JPS648786B2 - - Google Patents

Info

Publication number
JPS648786B2
JPS648786B2 JP56033974A JP3397481A JPS648786B2 JP S648786 B2 JPS648786 B2 JP S648786B2 JP 56033974 A JP56033974 A JP 56033974A JP 3397481 A JP3397481 A JP 3397481A JP S648786 B2 JPS648786 B2 JP S648786B2
Authority
JP
Japan
Prior art keywords
column
flow path
carrier gas
ion source
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56033974A
Other languages
Japanese (ja)
Other versions
JPS57148246A (en
Inventor
Eiji Tajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56033974A priority Critical patent/JPS57148246A/en
Publication of JPS57148246A publication Critical patent/JPS57148246A/en
Publication of JPS648786B2 publication Critical patent/JPS648786B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7206Mass spectrometers interfaced to gas chromatograph

Description

【発明の詳細な説明】 本発明はガスクロマトグラフと質量分析計を直
結した分析装置に係り、特にイオン源を動作させ
たままカラム交換が可能な流路切換装置を備えた
分析装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an analyzer in which a gas chromatograph and a mass spectrometer are directly connected, and particularly to an analyzer equipped with a flow path switching device that allows column exchange while the ion source is operating.

第1図に従来のガスクロマトグラフと質量分析
計を直結した装置の例を示す。試料流入口2から
注入された試料は、キヤリアガス1(主にヘリウ
ムが用いられる)により、オーブン3内のカラム
4の中へ運ばれ、各成分毎に分離される。カラム
4の出口圧力はほぼ大気圧であるが、質量分析計
10のイオン源9は、高真空排気系11により高
真空に保たれているので、セパレータ7において
キヤリアガスが排気系8により分離除去され、試
料成分のみがイオン源9に流入される。これによ
り、ガスクロマトグラフと質量分析計の直結分析
ができる。試料は一般にアセトンの如き溶媒によ
り薄められているので、これらの溶媒がイオン源
に流入し、イオン源などを汚したりする。このよ
うな悪影響を防ぐため、従来は流路に直結して溶
媒除去バルブ6を設け、溶媒成分の流出してくる
時、この溶媒をバイパス排気するものが多い。第
2図および第3図にこの溶媒除去バルブの構造と
流路切換例を示す。
Figure 1 shows an example of a conventional device that directly connects a gas chromatograph and a mass spectrometer. A sample injected from the sample inlet 2 is carried by a carrier gas 1 (mainly helium is used) into a column 4 in an oven 3, and is separated into each component. Although the outlet pressure of the column 4 is approximately atmospheric pressure, the ion source 9 of the mass spectrometer 10 is maintained at a high vacuum by the high vacuum evacuation system 11, so the carrier gas is separated and removed by the evacuation system 8 in the separator 7. , only sample components are flowed into the ion source 9. This allows for direct analysis between a gas chromatograph and a mass spectrometer. Since samples are generally diluted with solvents such as acetone, these solvents flow into the ion source and contaminate the ion source. In order to prevent such adverse effects, conventionally, a solvent removal valve 6 is often provided directly connected to the flow path to bypass and exhaust the solvent when the solvent component flows out. FIGS. 2 and 3 show the structure of this solvent removal valve and an example of flow path switching.

第2図は、測定時のバルブ流路を示すもので、
溶媒除去バルブ外筒15の内面を密に摺動する溶
媒除去バルブ内筒16があり、この位置をつまみ
17によつて移動することにより、第2図の状態
と第3図の状態に流路を切換えることが可能であ
る。内筒16は、第2図の位置ではカラム4側と
セパレータ7側とを連通させ、第3図の位置では
溶媒を排気口から排気系8へ排気させ、セパレー
タ7へは流入させない状態にする。パツキング1
8は、外部との気密シールのために用いられる。
Figure 2 shows the valve flow path during measurement.
There is a solvent removal valve inner cylinder 16 that tightly slides on the inner surface of the solvent removal valve outer cylinder 15, and by moving this position with a knob 17, the flow path can be changed between the state shown in FIG. 2 and the state shown in FIG. It is possible to switch. In the position shown in FIG. 2, the inner cylinder 16 connects the column 4 side and the separator 7 side, and in the position shown in FIG. . Packing 1
8 is used for airtight sealing with the outside.

