(37℃加温後の測定値)を表1に示す。[Example 1] Production of whole cell pertussis vaccine detoxified in the presence of amino acids and the like Improved whole cell pertussis vaccine obtained by detoxification in the presence of amino acids and the like is stored for a long period of time, and is toxic during this period. We examined whether a return occurred. The test implementation method is as follows.
Strain Bordetella pertussis (Phase I)
Medium: Cohen Wheeler Modified liquid medium Culture: The test strain was inoculated into the medium, and cultured in a tank with aeration and agitation at around 35 ° C. for 1 day.
The obtained cells were washed by centrifugation and suspended in a sodium chloride-added phosphate buffer (PBS) (0.01 M, pH 7) so that the turbidity at 650 nm was 20. This 100 mL was transferred to a 500 mL glass container. (The height of the liquid level is about 2 cm). One kind of each of various amino acids or other test substances having a concentration of 0.05 M was added thereto. Then, it was detoxified by leaving it to stand in 0.5% (v / v) formalin for 5 weeks according to the method for producing whole cell pertussis vaccine. Next, after removing formalin and added substances by centrifugation, the number of bacteria was adjusted to 20 × 10sup9 / mL in PBS. Thereafter, thimerosal (0.01 w / v%) was added, and 1.3 mL each was dispensed into vials to prepare a whole cell pertussis vaccine.
Each vial was stored in a cold place at 2-10 ° C. After 6 months and 2 years, the vials were opened, and 5 sample vials prepared under the same conditions were combined to make one sample. Using 5 specimens, quality control tests were conducted in accordance with Japanese biopharmaceutical standards. Table 1 shows the results of histamine sensitization tests (measured values after heating at 37 ° C.) that can detect reversion of toxicity.
ヒスタミン増感試験結果で表示する数字は以下の範囲を示し、単位はHSU/mLである。
0:0.1 以下
1:0.1-0.2
2:0.2-0.4
3:0.4 以上
以上の結果から、グリシン、リジンまたはスレオニンなどのアミノ酸の存在下でホルマリンにより無毒化した製剤が保存中に安定であることが明らかとなった(表1:2年後)。アミノ酸無添加で無毒化処理した製品(対照)では毒性復帰が認められた。アミン類、アミド類、あるいは他のアミノ酸(アラニン、γ―アミノ酪酸、アルギニン、 グルタミン酸、ロイシン、イソロイシン、またはセリン)の存在下で無毒化した場合も、毒性復帰がわずかに認められる程度であった。しかし、無処理対象では毒性復帰が顕著であった。The numbers displayed in the histamine sensitization test results indicate the following ranges, and the unit is HSU / mL.
0: 0.1 or less 1: 0.1-0.2
2: 0.2-0.4
3: 0.4 or more From the above results, it was revealed that preparations detoxified with formalin in the presence of amino acids such as glycine, lysine or threonine are stable during storage (Table 1: after 2 years). Toxicity recovery was observed in the product that was detoxified with no amino acid added (control). Even when detoxified in the presence of amines, amides, or other amino acids (alanine, γ-aminobutyric acid, arginine, glutamic acid, leucine, isoleucine, or serine), there was only a slight reversal of toxicity. . However, toxic reversion was significant in untreated subjects.
〔実施例2〕 百日せき菌の溶菌防止処理
百日せき菌に無毒化処理と溶菌防止処理を施した製品の長期保存中の溶菌を調べた。試験の方法は以下の通りである。
実施例1の場合と同様に培養して得られた菌体を全菌体百日せきワクチン製造の場合と同様に洗浄し、0.01M PBS(pH 7)に濁度20となるように懸濁した。この100mLを500mLのガラス容器に移した。(液面の高さ約2cm)。表2処理法1では記載の化学薬品を記載通りの最終濃度になるよう添加した。処理法2では二酸化炭素インキュベーター中に放置した。処理法3−6ではそのまま処理した。何れの場合も処理途中で適宜、軽く撹拌した。処理終了後、処理菌体は緩衝液で2回洗浄して同じ緩衝液に再度懸濁した。その後、表に記載の通り0.05M リジンの存在下、ホルマリンで無毒化した。各処理の菌懸濁液をワクチン製造法に従い、ホルマリンを除去してから1.3 mLずつバイアルに分注した。こうして1−7の処理を加えた全菌体百日せきワクチンを作成した。[Example 2] Bacteriolytic treatment of pertussis Bacterial lysis during the long-term storage of a product that had been subjected to detoxification treatment and lysis prevention treatment for B. pertussis was examined. The test method is as follows.
The cells obtained by culturing in the same manner as in Example 1 were washed in the same manner as in the case of the whole cell pertussis vaccine production, and suspended in 0.01M PBS (pH 7) to a turbidity of 20. did. This 100 mL was transferred to a 500 mL glass container. (The height of the liquid level is about 2 cm). In Table 2, treatment method 1, the chemicals described were added to the final concentrations as described. In the treatment method 2, it was left in a carbon dioxide incubator. In the processing method 3-6, it was processed as it was. In either case, light agitation was appropriately performed during the treatment. After the treatment, the treated cells were washed twice with a buffer solution and suspended again in the same buffer solution. Thereafter, it was detoxified with formalin in the presence of 0.05 M lysine as described in the table. The bacterial suspension of each treatment was dispensed in 1.3 mL vials according to the vaccine production method after removing formalin. Thus, a whole cell pertussis vaccine to which the treatment of 1-7 was added was prepared.
