JPS648892B2 - - Google Patents

Info

Publication number
JPS648892B2
JPS648892B2 JP13770381A JP13770381A JPS648892B2 JP S648892 B2 JPS648892 B2 JP S648892B2 JP 13770381 A JP13770381 A JP 13770381A JP 13770381 A JP13770381 A JP 13770381A JP S648892 B2 JPS648892 B2 JP S648892B2
Authority
JP
Japan
Prior art keywords
base metal
oxygen
oxide
control layer
reducing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13770381A
Other languages
Japanese (ja)
Other versions
JPS5840731A (en
Inventor
Masaru Nikaido
Yoshiaki Oochi
Sakae Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56137703A priority Critical patent/JPS5840731A/en
Publication of JPS5840731A publication Critical patent/JPS5840731A/en
Publication of JPS648892B2 publication Critical patent/JPS648892B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/20Cathodes heated indirectly by an electric current; Cathodes heated by electron or ion bombardment
    • H01J1/26Supports for the emissive material

Description

【発明の詳細な説明】 本発明は、酸化物陰極構体、特にカラーテレビ
ジヨン受像管等に使用して好適な長寿命かつ高性
能の酸化物陰極構体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an oxide cathode assembly, particularly to a long-life, high-performance oxide cathode assembly suitable for use in color television picture tubes and the like.

通常、酸化物陰極構体を構成する基体金属はニ
ツケル(Ni)を主体として、還元剤として微量
のマグネシウム(Mg)、ケイ素(Si)、アルミニ
ウム(Al)、ジルコニウム(Zr)、タングステン
(W)等を含有せしめたNi−Mg、Ni−Si、Ni−
Mg−Si、Ni−Al、Ni−W、Ni−Al−W、Ni−
W−Mg、Ni−Zr等の合金が使用される。この合
金により構成された基体金属は、陰極スリーブの
先端に固定され、かつこの基体金属上には、バリ
ウム(Ba)、ストロンチウム(Sr)、カルシウム
(Ca)等のアルカリ土類金属炭酸塩、(Ba、Sr、
Ca)CO3が塗布され、この炭酸塩はカラーテレ
ビジヨン受像管等に組み込まれた後、真空中で所
定の温度に加熱することにより、アルカリ土類金
属酸化物(Ba、Sr、Ca)Oに分解される。この
アルカリ土類金属酸化物のうちBaOが電子放射
に最も寄与する。
Usually, the base metal that makes up the oxide cathode structure is mainly nickel (Ni), with trace amounts of reducing agents such as magnesium (Mg), silicon (Si), aluminum (Al), zirconium (Zr), and tungsten (W). Ni−Mg, Ni−Si, Ni−
Mg-Si, Ni-Al, Ni-W, Ni-Al-W, Ni-
Alloys such as W-Mg and Ni-Zr are used. A base metal made of this alloy is fixed to the tip of the cathode sleeve, and on this base metal are carbonates of alkaline earth metals such as barium (Ba), strontium (Sr), calcium (Ca), etc. Ba, Sr.
After this carbonate is incorporated into a color television picture tube, etc., it is heated to a predetermined temperature in a vacuum to form alkaline earth metal oxides (Ba, Sr, Ca)O. It is decomposed into Among these alkaline earth metal oxides, BaO contributes most to electron emission.

このBaOなる酸化物は酸化物陰極の動作中に
基体金属中を拡散してくる上述したMg、Si、
Al、Zr、W等の還元剤により、基体金属と酸化
物の境界で還元され、例えばMgを還元剤として
用いた場合、次式の反応により電子放射の原因と
なる遊離Baが形成されるといわれてきた。
This BaO oxide diffuses into the base metal during the operation of the oxide cathode, including the above-mentioned Mg, Si,
It is reduced at the boundary between the base metal and the oxide by a reducing agent such as Al, Zr, or W. For example, when Mg is used as a reducing agent, free Ba is formed which causes electron emission by the reaction of the following formula. It has been said.

BaO(s)+Mg(in Ni)→Ba(in BaO)+MgO
(s)……(1) 従つて、かような酸化物陰極においては、上述
した様に還元剤と電子放射物質である酸化物との
反応が基体金属と酸化物との界面で進行する為、
好むと好まざるに拘らず、両者の中間に中間層と
呼ばれる化合物層を例えばMgOを形成する。
BaO (s) + Mg (in Ni) → Ba (in BaO) + MgO
(s)...(1) Therefore, in such an oxide cathode, as mentioned above, the reaction between the reducing agent and the oxide, which is an electron emitting substance, proceeds at the interface between the base metal and the oxide. ,
Whether you like it or not, a compound layer called an intermediate layer is formed between the two, such as MgO.

