JPH0626096B2 - Electron tube cathode - Google Patents

Electron tube cathode

Info

Publication number
JPH0626096B2
JPH0626096B2 JP22930385A JP22930385A JPH0626096B2 JP H0626096 B2 JPH0626096 B2 JP H0626096B2 JP 22930385 A JP22930385 A JP 22930385A JP 22930385 A JP22930385 A JP 22930385A JP H0626096 B2 JPH0626096 B2 JP H0626096B2
Authority
JP
Japan
Prior art keywords
substrate
electron
cathode
layer
scandium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22930385A
Other languages
Japanese (ja)
Other versions
JPS6288241A (en
Inventor
正人 斉藤
敬二 福山
勁二 渡部
誠子 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP22930385A priority Critical patent/JPH0626096B2/en
Priority to CA000513900A priority patent/CA1270890A/en
Priority to US06/886,777 priority patent/US4797593A/en
Priority to EP86305560A priority patent/EP0210805B1/en
Priority to CN86104753.2A priority patent/CN1004452B/en
Priority to DE86305560T priority patent/DE3689134T2/en
Publication of JPS6288241A publication Critical patent/JPS6288241A/en
Publication of JPH0626096B2 publication Critical patent/JPH0626096B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はTV用ブラウン管などに用いられる電子管用
陰極に関し、特に電子放射特性の改良に関するものであ
る。
TECHNICAL FIELD The present invention relates to a cathode for an electron tube used in a TV Braun tube or the like, and more particularly to improvement of electron emission characteristics.

〔従来の技術〕[Conventional technology]

第2図の従来のTV用ブラウン管や撮像管に用いられて
いる陰極を示すものであり、図において(1)はシリコン
(Si),マグネシウム(Mg)などの還元性元素を微量含む主
成分がニツケルからなる有底筒状の基体、(2)はこの基
体の底部上面に被着され、少なくともバリウム(Ba)を含
み、他にストロンチウム(Sr)あるいは/及びカルシウム
(Ca)を含むアルカリ土類金属酸化物からなる電子放射物
質層、(3)は上記基体(1)内に配設されたヒータ(3)で、
加熱により上記電子放射物質層(2)から熱電子を放出さ
せるためのものである。
FIG. 2 shows the cathode used in the conventional TV Braun tube or image pickup tube of FIG. 2, where (1) is silicon.
(Si), magnesium (Mg) and the like, the main component that contains a trace amount of reducing elements such as nickel is a bottomed cylindrical substrate, (2) is adhered to the bottom upper surface of this substrate and contains at least barium (Ba) , Other strontium (Sr) and / or calcium
An electron emitting material layer made of an alkaline earth metal oxide containing (Ca), (3) is a heater (3) arranged in the substrate (1),
It is for emitting thermoelectrons from the electron emitting material layer (2) by heating.

この様に構成された電子管用陰極において、基体(1)へ
の電子放射物質層(2)の被着は次の様にして行なわれる
ものである。まずアルカリ土類金属(Ba,Sr,Ca)の炭
酸塩からなる懸濁液を基体(1)に塗布し、真空排気工程
中にヒータ(3)によつて加熱する。この時、アルカリ土
類金属の炭酸塩はアルカリ土類金属の酸化物に変わる。
その後、アルカリ土類金属の酸化物の一部を還元して半
導体的性質を有するように活性化を行なうことにより、
基体(1)上にアルカリ土類金属の酸化物からなる電子放
射物層(2)を被着せしめているものである。
In the electron tube cathode thus constructed, the electron emitting material layer (2) is deposited on the substrate (1) as follows. First, a suspension composed of a carbonate of an alkaline earth metal (Ba, Sr, Ca) is applied to the substrate (1) and heated by the heater (3) during the vacuum evacuation process. At this time, the alkaline earth metal carbonate is converted into an alkaline earth metal oxide.
After that, a part of the oxide of the alkaline earth metal is reduced and activated so as to have semiconductor properties,
An electron emitting layer (2) made of an alkaline earth metal oxide is deposited on a substrate (1).