ガスクロマトグラフのカラム4は、分析目的に
応じて各種のものが用いられ、しばしば交換する
必要がある。第1図において、カラム4を取外し
たとき、カラム接続口5で大気圧となり、空気が
溶媒除去バルブ6から流入する。これは、第2
図、第3図の状態の時、空気が完全には封止され
ず、高真空のイオン源9に流入し、イオン化に用
いられる熱フイラメントなどを焼損させるので、
カラム交換時には、イオン源の動作を停止しなけ
ればならない。このため再測定までにイオン源9
を再び動作させるので測定までに時間を要し、条
件設定やイオン源9の汚れなどの原因を生ぜしめ
る。
Various types of columns 4 are used in gas chromatographs depending on the purpose of analysis, and they often need to be replaced. In FIG. 1, when the column 4 is removed, atmospheric pressure is reached at the column connection port 5, and air flows in from the solvent removal valve 6. This is the second
In the state shown in Fig. 3, air is not completely sealed and flows into the high-vacuum ion source 9, burning out the thermal filament used for ionization.
When replacing the column, the ion source must be stopped. Therefore, the ion source 9
Since the ion source 9 is operated again, it takes time to complete the measurement, which may cause conditions setting or the ion source 9 to become contaminated.

本発明の目的は、カラム交換時にもイオン源の
動作を停止する必要のない手段を備えたガスクロ
マトグラフ−質量分析計装置を提供することにあ
る。
An object of the present invention is to provide a gas chromatograph-mass spectrometer device that is equipped with means that does not require stopping the operation of the ion source even when replacing a column.

従来の溶媒除去バルブは第2図と第3図の操作
が可能であるだけであつたが、本発明では第5図
の如き動作が可能な構造とし、更に、キヤリアガ
スをカラム取外し時にも、測定と同じ流路をセパ
レータに流入させる流路と、バルブを設置する。
Conventional solvent removal valves were only capable of operating as shown in Figures 2 and 3, but the present invention has a structure that allows operations as shown in Figure 5, and furthermore, the carrier gas can be measured even when the column is removed. Install a flow path and a valve that allow the same flow path to flow into the separator.

本発明の一実施例を第4図に、また、カラム取
外し時の溶媒除去バルブの動作状態を第5図に示
す。ここで、カラム取外しの操作を説明する。
An embodiment of the present invention is shown in FIG. 4, and FIG. 5 shows the operating state of the solvent removal valve when the column is removed. Here, the operation for removing the column will be explained.

第4図において、バルブ12および14を閉
じ、バルブ13を開く。また同時に、溶媒除去バ
ルブ6は、第5図の状態に切換える。これは第3
図におけるつまみ17を180゜回転したものと同じ
である。この状態で、キヤリアガスは溶媒除去バ
ルブ外筒15の排気口から入り、セパレータ7側
に流入するので、この時のキヤリアガスの流量を
測定時のカラム4から流入する量と同じに保つこ
とによりイオン源9を測定時と同じ条件にする。
ここでオーブン3内のカラム4を取外しても、カ
ラム接続口5はキヤリアガスが僅か大気へ流出す
る程度で、空気が系に流入することがないので、
イオン源9を動作状態にしておくことができる。
In FIG. 4, valves 12 and 14 are closed and valve 13 is opened. At the same time, the solvent removal valve 6 is switched to the state shown in FIG. This is the third
This is the same as the knob 17 in the figure rotated 180 degrees. In this state, the carrier gas enters from the exhaust port of the solvent removal valve outer cylinder 15 and flows into the separator 7 side, so by keeping the flow rate of the carrier gas at this time the same as the amount flowing from the column 4 during measurement, 9 under the same conditions as during measurement.
Even if the column 4 inside the oven 3 is removed, only a small amount of carrier gas will flow out to the atmosphere through the column connection port 5, and no air will flow into the system.
The ion source 9 can be left in operation.

このため、カラム4の交換時にも、イオン源9
を停止する必要がないから、測定が即時可能とな
り分析処理効率が向上する。たとえばイオン源9
に空気を流入させるため、再排気と、イオン源9
の再加熱をして定常状態を得るまで通常数時間を
要するが、その時間が節約できるものでもたらさ
れる効果は大である。
Therefore, even when replacing the column 4, the ion source 9
Since there is no need to stop the process, measurement can be performed immediately, improving analysis processing efficiency. For example, ion source 9
In order to let air flow into the ion source 9, re-evacuation and
It usually takes several hours to reheat and reach a steady state, but the time savings can be significant.

これらの各種バルブをスイツチで連動させ自動
的に設定すると更に効率的である。またバルブの
構造を三方バルブとしても同様である。溶媒除去
バルブは、デツドボリユームの少ない構造が必要
であり、図ではその一例を示しているが、必らず
しも、図の構造でなくても同様の効果のあるもの
ならない。
It would be even more efficient to link these various valves with switches and set them automatically. Further, the same applies if the valve structure is a three-way valve. The solvent removal valve needs to have a structure with a small dead volume, and although an example is shown in the figure, it does not necessarily have the same effect even if it does not have the structure shown in the figure.

本発明によれば、カラムの交換に際しても、イ
オン源の動作を停止する必要がなく、連続測定が
可能になる。
According to the present invention, there is no need to stop the operation of the ion source even when replacing a column, and continuous measurement becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の流路接続図、第2図および第3
図は従来の溶媒除去バルブの動作例を示す図、第
4図は本発明の一実施例をカラム交換時の流路を
示す図、第5図は第4図の実施例のバルブの動作
を示す図である。 4……カラム、6……溶媒除去バルブ、12…
…バルブA、13……バルブB、14……バルブ
C、16……溶媒除去バルブ内筒。
Figure 1 is a conventional flow path connection diagram, Figures 2 and 3 are
Figure 4 shows an example of the operation of a conventional solvent removal valve, Figure 4 is a diagram showing a flow path during column exchange in an embodiment of the present invention, and Figure 5 shows the operation of the valve in the embodiment of Figure 4. FIG. 4... Column, 6... Solvent removal valve, 12...
...Valve A, 13...Valve B, 14...Valve C, 16...Solvent removal valve inner cylinder.

Claims (1)

【特許請求の範囲】[Claims] 1 カラムに注入される試料を分離するようにキ
ヤリアガス源から前記カラムにキヤリアガスを流
し、それによつて前記カラムから流出する流出物
中の分離された試料成分をその中のキヤリアガス
からセパレータで分離して質量分析計に導びく第
1の流路系と、前記カラムからの流出物中の溶媒
成分を排気系に導びく第2の流路系と、前記キヤ
リアガス源からのキヤリアガスを前記カラムを介
さずに前記セパレータに流す第3の流路系と、前
記第1、第2および第3の流路系の切換えを行う
手段とを備えていることを特徴とするガスクロマ
トグラフ−質量分析計装置。
1 flowing a carrier gas through the column from a carrier gas source so as to separate the sample injected into the column, whereby the separated sample components in the effluent exiting the column are separated from the carrier gas therein by a separator; a first flow path system leading to a mass spectrometer; a second flow path system leading a solvent component in the effluent from the column to an exhaust system; and a second flow path system leading a carrier gas from the carrier gas source without passing through the column. A gas chromatograph-mass spectrometer device, characterized in that the gas chromatograph-mass spectrometer device is equipped with a third flow path system for supplying water to the separator, and means for switching between the first, second and third flow path systems.
JP56033974A 1981-03-11 1981-03-11 Gas chromatograph-mass spectroscope Granted JPS57148246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56033974A JPS57148246A (en) 1981-03-11 1981-03-11 Gas chromatograph-mass spectroscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56033974A JPS57148246A (en) 1981-03-11 1981-03-11 Gas chromatograph-mass spectroscope

Publications (2)

Publication Number Publication Date
JPS57148246A JPS57148246A (en) 1982-09-13
JPS648786B2 true JPS648786B2 (en) 1989-02-15

Family

ID=12401453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56033974A Granted JPS57148246A (en) 1981-03-11 1981-03-11 Gas chromatograph-mass spectroscope

Country Status (1)

Country Link
JP (1) JPS57148246A (en)

Also Published As

Publication number Publication date
JPS57148246A (en) 1982-09-13

Similar Documents

Publication Publication Date Title
US3633027A (en) Mass spectrometer connected to a gap chromatograph through a valved molecule separator
US20130042703A1 (en) Sample chamber for laser ablation inductively coupled plasma mass spectroscopy
JPS63243864A (en) Interface of gas chromatograph mass spectrometer
US3398505A (en) Dual stage membrane gas separators with variable conductance means for varying their throughput
US3751880A (en) Carrier gas separating unit
US6397660B1 (en) Gas analyzing apparatus
US3842266A (en) Atmospheric sampling probe for a mass spectrometer
JPS648786B2 (en)
US20080083874A1 (en) Vacuum interface for mass spectrometer
JPH01221660A (en) Extraction chromatograph separator
US11454615B2 (en) Quick liquid exchange in liquid chromatography
JPH03170838A (en) Concentration analysis method and apparatus
JPH03261061A (en) Gas chromatograph mass spectrometer
JPS6227873Y2 (en)
Grimsrud Vacuum envelope for high pressure mass spectrometry applications
JPH0291564A (en) Head space sampler
JPH08122314A (en) Gas-chromatography mass spectometric analyzer
SU1226305A1 (en) Gas chromatograph
JPH02115765A (en) Evacuated gas sampling system for gc
JPS58190755A (en) Gas chromatograph mass spectrometer apparatus
JPH05180817A (en) Atmospheric organic compound analyzing device
JPS6073336A (en) Sampling gas introducing apparatus
JPH02227663A (en) Gas chromatograph
JP2002181798A (en) Gas chromatographic apparatus
JPH01209646A (en) Sample chamber evacuation device