各バイアルを2-10℃の冷所に保存した。2年後にバイアルを開封し、同一処理条件で作成したバイアル5本分の試料を合わせて1検体とした。1−7の7種類おのおの3検体の試料を適当に稀釈した後、波長650 nm で濁度を測定した。その値と製造直後の対照2の濁度と比較した。結果を表2に示す。 Each vial was stored in a cold place at 2-10 ° C. Two years later, the vial was opened, and the samples for 5 vials prepared under the same processing conditions were combined into one sample. After appropriately diluting three samples of seven kinds 1-7, turbidity was measured at a wavelength of 650 nm. The value was compared with the turbidity of Control 2 immediately after production. The results are shown in Table 2.
波長650 nmにおける濁度は以下の通りである
+++:0.8−1.0
++:0.5−0.8、
+:0.2−0.5,
±:0.2以下、
―:無色透明を示す。
以上の結果から、アセトン処理、加温処理などを施した場合に、2年後の濁度の低下が少なくなることが明らかとなった。無処理(対照1)の場合は溶菌が著しかった。処理法3と4、ならびに処理法5と6の比較から、溶菌防止処理と無毒化処理の両方を施した場合に溶菌が少なくなることが明らかとなった。Turbidity at a wavelength of 650 nm is as follows: +++: 0.8-1.0
++: 0.5-0.8,
+: 0.2-0.5,
±: 0.2 or less,
-: Colorless and transparent.
From the above results, it has been clarified that the decrease in turbidity after 2 years is reduced when acetone treatment, heating treatment, or the like is performed. In the case of no treatment (control 1), lysis was remarkable. Comparison of treatment methods 3 and 4 and treatment methods 5 and 6 revealed that lysis was reduced when both lysis prevention treatment and detoxification treatment were performed.
〔実施例3〕 コレラワクチンの製造
全菌体コレラワクチンを製造し、品質を調べた。
試験菌株:ビブリオ・コレラ(Vibrio cholera)小川株(S型菌)、稲葉株(S型菌)
培地:普通寒天培地
培養:37℃、20時間培養
得られた菌体を全菌体コレラワクチン製造の場合と同様に洗浄し、0.015M PBS(pH 7)に濁度10になるように懸濁した。この100mLを500mLのガラス容器に移した。(液面の高さ約2cm)。そのまま処理法1-11で処理した。何れの場合も処理中のガラス容器を適宜、軽く撹拌した。処理終了後、遠心法により菌体を洗浄し、PBSに再懸濁した。全菌体コレラワクチンの製造方法の通り、0.5% (v/v)ホルマリンを添加し、無毒化した。3週間後、遠心法でホルマリンを除去した。各処理の菌懸濁液をコレラワクチン製造法に従い、フェノールを添加し、続いて10mLずつバイアルに分注し、1-11の処理済み全菌体コレラワクチンを作成した。
各バイアルを5℃前後の冷所に保存した。2年後にバイアルを開封し、同一条件で作成した試料を検体として用いた。2検体を各処理法について用い、適宜稀釈して、波長650 nm で濁度を測定した。その値と製造直後の対照の濁度と比較した結果を表3に示す。[Example 3] Manufacture of cholera vaccine Whole cell cholera vaccine was manufactured and the quality was examined.
Test strains: Vibrio cholera Ogawa strain (type S), Inaba strain (type S)
Culture medium: Ordinary agar medium Culture: Culture at 37 ° C for 20 hours Wash the resulting cells as in the case of whole cell cholera vaccine production and suspend in 0.015M PBS (pH 7) to a turbidity of 10 did. This 100 mL was transferred to a 500 mL glass container. (The height of the liquid level is about 2 cm). It processed by the processing method 1-11 as it was. In either case, the glass container being treated was appropriately lightly stirred. After completion of the treatment, the cells were washed by centrifugation and resuspended in PBS. 0.5% (v / v) formalin was added and detoxified according to the method for producing whole cell cholera vaccine. Three weeks later, formalin was removed by centrifugation. According to the cholera vaccine manufacturing method, phenol was added to the bacterial suspension of each treatment, and 10 mL was then dispensed into vials to prepare 1-11 treated whole cell cholera vaccine.
Each vial was stored in a cool place around 5 ° C. Two years later, the vial was opened, and a sample prepared under the same conditions was used as a specimen. Two specimens were used for each treatment method, diluted as appropriate, and turbidity was measured at a wavelength of 650 nm. Table 3 shows the result compared with the turbidity of the control immediately after production.