この活性化工程において、アルカリ土類金属の酸化物の
一部は次の様に反応しているものである。つまり基体
(1)中に含有されたシリコン,マグネシウム等の還元性
元素は拡散によりアルカリ土類金属の酸化物と基体(1)
の界面に移動し、アルカリ土類金属酸化物と反応する。
例えばアルカリ土類酸化物として酸化バリウム(BaO)で
あれば次式(1)(2)の様に反応するものである。
In this activation step, a part of the alkaline earth metal oxide reacts as follows. That is, the substrate
(1) Reducing elements such as silicon and magnesium contained in the alkaline earth metal oxide and substrate by diffusion (1)
Of the alkaline earth metal oxide.
For example, if barium oxide (BaO) is used as the alkaline earth oxide, it will react as in the following formulas (1) and (2).

BaO+1/2Si=Ba+1/2SiO2 …(1) BaO+ Mg =Ba+MgO …(2) この反応の結果、基体(1)上に被着形成されたアルカリ
土類金属酸化物の一部が還元され、酸素欠乏型の半導体
となり、陰極温度 700〜800 ℃の動作温度で0.5〜0.8A/
cm2の電子放射が得られることになる。しかるに、この
様にして形成された電子管用陰極にあつては電子放射が
0.5〜0.8A/cm2以上の電流密度は取り出せないものであ
る。その理由としては次の様なものである。つまり、ア
ルカリ土類金属酸化物の一部を還元反応させた場合、上
記(1)(2)式からも明らかな如く基体(1)とアルカリ土類
金属酸化物層との界面にSiO2,MgOあるいはBaO・SiO2
る複合酸化物層(中間層)が形成され、この中間層が高
抵抗層となつて電流の流れを妨げること、また上記中間
層が基体(1)中の還元元素が電子放射物質層(2)の表面側
へ拡散するのを妨げ十分なバリウム(Ba)が生成されない
ことが考えられている。
BaO + 1 / 2Si = Ba + 1 / 2SiO 2 (1) BaO + Mg = Ba + MgO (2) As a result of this reaction, a portion of the alkaline earth metal oxide deposited on the substrate (1) is reduced to generate oxygen. It becomes a deficiency type semiconductor, 0.5-0.8A / at the operating temperature of cathode temperature 700-800 ℃
An electron emission of cm 2 will be obtained. However, in the electron tube cathode thus formed, the electron emission is
A current density of 0.5 to 0.8 A / cm 2 or more cannot be taken out. The reason is as follows. That is, when a part of the alkaline earth metal oxide is subjected to a reduction reaction, SiO 2 at the interface between the substrate (1) and the alkaline earth metal oxide layer, as is clear from the above equations (1) and (2), A complex oxide layer (intermediate layer) composed of MgO or BaO.SiO 2 is formed, and this intermediate layer acts as a high resistance layer to prevent current flow, and the intermediate layer prevents the reducing element in the substrate (1) from It is considered that it prevents diffusion to the surface side of the electron emitting material layer (2) and sufficient barium (Ba) is not generated.

また、従来の電子管用陰極としては特開昭59−20941号
公報に、上記した第2図のものと同様の構成をしてお
り、陰極の速動性を得るために基体(1)の板厚を薄く
し、寿命中の還元剤の涸濁を防止しかつ基体(1)の強度
低下を防止する目的で、基体(1)にランタンがLaNi5及び
La2O3の形で分散含有させたものが示されている。
A conventional cathode for an electron tube has the same structure as that shown in FIG. 2 described in Japanese Patent Laid-Open No. 20941/1984, and the plate of the substrate (1) is used to obtain the fast motion of the cathode. For the purpose of reducing the thickness, preventing suspension of the reducing agent during the life, and preventing the strength of the substrate (1) from decreasing, lanthanum was added to the substrate (1) with LaNi 5 and
Dispersed inclusions in the form of L a2 O 3 are shown.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

この様に構成された電子管用陰極においては、動作中に
基体(1)と電子放射物質層(2)の界面近傍、特に基体(1)
表面近傍のニツケル結晶粒界と上記界面より10μm程度
電子放射物質層(2)内側の位置に前述の中間層が偏析す
るため、電流の流れ及び電子放射物質層(2)表面側への
還元性元素の拡散が妨げられ、高電流密度下の十分な電
子放出特性が得られないという問題があつた。
In the electron tube cathode thus configured, during operation, near the interface between the substrate (1) and the electron-emitting substance layer (2), particularly the substrate (1)
Since the intermediate layer segregates at a position near the nickel crystal grain boundary near the surface and the electron emitting material layer (2) within about 10 μm from the above interface, current flow and reducing property to the electron emitting material layer (2) surface side There is a problem that diffusion of elements is hindered and sufficient electron emission characteristics under high current density cannot be obtained.