さて、最近特にテレビジヨン受像管に対して、
超速動化、高精細度化、高輝度化等の高性能化の
要求がなされ、酸化物陰極の高性能化が望まれて
いる。この様な要求を満たす1つの方向として、
基体金属の薄肉化、還元剤の添加量の増量が検討
されてきたが、上述してきた様な中間層を有する
酸化物陰極ではその対応に限界があつた。
Now, recently, especially regarding television picture tubes,
There are demands for higher performance such as ultra-fast operation, higher definition, and higher brightness, and higher performance of oxide cathodes is desired. One way to meet these demands is to
Although attempts have been made to reduce the thickness of the base metal and increase the amount of reducing agent added, there is a limit to how much the oxide cathode having an intermediate layer as described above can do.

しかしながら、本発明者らは、酸化物陰極に関
する幾つかの詳細な研究の結果、(i)電子放射物質
からの酸素の解離反応と、この酸素と還元剤との
反応の場所(サイト)を分離させることが可能で
あること、さらに(ii)両反応サイトの間に酸素およ
び還元剤の拡散に対する制御層を形成し得ること
を見出した。
However, as a result of several detailed studies on oxide cathodes, the present inventors have found that (i) the dissociation reaction of oxygen from the electron-emitting substance and the site of the reaction between this oxygen and the reducing agent have been separated; We have found that (ii) it is possible to form a control layer for the diffusion of oxygen and reducing agent between both reaction sites.

即ち、本発明者らは、MgとSiをそれぞれ0.03
重量パーセント含有する板厚150μmのNi基合金
の薄板を基体金属として用いて、電子放射物質を
塗布せず、一酸化炭素(CO)+二酸化炭素
(CO2)混合気体(CO:CO2=1:20、分圧比)
気流中で1000℃に1時間保持した試料を作製し、
その試料断面の金属組織およびEPMA(電子線励
起X線マイクロアナライザー)による観察を行な
つた。代表的な金属組織断面写真の一例を第1図
Aに又その模式図を第1図Bに示す。尚第1図B
において結晶粒界の表現は省略してある。
That is, the inventors set Mg and Si at 0.03 each.
Using a thin plate of Ni-based alloy with a thickness of 150 μm containing weight percent as the base metal, and without applying an electron emitting substance, a mixed gas of carbon monoxide (CO) + carbon dioxide (CO 2 ) (CO:CO 2 = 1) was used as the base metal. :20, partial pressure ratio)
A sample was prepared and held at 1000℃ for 1 hour in an air stream,
The metal structure of the cross section of the sample was observed using an EPMA (electron beam excited X-ray microanalyzer). An example of a typical cross-sectional photograph of a metallographic structure is shown in FIG. 1A, and a schematic diagram thereof is shown in FIG. 1B. Furthermore, Figure 1B
In the figure, the expression of grain boundaries is omitted.

観察結果は、〔〕基体金属1中のMgとSiが内
部酸化され、基体金属表面から20μm程度の深さ
までのMgとSiは全てMgOおよびSiO2の粒子2と
してNi中に分散分布している。(基体金属断面に
おいて酸化物粒子2が分散分布する部分を以下、
内部酸化層3と呼ぶ。)。〔〕内部酸化層3内に
存在する結晶粒は、粒界に沿つてMgOやSiO2
酸化物が生成しており、基体金属1の加熱を続け
ても結晶生長が出来ず、粒界は固定されたままで
ある。〔〕この様にして、内部酸化層3内に固
定された粒界が多い場合には、結果として基体金
属断面は、表面近傍に表面とほぼ平行に酸化物の
存在する結晶粒界が連なる断面構造となる。以上
の様にまとめられる。また、拡散係数に関する諸
データを検討する事により、〔〕Ni中では、還
元剤であるMgやSiよりも、酸素の拡散が速いこ
と、および〔〕MgOやSiO2等からなる酸化物
中のMg、Si、Oの拡散速度は、Ni中のそれに比
して著しく遅いことが伴つた。更に、〔〕の事
項は、該観察試料の如き組成の基体金属と、該基
体金属上に電子放射物質としてアルカリ土類金属
酸化物等を有する酸化物陰極の動作時に生じる還
元剤の酸化現象がMgやSiが基体金属と電子放射
物質の界面に拡散して起こる表面酸化よりはむし
ろ電子放射物質から熱解離した酸素が基体金属中
に固溶、拡散して内部酸化となり得ることを理由
付けるものであり、上述の観察結果〔〕はこの
可能性を裏付けている。また〔〕の事項は基体
金属の表面近傍に表面とほぼ平行な酸化物層が連
なつていれば、この層がMg、SiおよびOの拡散
制御層となることを示している。
The observation results show that [] Mg and Si in the base metal 1 are internally oxidized, and all Mg and Si from the base metal surface to a depth of about 20 μm are dispersed in Ni as MgO and SiO 2 particles 2. . (The part where the oxide particles 2 are dispersed in the cross section of the base metal is shown below.
It is called internal oxide layer 3. ). []In the crystal grains existing in the internal oxide layer 3, oxides of MgO and SiO 2 are generated along the grain boundaries, and even if the base metal 1 is continued to be heated, crystal growth is not possible, and the grain boundaries are remains fixed. [] If there are many grain boundaries fixed in the internal oxide layer 3 in this way, the cross section of the base metal will be a cross section in which grain boundaries with oxides exist near the surface and almost parallel to the surface. It becomes a structure. It can be summarized as above. In addition, by examining various data regarding diffusion coefficients, we found that oxygen diffuses faster in Ni than in the reducing agents Mg and Si, and that oxygen diffuses faster in oxides such as MgO and SiO2 . The diffusion rates of Mg, Si, and O were significantly slower than those in Ni. Furthermore, the matter [ ] is based on the fact that the oxidation phenomenon of the reducing agent that occurs during the operation of a base metal having a composition similar to that of the observation sample and an oxide cathode having an alkaline earth metal oxide or the like as an electron emitting substance on the base metal. The reason is that rather than surface oxidation that occurs when Mg or Si diffuses to the interface between the base metal and the electron emitting material, internal oxidation can occur when oxygen thermally dissociated from the electron emitting material becomes solid solution and diffuses into the base metal. , and the above-mentioned observation results [ ] support this possibility. Furthermore, the item [ ] indicates that if an oxide layer substantially parallel to the surface of the base metal is continuous in the vicinity of the surface, this layer becomes a diffusion control layer for Mg, Si, and O.