PCMBの説明:p-choloro-mercuribenzoate の略称。SH試薬(すなわち、タンパク質のSH基に強く反応する試薬)の一種である。
濁度欄の記号は以下の通りの意味である。波長650 nmにおける濁度が
+++:0.8−1.2;++:0.5−0.8;+:0.2−0.5,
±:0.2以下;―:無色透明を示す。
以上の結果から、アセトン処理、加温処理などを施した場合に、無処理(対照1)に比べて2年後の濁度の低下が少なくなることが明らかとなった(表3)。無処理(対照1)の場合は溶菌が著しかった。PCMB description: Abbreviation for p-choloro-mercuribenzoate. It is a kind of SH reagent (that is, a reagent that reacts strongly with the SH group of a protein).
The symbols in the turbidity column have the following meanings. Turbidity at a wavelength of 650 nm is +++: 0.8-1.2; ++: 0.5-0.8; +: 0.2-0.5,
±: 0.2 or less; —: Colorless and transparent.
From the above results, it was clarified that the decrease in turbidity after 2 years was less when untreated (control 1) when acetone treatment, warming treatment, etc. were performed (Table 3). In the case of no treatment (control 1), lysis was remarkable.
次に、表3の処理法4の方法でワクチンを作成し、人に投与した。両者を比較した結果を表4にまとめて示す。 Next, a vaccine was prepared by treatment method 4 in Table 3 and administered to a human. The results of comparing the two are summarized in Table 4.
以上の結果から、本発明のコレラワクチンの安全性が改良されていることが明らかとなった(表4)。 From the above results, it was revealed that the safety of the cholera vaccine of the present invention was improved (Table 4).
〔実施例4〕 新規百日せきワクチンawPの製造
全菌体百日せきワクチンwPと無細胞百日せきワクチンaPを混合して本発明の新規百日せきワクチンawPを製造し、その有効性と安全性を調べた結果を示す。
全菌体百日せきワクチンwPは実施例2(表2,試験番号3)で作成したリジン存在下のホルマリン無毒化処理により製造した改良全菌体百日せきワクチンを使用した。無細胞百日せきワクチンaPは北里研究所(日本)製のアルミ吸着製品を使用した。
wPとaPを種々の量比で混合し、新規百日せきワクチンawPを製造した。そのワクチンの有効性と安全性を調べるため、2004年の日本生物製剤基準に規定される方法で品質管理試験を実施した。結果は表5の通りであった。表中#印と * 印は無細胞百日せきワクチンの日本生物製剤基準(一部自家基準)に比較して、各測定値が適合(#)するか、不適合(*)であるかを示す。[Example 4] Production of new pertussis vaccine awP Whole cell pertussis vaccine wP and cell-free pertussis vaccine aP were mixed to produce novel pertussis vaccine awP of the present invention. The result of investigating safety is shown.
As the whole cell pertussis vaccine wP, an improved whole cell pertussis vaccine produced by formalin detoxification treatment in the presence of lysine prepared in Example 2 (Table 2, Test No. 3) was used. The cell-free pertussis vaccine aP used an aluminum adsorption product manufactured by Kitasato Institute (Japan).
A new pertussis vaccine awP was produced by mixing wP and aP in various amounts. In order to examine the effectiveness and safety of the vaccine, a quality control test was conducted by the method stipulated in the 2004 Japanese Biopharmaceutical Standards. The results are shown in Table 5. In the table, “#” and “*” indicate whether each measurement value is in conformity (#) or non-conformity (*), compared to the Japanese biopharmaceutical standard for some cell-free pertussis vaccine. .
ワクチンW1-W2: 全菌体百日せきワクチン、使用量は細胞数(単位はビリオン(billion), 10sup9)で示す。
ワクチン AW1-AW2::無細胞百日せきワクチンと全菌体百日せきワクチンを混合した百日せきワクチンawPを示す。
DTwP:ジフテリアー破傷風―全菌体百日せき 三種混合ワクチン(市販品)。
Vaccine W1-W2: Whole cell pertussis vaccine, the amount used is indicated by the number of cells (unit: billion, 10sup9).
Vaccine AW1-AW2 :: A pertussis vaccine awP in which a cell-free pertussis vaccine and a whole cell pertussis vaccine are mixed.
DTwP: diphtheria tetanus-whole cell pertussis triple vaccine (commercially available).
試験結果を示す略号の意味は以下の通りである。
毒性の指標
BWD(マウス体重減少毒性) 日本生物製剤
LP (マウス白血球増加毒性)日本生物製剤
HS (マウスヒスタミン感受性毒性)日本生物製剤
Tox (モルモット異常毒性否定試験)日本生物製剤、体重値を示す。
有効性の指標
Ab (抗体価)自家基準
P(マウス脳内攻撃法による百日せきワクチンの力価)日本生物製剤The meanings of the abbreviations indicating the test results are as follows.
Toxicity index BWD (mouse weight loss toxicity) Japanese biologics
LP (Mouse leukocyte increase toxicity) Japanese biologics
HS (mouse histamine sensitive toxicity) Japanese biologics
Tox (Negative toxicity test in guinea pigs) Japanese biologics, body weight.