また、後者に示したものにおいては、ニツケルを主成分
とする基体(1)の製作時にLaNi5及びLa2O3を含有させる
ため、基体(1)内のLaNi5及びLa2O3の含有状態のばらつ
きなどが生じ易かつた。
In the latter case, the inclusion of LaNi 5 and La 2 O 3 in the substrate (1) is included because LaNi 5 and La 2 O 3 are contained in the substrate (1) containing nickel as a main component. It was easy for the condition to vary.

この発明は上記した点に鑑みてなされたものであり、高
電流密度下において基体と電子放射物質層との界面近傍
に複合酸化物からなる中間層が集中して形成されること
を防止し、長時間にわたつて安定したエミツシヨン特性
を有し、かつ生産性・信頼性の高い電子管用陰極を得る
ことを目的とする。
The present invention has been made in view of the above points, and prevents the intermediate layer made of a complex oxide from being concentratedly formed in the vicinity of the interface between the substrate and the electron-emitting substance layer under a high current density, It is an object of the present invention to obtain a cathode for an electron tube which has stable emission characteristics over a long period of time and has high productivity and reliability.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る電子管用陰極は、少なくともバリウムを
含むアルカリ土類金属酸化物とを主成分とした電子放射
物質層をニツケルを主成分とし、Si及びMgなどの還元元
素に加え、0.01〜0.5重量%のスカンジウムを含有させ
た基体上に披着形成させたものである。
The cathode for an electron tube according to the present invention is mainly composed of nickel, which is an electron emitting material layer containing an alkaline earth metal oxide containing at least barium, and a reducing element such as Si and Mg. It was deposited on a substrate containing 100% scandium.

〔作用〕[Action]

この発明においては、基体中に含有された0.01〜0.5重
量%のスカンジウムが、電子放射物質層を基体に被着形
成する際の活性化時に、アルカリ土類金属の炭酸塩が分
解する際、あるいは陰極としての動作中に酸化バリウム
が解離反応を起こす際に基体が酸化する反応を防止する
とともに、電子放射物質層中への基体に含有された還元
性元素の拡散を適度に制御し、還元性元素による複合酸
化物からなる中間層が基体と電子放射物質層との界面近
傍に集中的に形成されることを防止し、中間層を電子放
射物質層内に分散させるものである。
In the present invention, 0.01 to 0.5% by weight of scandium contained in the substrate is activated during the deposition of the electron-emitting substance layer on the substrate, when the alkaline earth metal carbonate decomposes, or It prevents the oxidation of the substrate when barium oxide undergoes a dissociation reaction during operation as a cathode, and controls the diffusion of the reducing element contained in the substrate into the electron-emitting substance layer appropriately to reduce the reducing property. It is intended to prevent the intermediate layer composed of the element composite oxide from being intensively formed in the vicinity of the interface between the substrate and the electron emitting material layer, and to disperse the intermediate layer in the electron emitting material layer.

〔発明の実施例〕Example of Invention

以下にこの発明の一実施例を第1図に基づいて説明す
る。図において、(13)は基体(1)中に0.01〜0.5wt%含有
されたスカンジウム、(2)は基体(1)の底部上面に被着さ
れ、少なくともバリウムを含み、他にストロンチウムあ
るいは/及びカルシウムを含むアルカリ土類金属酸化物
(11)を主成分とした電子放射物質層である。
An embodiment of the present invention will be described below with reference to FIG. In the figure, (13) is scandium contained in the substrate (1) in an amount of 0.01 to 0.5 wt%, (2) is deposited on the upper surface of the bottom of the substrate (1), contains at least barium, and contains strontium or / and Alkaline earth metal oxides containing calcium
This is an electron emitting material layer containing (11) as a main component.