以上の実験および検討結果より、第2図に示し
たような構造の酸化物陰極を構成することが可能
である。図において、11は基体金属12は電子
放射物質、13は還元剤の酸化物の存在する結晶
粒界が連なつて出来た拡散制御層である。
From the results of the above experiments and studies, it is possible to construct an oxide cathode having the structure shown in FIG. In the figure, reference numeral 11 indicates a base metal 12 which is an electron emitting material, and reference numeral 13 indicates a diffusion control layer formed by a series of grain boundaries in which an oxide of a reducing agent exists.

本酸化物陰極においては電子放射物質12
BaOからの遊離Ba生成の為の酸素解離反応は基
体金属11よりも外側で起こり、この解離した酸
素と基体金属内部の還元剤との反応は拡散制御層
13で起こるように、両反応のサイトが分離して
いる。従つてBaOの解離で生じた酸素の基体金
属中への固溶が基体金属中での酸素と還元剤の反
応により規制される。
In the present oxide cathode, the electron emitting substance 12
The oxygen dissociation reaction for generating free Ba from BaO occurs outside the base metal 11, and the reaction between this dissociated oxygen and the reducing agent inside the base metal occurs at the diffusion control layer 13, so that both reactions occur at the sites of both reactions. are separated. Therefore, the solid solution of oxygen generated by the dissociation of BaO into the base metal is regulated by the reaction between oxygen and the reducing agent in the base metal.

更に基体金属11内部の拡散制御層13は酸素
や還元剤の拡散を制御する役目を有する。
Furthermore, the diffusion control layer 13 inside the base metal 11 has the role of controlling the diffusion of oxygen and reducing agent.

本発明の目的は、以上の好見に基づき、拡散制
御層の位置を任意に設定することにより、還元剤
と酸素との反応の位置を、電子放射物質層とは分
離し、かつ、還元剤および酸素の拡散を制御して
高性能かつ長寿命の酸化物陰極構体を提供するこ
とにある。
Based on the above considerations, an object of the present invention is to separate the position of the reaction between the reducing agent and oxygen from the electron emitting material layer by arbitrarily setting the position of the diffusion control layer, and to separate the reducing agent from the electron emitting material layer. and to provide an oxide cathode structure with high performance and long life by controlling oxygen diffusion.

以下、第3図〜第5図を用いて本発明に係る酸
化物陰極構体を詳細に説明する。第3図は本発明
の酸化物陰極構体の要部断面図である。第3図に
おいて、22は電子放射物質、21は基体金属、
23は基体金属内部に形成された拡散制御層であ
る。拡散制御層23の形成法については、実施例
を用いて後述する。24は陰極スリーブ、25は
ヒータである。電子放射物質22のうち、最も電
子放射に寄与するBaOは、電子放射物質22と
基体金属21の界面近傍で、 BaO(s)Ba(in BaO)+O(in Ni) ……(2) なる解離反応で遊離Baを生成するとともに、酸
素は基体金属21であるNi中に固溶し、基体金
属内部に向かつて拡散する。一方、基体金属中に
添加されている還元剤は基体金属表面に向かつて
拡散するが、拡散制御層23が酸素および還元剤
の拡散の障壁となる為、拡散制御層23の位置
で、例えば還元剤がMgの場合、次式の反応を進
行させることが可能である。
Hereinafter, the oxide cathode structure according to the present invention will be explained in detail using FIGS. 3 to 5. FIG. 3 is a sectional view of essential parts of the oxide cathode structure of the present invention. In FIG. 3, 22 is an electron emitting material, 21 is a base metal,
23 is a diffusion control layer formed inside the base metal. A method for forming the diffusion control layer 23 will be described later using Examples. 24 is a cathode sleeve, and 25 is a heater. Among the electron emitting substances 22, BaO, which contributes the most to electron emission, dissociates near the interface between the electron emitting substances 22 and the base metal 21 as BaO(s)Ba(in BaO)+O(in Ni)...(2) The reaction generates free Ba, and at the same time, oxygen becomes a solid solution in Ni, which is the base metal 21, and diffuses toward the inside of the base metal. On the other hand, the reducing agent added to the base metal diffuses toward the base metal surface, but the diffusion control layer 23 acts as a barrier to the diffusion of oxygen and the reducing agent. When the agent is Mg, it is possible to proceed with the reaction of the following formula.