Effectiveness index Ab (antibody titer) self-standard P (percentage of pertussis vaccine by mouse brain attack method) Japanese biologics
本発明の新規百日せきワクチンAW1は、wPに関してWHO生物製剤基準で許容される最大菌数量20 x 10 sup 9/mLの半量と、aPに関して認可されたワクチン中の毒素タンパク窒素量の1/5量を含むワクチンである。表5から明らかなとおり、AW1は毒性の指標であるLP(マウス白血球増加毒性)、HS(マウスヒスタミン感受性毒性)、Tox(モルモット異常毒性否定試験)において、無細胞百日せきワクチンの日本生物製剤基準に適合する測定値を示した。また力価(マウス脳内攻撃法)も適合することがわかる。ただし、エンドトキシンなどによる毒性を反映するとされるBWD(マウス体重減少毒性)においては適合しなかった。対照として使用した市販品のDTwPは無細胞百日せきワクチンの品質に関するいくつかの日本生物製剤基準(2004年版)に適合しないことが分かる。 The novel pertussis vaccine AW1 of the present invention is half the maximum bacterial quantity of 20 x 10 sup 9 / mL allowed by the WHO biopharmaceutical standard for wP, and 1 / of the amount of toxin protein nitrogen in the vaccine approved for aP. A vaccine containing 5 doses. As is clear from Table 5, AW1 is a Japanese biological product of a cell-free pertussis vaccine in LP (mouse leukocyte increased toxicity), HS (mouse histamine-sensitive toxicity), and Tox (guinea pig abnormal toxicity negative test), which are toxicity indicators. The measured values meeting the standard were shown. It can also be seen that the titer (mouse brain attack method) is also suitable. However, BWD (mouse weight loss toxicity), which is supposed to reflect toxicity due to endotoxin and the like, was not compatible. It can be seen that the commercially available DTwP used as a control does not meet some Japanese biopharmaceutical standards (2004 edition) regarding the quality of the cell-free pertussis vaccine.
〔実施例5〕 噴霧感染法によるawPの有効性の測定
実施例4と同様の方法でawPを作成した。噴霧感染法でawPの有効性を調べた。
本awPの有効性を調べるために噴霧感染法を採用した。実施例4で力価を調べるのに使用した脳内攻撃法は、日本生物製剤基準において全菌体と無細胞療法の百日せきワクチンの力価測定の標準法に採用されているが、欧米諸国では使用されていない。欧米諸国やWHO生物製剤基準に於いて標準化された力価測定法はないが、しかし、噴霧感染法は標準測定法の候補の1つである。そこで本方法を採用した。[Example 5] Measurement of effectiveness of awP by spray infection method AwP was prepared in the same manner as in Example 4. The effectiveness of awP was examined by spray infection method.
The spray infection method was adopted to examine the effectiveness of this awP. The intracerebral attack method used to examine the titer in Example 4 was adopted as the standard method for measuring the titer of whole cell bodies and acellular therapy pertussis vaccine in Japanese biopharmaceutical standards. Not used in other countries. There is no standard titration method in Western countries or WHO biopharmaceutical standards, but the spray infection method is one of the standard assay methods. Therefore, this method was adopted.
噴霧感染による力価測定法の概略は以下の通りである。方法の詳細は文献に記載されている(1)Watanabe M, Komatsu E, Abe K, Iyama S, Sato T, Nagai M. Efficacy of pertussis components in an acellular vaccine, as assessed in a murine model of respiratory infection and a murine model of intracerebral infection. Vaccine 2002; 20:1429-1434.
(2)Watanabe M, Nagai M. Reciprocal protective immunity against Bordetella pertussis and Bordetella parapertussis in a murine model of respiratory infection. Infect Immun 2001; 69:6981-6986.)The outline of the titer measurement method by spray infection is as follows. Details of the method are described in the literature (1) Watanabe M, Komatsu E, Abe K, Iyama S, Sato T, Nagai M. Efficacy of pertussis components in an acellular vaccine, as containing in a murine model of respiratory infection and a murine model of intracerebral infection. Vaccine 2002; 20: 1429-1434.
(2) Watanabe M, Nagai M. Reciprocal protective immunity against Bordetella pertussis and Bordetella parapertussis in a murine model of respiratory infection. Infect Immun 2001; 69: 6981-6986.)