次に、この様に構成された電子管用陰極において、ま
ず、バリウム,ストロンチウム,カルシウムの三元炭酸
塩とバインダー及び溶剤を添加混合し、懸濁液を作成す
る。この懸濁液をニツケルを主成分とし、予めSi,Mgな
どの還元性元素(各々0.03〜0.1wt%含有)とともに0.0
1〜0.5wt%のスカンジウムを含有させた基体(1)上にス
プレイにより約80ミクロンの厚みで塗布し、その後、従
来のものと同様に、炭酸塩から酸化物への分解過程及び
酸化物の一部を還元する活性化過程を経て、電子放射物
質層(2)を基体(1)に被着せしめるものである。
Next, in the electron tube cathode thus configured, first, a ternary carbonate of barium, strontium and calcium, a binder and a solvent are added and mixed to form a suspension. This suspension contains nickel as a main component, and is made to contain 0.03 to 0.1 wt% of reducing elements such as Si and Mg beforehand.
It is applied by spraying to a substrate (1) containing 1 to 0.5 wt% of scandium to a thickness of about 80 μm, and then, like the conventional one, the decomposition process of carbonate to oxide and the oxide The electron emissive material layer (2) is deposited on the substrate (1) through an activation process of reducing a part thereof.

この様に基体(1)中に含有されるスカンジウムの含有率
を種々変えた電子管用陰極を種々作成し、この電子管用
陰極を用いて2極真空管を作成し、種々の電流密度で寿
命試験を行い、エミツシヨン電流の変化を調べた結果、
第8図の結果を得た。第3図は従来のテレビ用陰極とし
ての電流密度の0.66A/cm3の3.1倍(2.05A/cm2)で
動作させた時の基体(1)中のスカンジウムの含有率と寿
命特性の関係を示したものである。この第3図から明ら
かなように基体(1)中にスカンジウムが含有された本実
施例のものは従来のものに対して高電流密度動作でのエ
ミツシヨン劣化が少ないものである。
In this way, various cathodes for electron tubes with various contents of scandium contained in the substrate (1) were prepared, and bipolar cathode tubes were prepared using the cathodes for electron tubes, and life tests were conducted at various current densities. As a result of investigating the change of the emission current,
The results shown in FIG. 8 were obtained. Figure 3 shows the scandium content and life characteristics of the substrate (1) when operated at 3.1 times (2.05 A / cm 2 ) the current density of 0.66 A / cm 3 as a conventional TV cathode. It shows the relationship of. As is apparent from FIG. 3, the substrate of the present embodiment in which scandium is contained in the substrate (1) has less emission deterioration in high current density operation than the conventional one.

このように基体(1)中にスカンジウムを含有した効果を
詳細に調査するために、第3図の実験結果において6000
時間でのエミツシヨン電流測定後、従来品及び基体(1)
中に0.05wt%のScを含有した電子管用陰極の断面を電子
ビームX線マイクロアナライザー(EPMA)によつて分析を
行つた。その結果、高電流密度動作下の従来品において
は、基体(1)と電子放射物質層(2)との界面近傍で、基体
(1)内の結晶粒界ではSiO2,MgO及びこれらの複合酸化物
層が形成され、さらに上記界面から電子放射物質層(2)
側10μmの位置にはBaO,SiO2の複合酸化物層が形成さ
れていることがわかるものである。上記したSiO2MgO層
及びBaO,SiO2層は基体(1)内から電子放射物質層(2)内
への還元剤であるSi,Mgの拡散速度を抑制するとともに
高絶縁であるために電流の流れを阻害し、ついには電子
放射物質層内での絶縁破壊による損耗をもたらすことに
なるものである。
Thus, in order to investigate in detail the effect of containing scandium in the substrate (1), in the experimental result of FIG.
Conventional product and substrate after measuring emission current over time (1)
The cross section of the cathode for an electron tube containing 0.05 wt% Sc was analyzed by an electron beam X-ray microanalyzer (EPMA). As a result, in the conventional product under the operation of high current density, the base material (1) and the electron emitting material layer (2) were
SiO 2 , MgO and their complex oxide layers are formed at the grain boundaries in (1), and the electron emitting material layer (2) from the above interface.
It can be seen that the composite oxide layer of BaO and SiO 2 is formed at the position of 10 μm on the side. The above-mentioned SiO 2 MgO layer and BaO, SiO 2 layer suppress the diffusion rate of Si and Mg, which are reducing agents, from the inside of the substrate (1) into the electron-emitting substance layer (2) and have high insulation, so Of the electron emission material and eventually causes wear due to dielectric breakdown in the electron-emitting material layer.