Mg(in Ni)+O(in Ni)→MgO ……(3) 化学反応の平衡条件についての一つの指針を与
えるル・シヤトリエの法則に従えば、(3)式の反応
が進行することにより、(2)式は平衡が右側にずれ
ることになり、遊離Baの生成反応が進行する。
Mg (in Ni) + O (in Ni) → MgO ... (3) According to Le Chatelier's law, which provides a guideline for the equilibrium conditions of chemical reactions, as the reaction of equation (3) progresses, In equation (2), the equilibrium shifts to the right, and the reaction to generate free Ba progresses.

本発明の利点のうち、最大の一つは拡散制御層
23の位置を任意の深さに設定することにより、
酸化物陰極の電子放射特性および寿命を任意に制
御することが可能であることにある。即ち、距離
dxにおいて、濃度差dcがある場合、断面積Aを
通して時間dtの間に拡散する溶質の量はdmは、 dm/dt=−DAdc/dx ……(4) で示される。(4)式においてDは溶質の拡散係数で
ある。以下、(4)式を用いて本発明に係る酸化物陰
極構体の動作状態を考える。基体金属と電子放射
物質との界面において基体金属であるNi中に固
溶した酸素の濃度をC1、拡散制御層の深さをl、
この位置における固溶酸素濃度をC2、Ni中の酸
素の拡散係数をDoinNiとすれば、(4)式は次式の様
に書き換えることが出来る。
One of the greatest advantages of the present invention is that by setting the position of the diffusion control layer 23 to an arbitrary depth,
It is possible to arbitrarily control the electron emission characteristics and lifetime of the oxide cathode. i.e. distance
When there is a concentration difference dc in dx, the amount of solute dm that diffuses through cross-sectional area A during time dt is expressed as dm/dt=-DAdc/dx (4). In equation (4), D is the solute diffusion coefficient. Hereinafter, the operating state of the oxide cathode structure according to the present invention will be considered using equation (4). The concentration of oxygen dissolved in the base metal Ni at the interface between the base metal and the electron emitting material is C 1 , the depth of the diffusion control layer is l,
If the solid solution oxygen concentration at this position is C 2 and the diffusion coefficient of oxygen in Ni is Doin Ni , equation (4) can be rewritten as the following equation.

dm/dt=−DpioNiAC1−C2/l ……(5) DpioNiは温度のみの関数であり、また、C2が実質
的に零であると仮定できる条件下においては、
Ni中への酸素の溶解度は温度により決まるので、
温度一定のもとでは、拡散制御層へ向かつて拡散
する酸素の量は、拡散制御層の深さlに依存する
ことになる。
dm/dt=-D pioNi AC 1 -C 2 /l ...(5) D pioNi is a function only of temperature, and under conditions where C 2 can be assumed to be substantially zero,
Since the solubility of oxygen in Ni is determined by temperature,
At a constant temperature, the amount of oxygen that diffuses toward the diffusion control layer will depend on the depth l of the diffusion control layer.

従つて、上述したル・シヤトリエの法則によれ
ば遊離Baの生成量は拡散制御層の深さに依存す
ることになる。式(5)によれば、lを小さくすれば
遊離Baの生成量は増すが、lの最適値は、電子
放射に必要なBaO中における遊離Baの量ならび
に遊離Baの蒸発速度を考慮して決定しなければ
ならない。板厚が150μm以下の基体金属では、
lとして3ないし20μmが望ましい。
Therefore, according to Le Chatelier's law mentioned above, the amount of free Ba produced depends on the depth of the diffusion control layer. According to equation (5), the amount of free Ba produced increases if l is reduced, but the optimal value of l is determined by taking into account the amount of free Ba in BaO required for electron emission and the evaporation rate of free Ba. Must be decided. For base metals with a plate thickness of 150μm or less,
It is desirable that l is 3 to 20 μm.

lが3μ未満では浅いので基体金属表面近くに
電子放射物質と酸化物との反応生成物が出来てし
まい、従来のものと同じようなエミツシヨンへの
弊害が残るので好ましくない。
If l is less than 3μ, it is not preferable because it is shallow and a reaction product between the electron emitting substance and the oxide is formed near the surface of the base metal, and the same adverse effect on emission as in the conventional one remains.