マウス(3.5週令)にリン酸緩衝生理食塩水(PBS)で希釈した試験ワクチンをマウス1匹あたり0.5 mL腹腔内接種した。その3週間後、以下の方法で噴霧感染させた。マウスを網ケージに入れ、安全キャビネット内に設置したアクリル製噴霧噴霧箱中に吊した。一方、37℃で30時間培養した百日せき菌(18-232株)を氷冷したPBSに懸濁し、10×10 sup 9 cells/mLに調製した。調製した菌懸濁液をネブライザーに入れ、噴霧感染箱に接続したのち、ろ過滅菌空気を通じて(3.5〜4.0 L/min)エアゾルを発生させた。このエアゾルを噴霧感染箱に導入しマウスに吸入させた。菌液のエアゾルをマウスが均一に吸い込むように、ケージの位置を5分に一回、90度ずつ回転させた。噴霧終了後、ろ過滅菌空気を30分間導入し噴霧感染箱内のエアゾルを除き、マウスを取りだした。マウスを2週間無菌的に飼育した後、頚椎脱臼したマウスから肺を無菌的に摘出し、10 mLの氷冷したPBS中でホモジナイズした。この液を10sup(-1)希釈液として、以下10倍段階希釈を行った。希釈液をボルデ・ジャング培地に塗沫後、37℃で4日間培養し、生じた集落数から肺内生菌数を算定した。肺内生菌数は集落形成単位(colony-forming unit, CFU)で表記した。
結果を表6に示す。Mice (3.5 weeks old) were inoculated intraperitoneally with 0.5 mL of test vaccine diluted in phosphate buffered saline (PBS) per mouse. Three weeks later, spray infection was carried out by the following method. The mouse was placed in a net cage and suspended in an acrylic spray box placed in a safety cabinet. On the other hand, Bordetella pertussis (18-232 strain) cultured at 37 ° C. for 30 hours was suspended in ice-cooled PBS to prepare 10 × 10 sup 9 cells / mL. The prepared bacterial suspension was placed in a nebulizer and connected to a spray infection box, and then aerosol was generated through filtered sterilized air (3.5 to 4.0 L / min). This aerosol was introduced into a spray infection box and inhaled by mice. The cage was rotated 90 degrees once every 5 minutes so that the mouse evenly inhaled the fungus aerosol. After spraying, filtered sterilized air was introduced for 30 minutes to remove the aerosol in the spray infection box, and the mouse was removed. After aseptically raising the mice for 2 weeks, the lungs were aseptically removed from the cervical dislocation mice and homogenized in 10 mL of ice-cold PBS. This solution was used as a 10sup (-1) dilution, and 10-fold serial dilution was performed. The diluted solution was smeared on a Bordeaux-Jung medium, cultured at 37 ° C. for 4 days, and the number of viable bacteria in the lung was calculated from the number of colonies produced. The number of living bacteria in the lung was expressed in colony-forming unit (CFU).
The results are shown in Table 6.
試験番号3(W20)は認可されている全菌体百日せきワクチンと同等量を含む。
試験番号8(A15)は認可されている無細胞百日せきワクチンと同等量を含む。この2つを接種した場合、何れも非接種対照(試験番号9)より生菌数が約2log低下した。これを有効レベルとした場合、試験番号5(W10+A3)は有効であると判断できる。Test number 3 (W20) contains the same amount as the approved whole cell pertussis vaccine.
Test number 8 (A15) contains an equivalent amount of the approved cell-free pertussis vaccine. When these two were inoculated, the number of viable bacteria decreased by about 2 logs from the non-inoculated control (test number 9). When this is an effective level, it can be determined that test number 5 (W10 + A3) is effective.
〔実施例6〕 DTwP三種混合ワクチン
北里研究所(日本)製DTaPの製法に準じ、aPの代わりに実施例2(表2,処理法3)の方法で製造したwPを使用した。本発明の百日せきワクチンwPとジフテリアトキソイド(D)、破傷風トキソイド(T)を含む三種混合ワクチンDTwPを作成した。それぞれの成分抗原の力価を日本生物製剤基準の方法で測定した。結果を表7に示す。[Example 6] DTwP triple-mixed vaccine According to the production method of DTaP manufactured by Kitasato Institute (Japan), wP produced by the method of Example 2 (Table 2, treatment method 3) was used instead of aP. A ternary vaccine DTwP containing the pertussis vaccine wP of the present invention, diphtheria toxoid (D), and tetanus toxoid (T) was prepared. The titer of each component antigen was measured by the method of Japanese biopharmaceutical standards. The results are shown in Table 7.
結果は試験した力価試験において何れも日本生物製剤基準に適合した。 The results all met Japanese biopharmaceutical standards in the potency tests tested.
〔実施例7〕 DTawPと 日本脳炎ワクチン(ccJE)の混合ワクチン
実施例4(表5,試験記号AW1)の方法でawPを製造した。DTwP製造方法に準じ、wPの代わりに上記のawPを用い、awPとジフテリアトキソイド(D)、破傷風トキソイド(T)を含む三種混合ワクチンDTawPを作成した。さらにこれと細胞培養法で製造された日本脳炎ワクチン(ccJE)を混合した混合ワクチン(DtawP-ccJE)を作成した。日本脳炎ワクチン(ccJE)は北里研究所(日本)製の試作品を使用した。それぞれの抗原成分の力価を日本生物製剤基準の方法で測定した。結果を表8に示す。[Example 7] Combination vaccine of DTawP and Japanese encephalitis vaccine (ccJE) AwP was produced by the method of Example 4 (Table 5, test symbol AW1). According to the DTwP production method, the above-mentioned awP was used in place of wP, and a triple vaccine DTawP containing awP, diphtheria toxoid (D), and tetanus toxoid (T) was prepared. Furthermore, a mixed vaccine (DtawP-ccJE) was prepared by mixing this with the Japanese encephalitis vaccine (ccJE) produced by the cell culture method. The Japanese encephalitis vaccine (ccJE) used a prototype manufactured by Kitasato Institute (Japan). The titer of each antigen component was measured by the method of Japanese biopharmaceutical standards. The results are shown in Table 8.