これに対して、本実施例の電子管陰極においては、基体
(1)内に含有された還元剤であるSi,Mgは平均的に分散
されており、上記従来のもののように基体(1)と電子放
射物質層(2)との界面近傍に、これら還元剤のピークが
全く存在していないものである。このことは次の理由に
よると判断される。つまり活性化時にアルカリ土類金属
の炭酸塩が酸化物へと分解する場合、あるいは電子管用
陰極の動作時にBaOなどが解離反応を起こす場合におい
て、電子放射物質との界面近傍の基体(1)中のスカンジ
ウムが基体(1)の酸化を防ぐことに起因しているものと
考えられる。
On the other hand, in the electron tube cathode of this embodiment, the substrate
The reducing agents Si and Mg contained in (1) are dispersed evenly, and these reducing agents are added in the vicinity of the interface between the substrate (1) and the electron-emitting substance layer (2) as in the conventional one. The peak of the agent does not exist at all. This is considered to be due to the following reasons. That is, when the alkaline earth metal carbonate decomposes into an oxide during activation, or when BaO or the like undergoes a dissociation reaction during the operation of the cathode for an electron tube, in the substrate (1) near the interface with the electron-emitting substance. It is considered that this scandium is caused by preventing the oxidation of the substrate (1).

即ち、スカンジウムの反応は次式(4)(6)のようになるも
のである。
That is, the scandium reaction is represented by the following equations (4) and (6).

BaCO3→BaO+CO2(電子放射物質中) 従来例(Ni表面) Ni+1/2CO2→NiO+1/2C ……(3) 本発明(Ni表面) 2Sc+3CO2→Sc2O3+3CO ……(4) BaO→Ba+O (電子放射物質中) 従来例(Ni表面) Ni+O→NiO ……(5) 本発明(Ni表面) 2Sc+3O→Sc2O3 ……(6) 従つて、上式(3)(5)から明らかなように、基体(1)中に
スカンジウムを含有していない電子放射物質層(2)を有
した電子管陰極においては、寿命初期において既に基体
(1)と電子放射物質層(2)との界面に形成されたニツケル
酸化物と基体(1)の還元剤であるSi,Mgとが反応し、SiO
2,MgO2が界面の最表層及びその近傍の粒界中に形成さ
れることになる。そのため、還元剤であるSi,Mgの電子
放射物質層(2)中への拡散は上記SiO2,MgOの酸化物層に
律速され、反応(1)(2)のサイト(場所)は該酸化物層の
近傍に形成される。
BaCO 3 → BaO + CO 2 (in electron emitting material) Conventional example (Ni surface) Ni + 1 / 2CO 2 → NiO + 1 / 2C …… (3) The present invention (Ni surface) 2Sc + 3CO 2 → Sc 2 O 3 + 3CO …… (4) BaO → Ba + O ( Electron emitting material) Conventional example (Ni surface) Ni + O → NiO …… (5) The present invention (Ni surface) 2Sc + 3O → Sc 2 O 3 …… (6) Therefore, it is clear from the above formulas (3) (5). As described above, in the electron tube cathode having the electron-emitting substance layer (2) containing no scandium in the substrate (1), the substrate was already formed at the beginning of its life.
The nickel oxide formed at the interface between (1) and the electron emitting material layer (2) reacts with the reducing agents Si and Mg of the substrate (1) to form SiO.
2 , MgO2 will be formed in the outermost layer of the interface and in the grain boundaries near it. Therefore, the diffusion of the reducing agents Si and Mg into the electron emitting material layer (2) is controlled by the oxide layer of SiO 2 and MgO, and the sites of the reactions (1) and (2) are affected by the oxidation. It is formed in the vicinity of the object layer.

そのため、特に高電流密度で動作する場合、(1)(2)の反
応が活発に行われ、還元剤による酸化物SiO2,MgOが上
記酸化物層の近傍に集中して生成され、(1)(2)の反応が
進むとともに還元元素であるSi,Mgの電子放射物質中へ
の拡散がますます抑制され、エミツシヨン低下が著しく
なる。
Therefore, particularly when operating at a high current density, the reactions (1) and (2) are actively carried out, and oxides SiO 2 and MgO due to the reducing agent are concentrated and generated near the above oxide layer. ) As the reaction of (2) progresses, the diffusion of reducing elements Si and Mg into the electron-emitting material is further suppressed, and the reduction in emission becomes remarkable.

一方、本発明の実施例である基体(1)中にスカジウムを
含有した電子管陰極においては、基体(1)中のスカンジ
ウムが基体(1)のニツケルの酸化反応を防止するので、
還元元素であるSi,Mgは基体(1)内の結晶粒界またはその
近傍で酸化物層を形成せず、電子放射物質中へと容易に
拡散していき、(1)(2)の反応サイトは電子放射物質層
(2)内の粒界に形成され、従来例よりも分散された場所
に反応サイトがある。さらに、基体(1)中のスカンジ
ウムは寿命中基体と電子放射物質層との界面に形成され
た中間層を分解する働きをする。中間層がBaOとSi
の複合化合物の場合を例にその反応式を以下に示
す。
On the other hand, in the electron tube cathode containing scadium in the substrate (1) which is an example of the present invention, scandium in the substrate (1) prevents oxidation reaction of nickel of the substrate (1),
The reducing elements Si and Mg do not form an oxide layer at or near the crystal grain boundaries in the substrate (1), but diffuse easily into the electron-emitting substance, and the reaction of (1) and (2) occurs. Site is an electron emitting material layer
The reaction sites are formed at the grain boundaries in (2) and are more dispersed than in the conventional example. Further, scandium in the substrate (1) functions to decompose the intermediate layer formed at the interface between the substrate and the electron emitting material layer during the lifetime. The intermediate layer is BaO and Si
The reaction formula is shown below by taking a case of a compound compound of O 2 as an example.

SiO+4/3Sc→Si+2/3Sc2・・・(7) Ba2SiO+8/3Sc→2Ba+Si+ 4/3Sc2・・・(8) 従って、従来のように寿命中基体と電子放射物質層との
界面にMg,Si化合物からなる中間層が集中して形成
されることが抑制され、還元剤と電子放射物質層との反
応は従来より電子放射物質層側で行われ、中間層はより
電子放射物質層側に分散され、高電流密度動作時の良好
な寿命特性が得られる。従つて、0.01重量%未満のスカ
ンジウムの添加では基体(1)の粒界近傍でSiO2,MgOの酸
化物層を形成するのを抑制する効果が不十分で、かつ反
応(4),(6)の反応速度に比べ、基体(1)内部からのスカ
ンジウムの拡散が不十分でNiの酸化防止効果が不足し、
エミツシヨン特性の低下が現われる。
SiO 2 + 4 / 3Sc → Si + 2 / 3Sc 2 O 3 (7) Ba 2 SiO 4 + 8 / 3Sc → 2Ba + Si + 4 / 3Sc 2 O 3 (8) Therefore, the conventional As described above, the concentrated formation of the intermediate layer made of the Mg and Si compounds is suppressed at the interface between the substrate and the electron emitting material layer during the lifetime, and the reaction between the reducing agent and the electron emitting material layer is more difficult than the conventional one. This is performed on the layer side, and the intermediate layer is more dispersed on the electron emitting material layer side, and good life characteristics at high current density operation can be obtained. Therefore, the addition of less than 0.01% by weight of scandium is insufficient in suppressing the formation of an oxide layer of SiO 2 or MgO in the vicinity of the grain boundaries of the substrate (1), and the reaction (4), (6 ) Compared to the reaction rate, the diffusion of scandium from the inside of the substrate (1) is insufficient and the antioxidant effect of Ni is insufficient,
The deterioration of the emission characteristic appears.

また、0.01〜0.5重量%のスカンジウムの添加範囲であ
れば、6000 時間の動作後(電流密度2.05A/cm2)に電子
放射物質層(2)の基体(1)からのはくり現象が皆無であつ
た。因みに、従来のスカンジウムが含有されていない基
体に電子放射物質層(2)を有した電子管用陰極でのくり
現象の発生ひん度は30%であつた。
Further, within the addition range of 0.01 to 0.5% by weight of scandium, there is no peeling phenomenon of the electron emitting material layer (2) from the substrate (1) after 6000 hours of operation (current density 2.05 A / cm 2 ). It was. By the way, the occurrence frequency of the chestnut phenomenon was 30% in the cathode for an electron tube having the electron emitting material layer (2) on the conventional substrate not containing scandium.

次に、基体中のスカンジウム含優の有無による初期エミ
ッション特性の比較を行った。ニッケル基体を予め0.04
重量%のシリコンと0.07重量%のマグネシウムの還元剤
とともに、0.05重量%のスカンジウムを含有するように
真空溶解法で作製し、スカジウムを含まないニッケル基
体(0.04重量%のシリコンと0.07重量%のマグネシウム
含有)を別途作製し、各々ブラウン管のカソードに適用
し、初期最大エミッション電流を測定した。
Next, a comparison was made of the initial emission characteristics depending on the presence or absence of scandium in the substrate. 0.04 nickel base
Made by vacuum melting method to contain 0.05 wt% scandium with a reducing agent of wt% silicon and 0.07 wt% magnesium, and a scaffold-free nickel substrate (0.04 wt% silicon and 0.07 wt% magnesium). Content) was prepared separately and applied to the cathode of each cathode ray tube, and the initial maximum emission current was measured.

ニッケル基体にスカンジウムを含まない従来例の場合、
ブラウン管12本の初期エミッション電流の平均値は2
813μA(最小値:2660μA〜最大値:2980
μA)で、本発明を実施しブラウン管6本の初期エミッ
ション電流の平均値は2945μA(最小値:2890
μA〜最大値:3000μA)であり、本発明を実施し
てなるブラウン管の初期エミッション電流の平均値が高
く、かつエミッション電流値のバラツキが少ない。この
ような本発明を実施してなる電子管陰極の優れた特性は
以下のように考えられる。即ち、スカンジウムはイット
リウムやランタンなどの希土類元素と比べ化学的活性が
極めて高く、かつニッケル中に一定量固溶する特性を有
する。従って、ブラウン管製法プロセスまたは電子管陰
極の動作中にスカンジウムが優先的にアルカリ土類金属
炭酸塩の分散ガスと反応し、または電子放射物質と反応
して、電子放射物質層とニッケル基体との界面に酸化ス
カンジウム層が形成される。この酸化スカンジウム層は
中間層を分散する作用をもたらすので、初期エミッショ
ンの増加及び高電流密度動作下の寿命特性を向上する。
In the case of the conventional example in which the nickel substrate does not contain scandium,
The average value of the initial emission current of 12 cathode ray tubes is 2
813 μA (minimum value: 2660 μA to maximum value: 2980
μA), the average value of the initial emission currents of the six Braun tubes is 2945 μA (minimum value: 2890).
μA to maximum value: 3000 μA), the average value of the initial emission current of the cathode ray tube according to the present invention is high, and the variation of the emission current value is small. The excellent characteristics of the electron tube cathode obtained by carrying out the present invention are considered as follows. That is, scandium has extremely high chemical activity as compared with rare earth elements such as yttrium and lanthanum, and has a characteristic of forming a certain amount of solid solution in nickel. Therefore, during the cathode ray tube manufacturing process or the operation of the electron tube cathode, scandium preferentially reacts with the dispersion gas of the alkaline earth metal carbonate or reacts with the electron emitting material to cause the interface between the electron emitting material layer and the nickel substrate. A scandium oxide layer is formed. The scandium oxide layer has a function of dispersing the intermediate layer, and thus increases the initial emission and improves the life characteristics under high current density operation.

このように本発明は従来とほぼ同等の製造条件で陰極を
製造することができ、希土類金属の分散状態なども比較
的容易に制御できる。
As described above, according to the present invention, the cathode can be manufactured under substantially the same manufacturing conditions as the conventional one, and the dispersion state of the rare earth metal can be controlled relatively easily.

〔発明の効果〕〔The invention's effect〕

この発明は以上述べたように基体中に予め還元性元素と
ともに0.01〜0.5wt%のスカンジウムを含有した基体
に、少なくともバリウムを含むアルカリ土類金属酸化物
を主成分とする電子放射物層を被着させたものとしたの
で、スカジウムが含まれていない従来のものに対いて2
〜4倍の高電流密度動作下での長寿命を実現し、安価で
信頼性の高い電子管用陰極が得られるという効果を有す
るものである。
As described above, according to the present invention, an electron emitter layer containing an alkaline earth metal oxide containing at least barium as a main component is coated on a substrate containing 0.01 to 0.5 wt% scandium together with a reducing element in advance. Since it is supposed to be worn, compared to the conventional one that does not contain scadium, 2
The effect is that a long life under high current density operation of up to 4 times is realized, and an inexpensive and highly reliable cathode for an electron tube can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例を示す断面図、第2図は従
来の電子管用陰極を示す断面図、第3図は基体中のスカ
ンジウム含有率とエミツシヨン特性との関係を示す図で
ある。 図において、(1)は基体、(2)は電子放射物質層である。 なお各図中、同一符号は同一又は相当部分を示す。
FIG. 1 is a sectional view showing an embodiment of the present invention, FIG. 2 is a sectional view showing a conventional cathode for an electron tube, and FIG. 3 is a diagram showing a relationship between a scandium content rate in a substrate and an emission characteristic. . In the figure, (1) is a substrate and (2) is an electron emitting material layer. In each drawing, the same reference numerals indicate the same or corresponding parts.

フロントページの続き (72)発明者 石田 誠子 神奈川県鎌倉市大船2丁目14番40号 三菱 電機株式会社商品研究所内 (56)参考文献 特開 昭58−40731(JP,A) 特開 昭58−225528(JP,A) 特開 昭61−7536(JP,A)Front Page Continuation (72) Inventor Seiko Ishida 2-14-40 Ofuna, Kamakura City, Kanagawa Mitsubishi Electric Corp. Product Research Laboratory (56) Reference JP 58-40731 (JP, A) JP 58- 225528 (JP, A) JP 61-7536 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】主成分がニッケルからなる基体中にシリコ
ンまたはマグネシウムの一方または両方を含む一種以上
の還元剤とともに0.01〜0.5 重量%のスカンジウムを含
有させ、この基体の表面に少なくともバリウムを含むア
ルカリ土類金属酸化物を主成分とする電子放射物質層を
形成したことを特徴とする電子管用陰極。
1. An alkali containing at least barium on the surface of a substrate whose main component is nickel and 0.01 to 0.5% by weight of scandium together with one or more reducing agents containing one or both of silicon and magnesium. A cathode for an electron tube, comprising an electron emitting material layer containing an earth metal oxide as a main component.
JP22930385A 1985-07-19 1985-10-14 Electron tube cathode Expired - Lifetime JPH0626096B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP22930385A JPH0626096B2 (en) 1985-10-14 1985-10-14 Electron tube cathode
CA000513900A CA1270890A (en) 1985-07-19 1986-07-16 Cathode for electron tube
US06/886,777 US4797593A (en) 1985-07-19 1986-07-17 Cathode for electron tube
EP86305560A EP0210805B1 (en) 1985-07-19 1986-07-18 Cathode for electron tube
CN86104753.2A CN1004452B (en) 1985-07-19 1986-07-18 Cathod for electric valve
DE86305560T DE3689134T2 (en) 1985-07-19 1986-07-18 Cathode for electron tube.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22930385A JPH0626096B2 (en) 1985-10-14 1985-10-14 Electron tube cathode

Publications (2)

Publication Number Publication Date
JPS6288241A JPS6288241A (en) 1987-04-22
JPH0626096B2 true JPH0626096B2 (en) 1994-04-06

Family

ID=16890021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22930385A Expired - Lifetime JPH0626096B2 (en) 1985-07-19 1985-10-14 Electron tube cathode

Country Status (1)

Country Link
JP (1) JPH0626096B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840731A (en) * 1981-09-03 1983-03-09 Toshiba Corp Oxide coated cathode structure
JPS58225528A (en) * 1982-06-25 1983-12-27 Toshiba Corp Cathode structure
JPH0624091B2 (en) * 1984-06-20 1994-03-30 株式会社東芝 Oxide cathode structure

Also Published As

Publication number Publication date
JPS6288241A (en) 1987-04-22

Similar Documents

Publication Publication Date Title
EP0210805B1 (en) Cathode for electron tube
US4924137A (en) Cathode for electron tube
CA2037675C (en) Electron tube cathode
JPS645417B2 (en)
JPH0690907B2 (en) Electron tube cathode
JPH0626096B2 (en) Electron tube cathode
JPH0782804B2 (en) Electron tube cathode
JPS6290821A (en) Cathode for electron tube
JPH0743995B2 (en) Electron tube cathode
JP2718389B2 (en) Cathode for electron tube
KR900003175B1 (en) Cathode in cathode ray tube
JPH0546653B2 (en)
JPS62165833A (en) Cathode for electron tube
JPH05266783A (en) Cathode for electron tube
JPS62165832A (en) Cathode for electron tube
JPH0546652B2 (en)
JPH07107825B2 (en) Electron tube cathode
JPH0750586B2 (en) Electron tube cathode
JPH01213935A (en) Cathode of electron tube
JPH01315926A (en) Cathode for electron tube
JPS63257153A (en) Cathode for electron tube
JP2730260B2 (en) Cathode for electron tube
JPH06105585B2 (en) Electron tube cathode
JPH0544767B2 (en)
JPH0237645A (en) Cathode for electron tube

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term