20μを越えると基体金属中の酸素の拡散時間が
長くなり、結果的に新しい酸素の拡散が困難とな
つて遊離Baの生成量が減少しエミツシヨンが低
下する。
If it exceeds 20μ, the diffusion time of oxygen in the base metal becomes longer, and as a result, it becomes difficult for new oxygen to diffuse, resulting in a decrease in the amount of free Ba produced and a decrease in emission.

また、本発明の利点のうち別の一つは、還元剤
の酸化反応が基体金属内部で生じる為、生成した
酸化物が電子放射物質と接触反応して有害物質を
形成する可能性が非常に少ないことから、還元剤
の選択の巾が種類および量ともに大きく広がるこ
とである。
Another advantage of the present invention is that since the oxidation reaction of the reducing agent occurs inside the base metal, there is a strong possibility that the generated oxide will react with the electron emitting substance and form a harmful substance. Since the amount of the reducing agent is small, the range of choices for the reducing agent is greatly expanded in terms of both type and amount.

以下、実施例について述べる。 Examples will be described below.

実施例 1 0.06重量パーセントのSiを含有する板厚150μm
の冷間圧延されたNi−Si合金をCOとCO2との混
合気体(混合分圧比1:20)を用いて酸素分圧を
規定した雰囲気下で1000℃1時間、熱処理を加え
ることにより表面より約20μmの深さにわたり内
部酸化処理を施した。この処理により、内部酸化
と、圧延時にNi−Si合金中に蓄積された加工歪
に基く再結晶現象が同時に進行し、内部酸化層内
に存在する結晶粒は、粒成長が抑制され、粒界酸
化し、粒界は固定された。この結果、第4図の顕
微鏡写真に見られるような、表面より8ないし
12μm、平均して約10μmの深さに、表面とほぼ
平行に酸化物の存在する結晶粒界の連なる断面構
造の拡散制御層を有する基体金属が得られた。
Example 1 Plate thickness 150 μm containing 0.06 weight percent Si
The surface of the cold-rolled Ni-Si alloy was heat-treated at 1000℃ for 1 hour in an atmosphere with a specified oxygen partial pressure using a mixed gas of CO and CO 2 (mixture partial pressure ratio 1:20). Internal oxidation treatment was applied to a depth of approximately 20 μm. Through this treatment, internal oxidation and recrystallization phenomenon based on the processing strain accumulated in the Ni-Si alloy during rolling proceed simultaneously, and the grain growth of the crystal grains existing in the internal oxidation layer is suppressed and the grain boundaries oxidized and the grain boundaries were fixed. As a result, as seen in the micrograph in Figure 4, the
A base metal was obtained which had a diffusion control layer having a cross-sectional structure of a series of crystal grain boundaries where oxide existed almost parallel to the surface at a depth of 12 μm, on average about 10 μm.

この後、直径1.3mmの円板に打ち抜き、陰極ス
リーブの先端に溶接し、表面に電子放射物質を塗
布した後、13インチカラーテレビジヨン受像管の
電子銃に組み込んだ。その後排気、封止、炭酸塩
の分解、ゲツターフラツシユ等の通常の工程を経
て、カラーテレビジヨン受像管を作製し、寿命試
験を行なつた。
After this, it was punched out into a disk with a diameter of 1.3 mm, welded to the tip of a cathode sleeve, and after coating the surface with an electron emitting material, it was assembled into the electron gun of a 13-inch color television picture tube. Thereafter, a color television picture tube was fabricated through the usual steps such as evacuation, sealing, carbonate decomposition, getter flash, etc., and a life test was conducted.

この結果、このカラーテレビジヨン受像管の電
子放射特性は、従来の管球に比して、特に長時間
の動作において優れていることが見い出された。
本結果の代表的な例を第5図Aに示す。図に示す
破線は拡散制御層を有しない従来の酸化物陰極構
体によるもので、実線は上述した様な処理で拡散
制御層を形成したものである。上述した処理で固
定された結晶粒界が、酸素および還元剤の拡散の
障壁となり、還元剤と酸素の反応がこの位置で進
行することは、寿命試験後の基体金属断面の
EPMAによる測定で確認された。
As a result, it has been found that the electron emission characteristics of this color television picture tube are superior to those of conventional tubes, especially during long-term operation.
A typical example of this result is shown in FIG. 5A. The broken line in the figure shows a conventional oxide cathode structure without a diffusion control layer, and the solid line shows a structure in which a diffusion control layer is formed by the process described above. The grain boundaries fixed by the above-mentioned treatment act as a barrier to the diffusion of oxygen and the reducing agent, and the reaction between the reducing agent and oxygen proceeds at this location, as shown in the cross-section of the base metal after the life test.
Confirmed by EPMA measurements.

実施例 2 0.08重量パーセントのMgを含有する板厚120μ
mのNi−Mg合金を結晶粒を粗大化させる為、乾
水素気流中で1000℃10分、加熱後片側表面を約
20μm研削し、表面近傍に加工歪を与えた。この
後、COとCO2の混合気体(混合分圧比、1:25)
を用いて酸素分圧を規定した雰囲気下で、1000
℃、1時間の熱処理を加えることにより、表面よ
り、約20μmの深さにわたり内部酸化処理を施し
た。この結果、表面より15〜20μm、平均して約
18μmの深さに表面とほぼ平行に酸化物の存在す
る結晶粒界の連なる断面構造を有する基体金属が
得られた。実施例1と比べて、内部酸化層厚が同
じであるにもかかわらず粒界が深い位置に固定さ
れるのは、合金中のMgの蒸気圧が高いので試料
が平衡温度に達し、酸素が供給されるまで表面か
ら、選択的に蒸発して、表面ごく近傍のMg濃度
が低くなり内部酸化粒析出の密度が小さくなり、
粒成長の抑制効果が小となつたためである。この
後、直径1.3mmの円板に打ち抜き面研削を行なつ
た面即ち拡散制御層が形成された面が電子放射物
質の塗布面になるようにスリーブに固定、実施例
1と同様の工程を経てテレビジヨン受像管を作製
し寿命試験を行なつた。この結果、実施例1同
様、従来の管球に比べて長時間の動作後も安定し
た電子放射特性を示すことが分かつた。
Example 2 Plate thickness 120μ containing 0.08 weight percent Mg
In order to coarsen the crystal grains of the Ni-Mg alloy of
It was ground by 20 μm and processing strain was applied near the surface. After this, a mixed gas of CO and CO 2 (mixture partial pressure ratio, 1:25)
1000 in an atmosphere with a specified oxygen partial pressure using
By applying heat treatment at ℃ for 1 hour, internal oxidation treatment was performed from the surface to a depth of approximately 20 μm. As a result, 15 to 20 μm from the surface, on average about
A base metal was obtained which had a cross-sectional structure in which grain boundaries with oxides were continuous at a depth of 18 μm and approximately parallel to the surface. The reason why the grain boundaries are fixed at deeper positions despite the same internal oxide layer thickness compared to Example 1 is because the vapor pressure of Mg in the alloy is high, so the sample reaches equilibrium temperature and oxygen Mg is selectively evaporated from the surface until it is supplied, and the Mg concentration near the surface decreases, reducing the density of internal oxidation grain precipitation.
This is because the effect of suppressing grain growth was reduced. After that, a circular plate with a diameter of 1.3 mm was punched and fixed to a sleeve so that the ground surface, that is, the surface on which the diffusion control layer was formed, was the surface coated with the electron emitting material, and the same process as in Example 1 was carried out. After that, a television picture tube was manufactured and a lifespan test was conducted. As a result, as in Example 1, it was found that the tube exhibited stable electron emission characteristics even after a long period of operation compared to the conventional tube.

第5図Bの実線は実施例2破線は比較例の寿命
試験結果を示す。
The solid line in FIG. 5B shows the life test results of Example 5, and the broken line shows the life test results of Comparative Example.

実施例 3 0.13%のZrを含有する板厚55μmのNi−Zr合金
を乾水素気流中で1000℃10分加熱後、片側表面を
5μm研削、表面近傍に加工歪を与えた。この後、
COとCO2の混合気体(混合分圧比、1:20)を
用いて酸素分圧を規定した雰囲気下で1000℃10分
の熱処理を加えることにより表面より約8μmの
深さに、内部酸化処理を施した。この結果、表面
より平均して約5μmの深さに表面とほぼ平行に
酸化物の存在する結晶粒界の連なる断面構造を有
する基体金属が得られた。この後、実施例2と同
様の工程を経てテレビジヨン受像管を作製し寿命
試験を行なつた。
Example 3 A Ni-Zr alloy with a thickness of 55 μm containing 0.13% Zr was heated at 1000°C for 10 minutes in a stream of dry hydrogen, and then one surface was heated.
5μm grinding, machining strain applied near the surface. After this,
Internal oxidation treatment is applied to a depth of approximately 8 μm from the surface by heat treatment at 1000℃ for 10 minutes in an atmosphere with a specified oxygen partial pressure using a mixed gas of CO and CO 2 (mixture partial pressure ratio, 1:20). was applied. As a result, a base metal was obtained which had a cross-sectional structure in which grain boundaries with oxides existed approximately parallel to the surface at a depth of about 5 μm on average from the surface. Thereafter, a television picture tube was manufactured through the same steps as in Example 2, and a life test was conducted.