以上の結果より、試験した力価試験において何れもDTaPの日本生物製剤基準に適合することが明らかとなった。混合後の日本脳炎ワクチン(ccJE)の力価は混合前に比べて実質的に変わらないか、もしくは幾分高かった。 From the above results, it was clarified that all of the tested titer tests conform to the DTaP Japanese biopharmaceutical standards. The titer of Japanese encephalitis vaccine (ccJE) after mixing was substantially unchanged or somewhat higher than before mixing.
〔実施例9〕 全菌体細菌ワクチンの製造
供試菌:百日せき菌、コレラ菌はワクチン製造株を使用した。他の菌株は実験室保存株を使用した。
培養法:百日せき菌、パラ百日せき菌は実施例1の通り培養して得た。コレラ菌は実施例3の通り培養してえた。他の細菌は普通栄養寒天培地に塗抹して33℃、16-24時間培養した菌体を用いた。それぞれ得られた菌体を遠心法で洗浄し、塩化ナトリウム添加リン酸緩衝液(PBS)(0.001M, pH 7)に650 nmの濁度が10(およそ1x10 sup 9 細胞/mL)となるように懸濁した。この100mLを500mLのガラス容器に移した。これを以下の処理法で処理して、全菌体細菌ワクチン液とした。
処理法:加温処理は55℃、30分加温した。アセトン処理は等量のアセトンを加え、撹拌しながら室温で12時間処理し、これを2回繰り返した。ホルマリン処理はホルマリンを最終濃度0.5%(v/v)に添加し、室温で3週間放置した。何れの場合も、処理後、洗浄法と遠心法で処理剤を除去し、処理菌体を塩化ナトリウム添加リン酸緩衝液(PBS)(0.001M, pH 7)に650 nmに再度、懸濁した。各々バイアルに1.3 mLずつ分注し、冷所に保存した。Example 9 Production of Whole Bacterial Bacterial Vaccine Test Bacteria: Pertussis and Vibrio cholerae used vaccine production strains. For other strains, laboratory stocks were used.
Culturing method: Pertussis and Parapertussis were obtained by culturing as in Example 1. Vibrio cholerae was cultured as in Example 3. The other bacteria were smeared on a normal nutrient agar medium and cultured at 33 ° C. for 16-24 hours. Each bacterial cell obtained was washed by centrifugation, and the turbidity at 650 nm was 10 (approximately 1x10 sup 9 cells / mL) in phosphate buffered saline (PBS) (0.001M, pH 7). It was suspended in. This 100 mL was transferred to a 500 mL glass container. This was treated by the following treatment method to obtain a whole bacterial cell vaccine solution.
Treatment method: The heating treatment was carried out at 55 ° C. for 30 minutes. Acetone treatment was performed by adding an equal volume of acetone and treating with stirring at room temperature for 12 hours, and this was repeated twice. In formalin treatment, formalin was added to a final concentration of 0.5% (v / v) and left at room temperature for 3 weeks. In either case, after treatment, the treatment agent was removed by washing and centrifugation, and the treated cells were suspended again at 650 nm in sodium chloride-added phosphate buffer (PBS) (0.001M, pH 7). . 1.3 mL was dispensed into each vial and stored in a cold place.
安定性の測定法:各バイアルを2-10℃の冷所に保存した。1年後にバイアルを開封し、同一処理条件で作成した試料のバイアル5本分の試料を合わせて1検体とした。検体の試料を各々稀釈した後、波長650 nm で濁度を測定した。その値と製造直後の対照の濁度と比較した。結果を表9に示す。
マウスの免疫:各種の処理を施した菌体の懸濁液(保存開始直後)1 mLをマウスに腹腔投与し、3週間隔で合計3回接種した。最後の接種から1ヶ月後にマウスから採血し、抗血清を得た。
抗体検出法:抗血清をとり、PBSで稀釈系列を作成し、0.05 mLを96穴マイクロプレートに分注した。ここに抗原として使用した無毒化細菌(細胞数 約10 sup 8/mL)0.05 mLを添加し、沈降反応を観察し、抗血清の稀釈率から抗体価を算出した。抗体価を表9に示すStability measurement method: Each vial was stored in a cold place at 2-10 ° C. One year later, the vial was opened, and a sample of five vials prepared under the same processing conditions was combined into one specimen. After each specimen sample was diluted, turbidity was measured at a wavelength of 650 nm. The value was compared with the turbidity of the control immediately after production. The results are shown in Table 9.
Immunization of mice: 1 mL of a suspension of cells subjected to various treatments (immediately after the start of storage) was intraperitoneally administered to mice and inoculated three times at intervals of 3 weeks. One month after the last inoculation, blood was collected from the mice to obtain antiserum.
Antibody detection method: Antiserum was taken, a dilution series was prepared with PBS, and 0.05 mL was dispensed into a 96-well microplate. To this, 0.05 mL of detoxified bacteria (number of cells: about 10 sup 8 / mL) used as an antigen was added, the sedimentation reaction was observed, and the antibody titer was calculated from the dilution ratio of the antiserum. Antibody titers are shown in Table 9.
処理記号の意味:H 加温処理;A. アセトン処理; F ホルマリン不活化
溶菌みとめず:波長650 nmにおける濁度が0.8−1.2であり、対照の濁度が1.0であることを示す。
表9の結果から、試験した何れの菌株に置いても、保存安定性の良好な全菌体細菌ワクチンが製造されることが明らかとなった。Meaning of treatment symbol: H Warming treatment; A. Acetone treatment; F Formalin inactivation Lysis mitochondrome: Turbidity at wavelength 650 nm is 0.8-1.2, and control turbidity is 1.0 It shows that.
From the results in Table 9, it was revealed that a whole cell bacterial vaccine with good storage stability was produced in any of the tested strains.
病原細菌を無毒化処理して製造した細菌ワクチンであっても、保存過程においてしばしば毒性復帰を起こすことがこれまでにわかっており、長期間の保存において毒性復帰が起こらないことは、ワクチンの安全性を維持する上で非常に重要なことであった。本発明の全菌体細菌ワクチンは、従来製造されてきたワクチンよりも、長期保存しても安全性が確保されやすい性質を持っており、医療・製薬分野で非常に有益なものである。長期保存が可能なため、世界中で本発明のワクチンの使用が可能となる。長期にわたって猛威を奮う病原菌の場合、時間の経過につれて病原菌が変異を起こす場合があり、それらの病原菌の感染防止をワクチンで対処するためには、様々な種類のワクチンを長期保存しておく必要がある。本発明のワクチンの製造方法は、そのような長期保存の必要性がある場合に非常に有効であるといえる。
また、本発明の混合細菌ワクチンは従来製造されてきた全菌体細菌ワクチンと同等もしくはそれ以上の有効性をもち、安価に製造でき、大量生産に好適であり、かつ無細胞細菌ワクチンに匹敵する安全性を有するワクチンであると期待される。Even bacterial vaccines manufactured by detoxifying pathogenic bacteria have been shown to frequently revert to toxicity during the storage process, and the fact that reversion to toxicity does not occur during long-term storage is It was very important in maintaining sex. The whole bacterial cell vaccine of the present invention has a property that safety is easily ensured even when stored for a long period of time, compared to conventionally produced vaccines, and is very useful in the medical and pharmaceutical fields. Since it can be stored for a long time, the vaccine of the present invention can be used all over the world. In the case of pathogens that are violent for a long time, the pathogens may mutate over time, and it is necessary to store various types of vaccines for a long time in order to cope with the prevention of infection with these pathogens is there. The vaccine production method of the present invention can be said to be very effective when there is a need for such long-term storage.
In addition, the mixed bacterial vaccine of the present invention has the same or higher efficacy as the whole bacterial cell vaccine produced conventionally, can be produced at low cost, is suitable for mass production, and is comparable to the cell-free bacterial vaccine. It is expected to be a safe vaccine.
Claims (19)
(a)アミノ酸、アミン類、および/またはアミド類の存在下における百日せき菌体の無毒化処理
(b)百日せき菌体の溶菌防止処理。 The following (a) and (b) obtained by the process according to long-term even in storage having the features toxicity return does not occur whole cell Pertussis Vaccine:
(A) amino, amine, and / or detoxification treatment of pertussis bacteria in the presence of amides (b) one hundred days lysis prevention processing cough bacteria.
(a)アミノ酸、アミン類、および/またはアミド類の存在下における百日せき菌体の無毒化処理
(b)百日せき菌体の溶菌防止処理。 The following (a) and (b) obtained by the process described in, for whole-cell pertussis vaccines also have a characteristic toxicity return does not occur during long-term storage manufacturing method:
(A) amino, amine, and / or detoxification treatment of pertussis bacteria in the presence of amides (b) one hundred days lysis prevention processing cough bacteria.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008507503A JP5207380B2 (en) | 2006-03-27 | 2007-03-27 | Whole cell bacterial vaccine with characteristics that do not return to toxicity even after long-term storage and its use |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006086054 | 2006-03-27 | ||
JP2006086054 | 2006-03-27 | ||
PCT/JP2007/056314 WO2007111326A1 (en) | 2006-03-27 | 2007-03-27 | Whole cell vaccine suffering from no toxicity return even in prolonged storage and use thereof |
JP2008507503A JP5207380B2 (en) | 2006-03-27 | 2007-03-27 | Whole cell bacterial vaccine with characteristics that do not return to toxicity even after long-term storage and its use |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2007111326A1 JPWO2007111326A1 (en) | 2009-08-13 |
JP5207380B2 true JP5207380B2 (en) | 2013-06-12 |
Family
ID=38541243
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008507503A Active JP5207380B2 (en) | 2006-03-27 | 2007-03-27 | Whole cell bacterial vaccine with characteristics that do not return to toxicity even after long-term storage and its use |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5207380B2 (en) |
WO (1) | WO2007111326A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008146830A1 (en) | 2007-05-28 | 2008-12-04 | The Kitasato Institute | Bordetella parapertussis-containing whole-cell vaccine composition |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59184132A (en) * | 1983-04-02 | 1984-10-19 | Chemo Sero Therapeut Res Inst | Production of pertussis vaccine |
JPS63166835A (en) * | 1986-12-29 | 1988-07-11 | Chemo Sero Therapeut Res Inst | Conversion of toxin to toxoid |
JPH02149529A (en) * | 1988-11-29 | 1990-06-08 | Chemo Sero Therapeut Res Inst | Toxoid formation of whooping cough toxin |