内部酸化処理以外は同一の処理を行なつたもの
が比較的短時間から急激にエミツシヨンが低下し
た(第5図Cの破線)のに対し、本実施例(第5
図Cの実線)によるものは長時間の動作後も安定
したエミツシヨンを示した。
In contrast to the case where the same treatment was performed except for the internal oxidation treatment, the emission suddenly decreased after a relatively short period of time (dashed line in Figure 5C).
The solid line in Figure C) showed stable emission even after long-term operation.

以上の実施例では表面近傍に加工歪を与える方
法として、冷間圧延、面研削を使用したが加工歪
を与える方法はこれに限られるものではなく、均
一な加工歪が与えられるものであれば、シヨツト
ピーニング、サンドブラスト、あるいはガラスホ
ーニング等でもよい。また、内部酸化処理に使用
し得るガスもCO−CO2に限られるものではなく
不活性ガス+酸素ガス、H2+H2Oガス等酸素分
圧を規定できるものであればよい。
In the above embodiments, cold rolling and surface grinding were used as a method of applying processing strain near the surface, but the method of applying processing strain is not limited to these, and any method that can provide uniform processing strain can be used. , shot peening, sandblasting, glass honing, etc. may also be used. Further, the gas that can be used for the internal oxidation treatment is not limited to CO--CO 2 , but may be any gas that can specify the oxygen partial pressure, such as inert gas + oxygen gas, H 2 + H 2 O gas, etc.

また、本実施例においてはSi、Mg、Zrを還元
剤として含むNi基合金を用いたが、この他W、
Al、Ti、Y、Ce、La、Hfを始め、Ba、Ca、
Sr、Scを含むNi基合金についても、同様の拡散
制御層を形成することができる。
In addition, in this example, a Ni-based alloy containing Si, Mg, and Zr as reducing agents was used, but in addition, W,
Including Al, Ti, Y, Ce, La, Hf, Ba, Ca,
A similar diffusion control layer can also be formed with a Ni-based alloy containing Sr and Sc.

以上、説明してきた様に、本発明は、酸化物陰
極構体用基体金属断面の金属組織に着目して、酸
化物陰極を詳細に調べた結果得られた電子放射物
質からの酸素の解離反応とこの酸素と還元剤との
反応のサイトを分離させることが可能であり、更
に両反応サイトの間に酸素および還元剤の拡散制
御層を形成することが可能であるという発見に基
く。即ち、本発明は、基体金属中の酸素および還
元剤の拡散の障壁となる拡散制御層を、基体金属
内部に設け、電子放射物質からの酸素の解離と、
この酸素と還元剤との反応の場所を分離し、かつ
酸素および還元剤の拡散の制御を行なうものであ
り、上記拡散制御層の形成深さを変えることによ
り、酸化物陰極の電子放射特性および寿命を任意
に制御でき、しかも広範囲にわたつて還元剤の選
択ができる等の利点を有するものである。
As explained above, the present invention focuses on the metal structure of the cross-section of the base metal for an oxide cathode structure, and is based on the dissociation reaction of oxygen from an electron emitting substance obtained as a result of detailed investigation of the oxide cathode. This invention is based on the discovery that it is possible to separate the reaction site between oxygen and the reducing agent, and furthermore, it is possible to form a diffusion control layer for oxygen and the reducing agent between the two reaction sites. That is, the present invention provides a diffusion control layer inside the base metal that serves as a barrier to the diffusion of oxygen and a reducing agent in the base metal, and prevents the dissociation of oxygen from the electron emitting substance.
This method separates the reaction site between oxygen and reducing agent and controls the diffusion of oxygen and reducing agent. By changing the formation depth of the diffusion control layer, the electron emission characteristics of the oxide cathode and This has the advantage that the life span can be controlled arbitrarily and the reducing agent can be selected from a wide range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図Aは従来の基体金属組織を説明する断面
写真、Bはその模式図、第2図は本発明の酸化物
陰極の動作機構を説明する図、第3図は本発明に
係る酸化物陰極構体の要部断面図、第4図は本発
明の基体金属の拡散制御層を拡大した顕微鏡写
真、第5図は本発明の酸化物陰極構体の電子放射
特性を説明する図である。 12,22……電子放射物質、11,21……
基体金属、13,23……拡散制御層、24……
陰極スリーブ、25……ヒータ。
Figure 1A is a cross-sectional photograph illustrating the conventional metallographic structure of the base, B is its schematic diagram, Figure 2 is a diagram illustrating the operating mechanism of the oxide cathode of the present invention, and Figure 3 is the oxide cathode according to the present invention. FIG. 4 is an enlarged micrograph of the diffusion control layer of the base metal of the present invention, and FIG. 5 is a diagram illustrating the electron emission characteristics of the oxide cathode structure of the present invention. 12,22...Electron emitting substance, 11,21...
Base metal, 13, 23... Diffusion control layer, 24...
Cathode sleeve, 25...heater.

Claims (1)

【特許請求の範囲】 1 電子放射物質とこの電子放射物質が一方の表
面に塗布され、微量な還元性元素を含有し主とし
てニツケルよりなる基体金属を有する酸化物陰極
構体において、 前記基体金属が少なくとも電子放射物質が塗布
された側に近い基体金属内部に酸素および、また
は還元剤の拡散制御層を有し、前記還元性元素が
Mg、Zr、W、Al、Si、Ti、Ba、Sr、Ca、Sc、
Y、Ce、La、Hfの中から選ばれた少なくとも一
種からなり、かつ前記拡散制御層が前記還元性元
素の酸化物からなり基体金属表面とほぼ平行に形
成されていることを特徴とする酸化物陰極構体。 2 基体金属が150μm以下の板厚を有すること
を特徴とする特許請求の範囲第1項記載の酸化物
陰極構体。 3 拡散制御層が、電子放射物質が塗布された側
の基体金属表面より3〜20μmの範囲内に形成さ
れていることを特徴とする特許請求の範囲第1項
記載の酸化物陰極構体。
[Scope of Claims] 1. An oxide cathode structure having an electron-emitting substance and a base metal on which the electron-emitting substance is coated on one surface, containing a trace amount of a reducing element and mainly consisting of nickel, wherein the base metal is at least A diffusion control layer for oxygen and/or a reducing agent is provided inside the base metal near the side to which the electron emitting material is applied, and the reducing element is
Mg, Zr, W, Al, Si, Ti, Ba, Sr, Ca, Sc,
oxidation comprising at least one selected from Y, Ce, La, and Hf, and characterized in that the diffusion control layer is made of an oxide of the reducing element and is formed substantially parallel to the surface of the base metal. Cathode structure. 2. The oxide cathode structure according to claim 1, wherein the base metal has a thickness of 150 μm or less. 3. The oxide cathode structure according to claim 1, wherein the diffusion control layer is formed within a range of 3 to 20 μm from the base metal surface on the side to which the electron emitting material is applied.
JP56137703A 1981-09-03 1981-09-03 Oxide coated cathode structure Granted JPS5840731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56137703A JPS5840731A (en) 1981-09-03 1981-09-03 Oxide coated cathode structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56137703A JPS5840731A (en) 1981-09-03 1981-09-03 Oxide coated cathode structure

Publications (2)

Publication Number Publication Date
JPS5840731A JPS5840731A (en) 1983-03-09
JPS648892B2 true JPS648892B2 (en) 1989-02-15

Family

ID=15204838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56137703A Granted JPS5840731A (en) 1981-09-03 1981-09-03 Oxide coated cathode structure

Country Status (1)

Country Link
JP (1) JPS5840731A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6288239A (en) * 1985-10-14 1987-04-22 Mitsubishi Electric Corp Cathode for electron tube
JPS6288240A (en) * 1985-10-14 1987-04-22 Mitsubishi Electric Corp Cathode for electron tube
JPH0626096B2 (en) * 1985-10-14 1994-04-06 三菱電機株式会社 Electron tube cathode
KR19990045119A (en) * 1997-11-29 1999-06-25 김영남 Impregnated cathode structure for cathode ray tube and manufacturing method
KR20000034114A (en) * 1998-11-27 2000-06-15 김영남 Oxide cathode of cathode ray tube with reduction agent and method for manufacturing oxide cathode

Also Published As

Publication number Publication date
JPS5840731A (en) 1983-03-09

Similar Documents

Publication Publication Date Title
US4797593A (en) Cathode for electron tube
US4083811A (en) Lanthanated thermionic cathodes
JPS61183838A (en) Impregnated type cathode
EP0327074B1 (en) Cathode for a cathode ray tube
KR19980042827A (en) Cathode for electron tube
JPS648892B2 (en)
US4260665A (en) Electron tube cathode and method for producing the same
JP3301881B2 (en) Cathode for electron tube
JPH0719530B2 (en) Cathode ray tube
US3088851A (en) Method of manufacturing oxide cathodes and cathodes manufactured by such methods
JPH01267927A (en) Solid-liquid matrix cathode
US5982083A (en) Cathode for electron tube
US6181058B1 (en) Cathode in electron tube with actinoid metal(s) or compound(s) thereof
JPH0778550A (en) Oxide cathode
JP5226921B2 (en) Cathode ray tube with doped oxide cathode
US5708321A (en) Cathode for electron tube having an electron-emission layer including a lanthanum-magnesium-manganese oxide
JPS63310535A (en) Electron tube cathode
EP0639848B1 (en) Oxide cathode for electron tube
JPS601718A (en) Oxide cathode structure and its manufacture
JPH0113187B2 (en)
JPH0129008B2 (en)
JPS63285839A (en) Electron tube cathode
JPS59138033A (en) Oxide cathode structure
JPH0114660B2 (en)
JP2730260B2 (en) Cathode for electron tube