JPH04230328A (en) * | 1990-07-11 | 1992-08-19 | American Cyanamid Co | Vaccine for bacterium bordetella pertussis containing combination of individually purified antigen of bordetella pertussis |
WO2005123124A1 (en) * | 2004-06-22 | 2005-12-29 | The Kitasato Institute | Q fever vaccine preparation and method of producing the vaccine |
-
2007
- 2007-03-27 JP JP2008507503A patent/JP5207380B2/en active Active
- 2007-03-27 WO PCT/JP2007/056314 patent/WO2007111326A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59184132A (en) * | 1983-04-02 | 1984-10-19 | Chemo Sero Therapeut Res Inst | Production of pertussis vaccine |
JPS63166835A (en) * | 1986-12-29 | 1988-07-11 | Chemo Sero Therapeut Res Inst | Conversion of toxin to toxoid |
JPH02149529A (en) * | 1988-11-29 | 1990-06-08 | Chemo Sero Therapeut Res Inst | Toxoid formation of whooping cough toxin |
JPH04230328A (en) * | 1990-07-11 | 1992-08-19 | American Cyanamid Co | Vaccine for bacterium bordetella pertussis containing combination of individually purified antigen of bordetella pertussis |
WO2005123124A1 (en) * | 2004-06-22 | 2005-12-29 | The Kitasato Institute | Q fever vaccine preparation and method of producing the vaccine |
Non-Patent Citations (3)
Title |
---|
JPN6012024366; Pace,J.L. et al.: 'Inactivated whole-cell bacterial vaccines: current status and novel strategies' Vaccine Vol.16,No.16, 199810, P.1563-1574 * |
JPN6012061570; 堺春美: '特集 各論 新しい予防接種 『不活化ワクチン I.DPTワクチン,DTトキソイド』' 小児科臨床 Vol.49,No.4, 199604, P.727-734 * |
JPN6012061572; Berstad,A.K.H. et al.: 'A nasal whole-cell pertussis vaccine can induce strong systemic and mucosal antibody responses which' Vaccine Vol.15,No.12/13, 1997, P.1473-1478 * |
Also Published As
Publication number | Publication date |
---|---|
WO2007111326A1 (en) | 2007-10-04 |
JPWO2007111326A1 (en) | 2009-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
PL187935B1 (en) | Multivalent dtp-polio vaccines | |
UA119244C2 (en) | A bacterial vaccine and methods for manufacture thereof | |
JP5580600B2 (en) | Method for producing Japanese encephalitis vaccine that can be stably stored for a long period of time and use of the vaccine | |
KR101617464B1 (en) | Ipv-dpt vaccine | |
WO2024149109A1 (en) | Pertussis toxin detoxification method and diphtheria, tetanus and acellular pertussis combined vaccine | |
JP5207380B2 (en) | Whole cell bacterial vaccine with characteristics that do not return to toxicity even after long-term storage and its use | |
EP2161035B1 (en) | Bordetella parapertussis-containing whole-cell vaccine composition | |
JPH05503936A (en) | Novel vaccines and methods | |
CN104250623B (en) | One plant of mycoplasma hyorhinis bacterial strain, vaccine combination and its preparation method and application | |
CN110917344B (en) | Liquid vaccine composition and application thereof | |
AU2005253864B2 (en) | Q fever vaccine preparation and method of producing the vaccine | |
Bording et al. | Characterization of the immunogenicity of formaldehyde detoxified Pasteurella multocida toxin | |
CN111053898A (en) | Vaccine composition and application thereof | |
CN108096577A (en) | A kind of new vaccine adjuvant of alternative aluminium hydroxide | |
Tesfaw et al. | Efficacy of Mannheimia haemolytica A2, A7, and A2 and A7 combined expressing iron regulated outer membrane protein as a vaccine against intratracheal challenge exposure in sheep | |
Hussein et al. | Potency of oil adjuvant inactivated Peste des Petits Ruminants (PPR) vaccine | |
Haji | Characterization of Antigenic Properties of a Selected Gram-Positive and Gram-Negative Bacteria Following Inactivation by Low-Energy Electron Beam Irradiation (LEEI) | |
Venkatesh et al. | pH Optimization and Production of High Potent Cellular Vaccine by Bordetella pertussis | |
JPH0272200A (en) | Pertussis toxoid vaccine | |
WO2023215869A2 (en) | Inactivated staphylococcus compositions and methods of making and using the same | |
RU2188036C1 (en) | Method for obtaining erythrocytic antigenic glanderous diagnostic kit | |
BRPI1103869A2 (en) | means for laboratory diagnosis of leptospirosis and animal leptospirosis vaccine | |
Kowalczuk et al. | Poly-ƴ-Glutamic Acid: Biodegradable Polymer for Potential Protection of Beneficial Viruses |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100226 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20110905 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110905 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111104 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120514 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120626 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121126 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130213 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130214 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160301 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5207380 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D02 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |