JPH01221660A - Extraction chromatograph separator - Google Patents

Extraction chromatograph separator

Info

Publication number
JPH01221660A
JPH01221660A JP63048185A JP4818588A JPH01221660A JP H01221660 A JPH01221660 A JP H01221660A JP 63048185 A JP63048185 A JP 63048185A JP 4818588 A JP4818588 A JP 4818588A JP H01221660 A JPH01221660 A JP H01221660A
Authority
JP
Japan
Prior art keywords
extraction
extract
column
valve
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63048185A
Other languages
Japanese (ja)
Other versions
JP2596582B2 (en
Inventor
Yoshio Yamauchi
芳雄 山内
Muneo Saito
斎藤 宗雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jasco Corp
Original Assignee
Japan Spectroscopic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Spectroscopic Co Ltd filed Critical Japan Spectroscopic Co Ltd
Priority to JP63048185A priority Critical patent/JP2596582B2/en
Publication of JPH01221660A publication Critical patent/JPH01221660A/en
Application granted granted Critical
Publication of JP2596582B2 publication Critical patent/JP2596582B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

PURPOSE:To improve reproducibility and to widen the range of linearity to sample load by providing selector valves which switch passages passing an extraction vessel, a trap column and sepn. column and passages to bypass the same to each of said vessel and columns. CONSTITUTION:The liquefied gas in a cylinder 1 is fed to a flow passage system by fully opening a pressure regulating valve 21 and operating a pump 3. A 6-way valve 6 is selected to put the supercritical fluid into the extraction vessel 13 to extract the soluble component in a sample. The extract is thereafter passed through the 6-way valves 6, 7 and a pressure regulating valve 14 and is adsorbed by the adsorbent material in the trap column 16. The 6-way valves 6-8 are switched, the pressure regulating valve 14 is fully opened and the pump 4 is operated. The liquefied gas and the modifier solvent pass through a heat exchanger to form the supercritical fluid. The modifier solvent dissolves the extract in the trap column when the 6-way valve 7 is switched at this time. The dissolved extract is passed through the valves 8, 9 and separated by the sepn. column then the components are extracted by a detector 20.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、超臨界流体又は液化ガスを用いて試料から可
溶物質を抽出し、オンラインでこの抽出物をクロマトグ
ラフに導いて成分に分離し、必要に応じて該成分を分取
することが可能な抽出・クロマトグラフ分離装置に関す
る。
Detailed Description of the Invention [Industrial Application Field] The present invention extracts soluble substances from a sample using a supercritical fluid or liquefied gas, and conducts this extract online to a chromatograph to separate it into components. The present invention also relates to an extraction/chromatographic separation device that can separate the components as needed.

[従来の技術] 本発明者は、超臨界流体または液化ガスを用いて試料か
ら可溶物質を抽出し、オンラインでこの抽出物をクロマ
トグラフに導いて成分に分離することが可能な抽出・ク
ロマトグラフ分離装置を案出した(特開昭62−276
60号公報)。
[Prior Art] The present inventor has developed an extraction/chromatography system that is capable of extracting soluble substances from a sample using a supercritical fluid or liquefied gas, and leading this extract online to a chromatograph to separate it into components. Devised a graph separation device (Japanese Patent Application Laid-Open No. 62-276
Publication No. 60).

この抽出・クロマトグラフ分離装置は、試料が収容され
た抽出容器内へ、超臨界流体又は液化ガスを含む抽出・
溶離流体をポンプで送液して、該試料の可溶成分を抽出
し、主に抽出容器の下流側め流路内の抽出物を、ガス状
態の該抽出・溶離流体が予め満たされたトラッピングル
ープ内に低圧吸引して一旦保持しておき、次に、オンラ
インでこの抽出物をクロマトグラフに導くようになって
いた。
This extraction and chromatographic separation device injects a supercritical fluid or liquefied gas into an extraction container containing a sample.
The eluting fluid is pumped to extract the soluble components of the sample, and the extract in the flow path, mainly on the downstream side of the extraction container, is stored in a trap filled with the gaseous extraction/elution fluid in advance. The extract was temporarily held in the loop by low-pressure suction, and then led online to the chromatograph.

また、クロマトグラフを構成する検出器の下流側には、
分離カラムで抽出物を成分に分離させてこれを検出器に
導くために、背圧制御弁が設けられていた。
In addition, on the downstream side of the detector that makes up the chromatograph,
A backpressure control valve was provided to separate the extract into components in the separation column and direct them to the detector.

この装置では、抽出及び分離をオンラインで処理できる
という点で画期的である。
This device is revolutionary in that extraction and separation can be performed online.

[発明が解決しようとする問題点コ しかし、試料を抽出し、成分に分離して定量した場合、
相対標準偏差がlθ%程度であり、再現性が低(、また
、試料負荷に対する直線性の範囲が狭いため、定蛍分析
装置として用いるには適当でなかった。
[Problems to be solved by the invention]However, when a sample is extracted, separated into components, and quantified,
The relative standard deviation was about lθ%, the reproducibility was low (and the range of linearity with respect to sample loading was narrow), so it was not suitable for use as a constant fluorescence analyzer.

また、試料抽出にトラッピングループを用いていたので
、最初に抽出されるものしかトラップできず、取り扱え
る試料量の範囲が極めて狭かった。
Furthermore, since a trapping loop was used for sample extraction, only the first sample extracted could be trapped, and the range of sample amounts that could be handled was extremely narrow.

本発明の目的は、上記問題点に鑑み、再現性を向上でき
、かつ、試料負向に対する直線性の範囲及び取り扱える
試料量の範囲を広くできる抽出・クロマトグラフ分離装
置及びその方法を提供することにある。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide an extraction/chromatographic separation device and method that can improve reproducibility and widen the range of linearity in the negative direction of the sample and the range of sample amounts that can be handled. It is in.

[問題点を解決するための手段] 本発明では、抽出部、吸着部および分離部が順に縦続接
続され、超臨界流体または液化ガスを含む抽出・溶離流
体が該抽出部に供給される抽出・クロマトグラフ分離装
置において、 該抽出部は、試料が収容される抽出容器と、該抽出容器
を、aる流路と該抽出容器をバイパスする旅路とに切り
換える切換バルブとを有し、該吸着部は、圧力調整弁と
、該圧力調整弁の後流側に接続され、抽出物を吸着する
吸着剤が充填されたトラップカラムと、該圧力調整弁を
介し該トラップカラムを通る流路とこれらをバイパスす
る流路とに切り換える切換バルブとを有し、該分離部は
、抽出物を成分に分離する分離カラムと、該分離カラム
を通る流路と該分離カラムをバイパスする流路とに切り
換える切換バルブと、該切換バルブの後流側に設けられ
、溶出物を検出する検出器と、該切換バルブの後流側に
接続された圧力調整弁と、を存することを特徴としてい
る。
[Means for Solving the Problems] In the present invention, an extraction section, an adsorption section, and a separation section are sequentially connected in cascade, and an extraction/elution fluid containing a supercritical fluid or liquefied gas is supplied to the extraction section. In the chromatographic separation device, the extraction section includes an extraction container in which a sample is stored, a switching valve that switches the extraction container to a flow path and a passage that bypasses the extraction container, and the extraction section includes comprises a pressure regulating valve, a trap column connected to the downstream side of the pressure regulating valve and filled with an adsorbent for adsorbing extract, a flow path passing through the trap column via the pressure regulating valve, and The separation unit includes a separation column that separates the extract into components, and a switching valve that switches between a flow path passing through the separation column and a flow path bypassing the separation column. The present invention is characterized in that it includes a valve, a detector provided on the downstream side of the switching valve to detect eluate, and a pressure regulating valve connected to the downstream side of the switching valve.

また、本発明に係る抽出・クロマトグラフ分取方法は、
上記装置の使用方法でもあり、超臨界流体または液化ガ
スを含む抽出・溶離流体を、抽出容器内の試料に通して
試料の可溶成分を抽出し、トラップカラムに充填された
吸着剤にその抽出物を導き、該抽出・溶離流体を減圧し
てその溶解度を低下させることにより該抽出物を吸着剤
に吸着させる抽出・吸着工程と、次に、該トラップヵラ
ムをバイパスさせて、加圧して溶解度を高めた抽出・溶
離流体をトラップカラムに導き、抽出・溶離流体を高め
ることにより吸着剤に吸着されている抽出物をトラップ
カラムから溶出させ、抽出物のうち目的とする抽出物以
外の大部分を、分離カラムをバイパスさせて排出させ、
目的とする抽出物を分離カラムに通すとともに、該抽出
容器及び該トラップカラムをバイパスさせて抽出・溶離
流体を分離カラムに通し、目的とする抽出物を成分に分
離させる分離工程と、を有することを特徴とする。
Furthermore, the extraction/chromatographic separation method according to the present invention includes:
This is also a method of using the above device, in which an extraction/elution fluid containing a supercritical fluid or liquefied gas is passed through the sample in an extraction container to extract the soluble components of the sample, and the soluble components are transferred to an adsorbent packed in a trap column. an extraction/adsorption step in which the extract is adsorbed onto an adsorbent by introducing the extract and reducing its solubility by reducing the pressure of the extraction/elution fluid, and then bypassing the trap column and increasing the pressure to reduce its solubility. The increased extraction/elution fluid is guided to the trap column, and by increasing the extraction/elution fluid, the extract adsorbed on the adsorbent is eluted from the trap column, and most of the extract other than the target extract is removed. , bypassing and draining the separation column;
A separation step of passing the target extract through a separation column and bypassing the extraction container and the trap column to pass the extraction/elution fluid through the separation column to separate the target extract into components. It is characterized by

[実施例] (1)一実施例 図面に基づいて本発明の一実施例を説明する。[Example] (1) One example An embodiment of the present invention will be described based on the drawings.

第1図は本発明の一実施例構成図であり、抽出・クロマ
トグラフ分離装置が示されている。
FIG. 1 is a block diagram of one embodiment of the present invention, showing an extraction/chromatographic separation apparatus.

図中、lはボンベであり、抽出・溶離流体としての液化
ガス、例えば液化CO,ガスが収容されている。
In the figure, l is a cylinder, which contains a liquefied gas, such as liquefied CO, as an extraction/elution fluid.

2は貯槽であり、モディファイア溶媒、例えばエタノー
ルが収容されている。このモディファイア溶媒は、抽出
・溶離流体の一部を構成する。
2 is a storage tank, which contains a modifier solvent, such as ethanol. This modifier solvent forms part of the extraction and elution fluid.

3および4はポンプであり、それぞれ液化ガスを所定流
量で加圧送液し、モディファイア溶媒を液化ガスに対し
一定の割合で送液する。このポンプ3は冷却器(不図示
)により冷却されている。
Pumps 3 and 4 pump the liquefied gas at a predetermined flow rate and feed the modifier solvent at a constant ratio to the liquefied gas. This pump 3 is cooled by a cooler (not shown).

5は熱交換器であり、その一端がポンプ3および4の出
口に共通に接続され、液化ガスを予熱して超臨界流体に
する。
5 is a heat exchanger, one end of which is commonly connected to the outlets of pumps 3 and 4, and preheats the liquefied gas into a supercritical fluid.

6〜9は六方弁であり、いずれもボートA−Fを有し、
図示の状聾では、実線部AB、CDおよびEF間の流路
が開通され、点線部BC,DEおよびFA間の流路が開
通されている。いずれも切換操作により開通流路と開通
流路とを切り換え可能になっている。六方弁6のボート
Aは熱交換器5の他端に接続されている。六方弁6〜9
間は、六方弁6のボートFと六方弁7のボートAが接続
され、六方弁7のボートFと六方弁8のボートAが接続
され、六方弁8のボートBと六方弁9のボートBが接続
されている。また、六方弁6〜8の各ボートDは閉じら
れている。
6 to 9 are hexagonal valves, all of which have boats A to F,
In the illustrated state of deafness, the flow path between the solid line portions AB, CD, and EF is open, and the flow path between the dotted line portions BC, DE, and FA is open. In either case, it is possible to switch between an open channel and an open channel by a switching operation. Boat A of the six-way valve 6 is connected to the other end of the heat exchanger 5. Six-way valve 6-9
Between, boat F of six-way valve 6 and boat A of six-way valve 7 are connected, boat F of six-way valve 7 and boat A of six-way valve 8 are connected, and boat B of six-way valve 8 and boat B of six-way valve 9 are connected. is connected. Further, each boat D of the six-way valves 6 to 8 is closed.

lO〜12は排気弁であり、各人口はそれぞれ六方弁6
〜8のボートCに接続され、各出口は外部に連通されて
おり、それぞれ、抽出容器13、トラップカラム16、
分離カラムを流路系から切り離しているとき、すなわち
、六方弁6〜9の点線部流路を開通させているときにガ
スを外部に放散させる。
lO~12 is an exhaust valve, and each population is a six-way valve 6
~8 boats C, each outlet is connected to the outside, and the extraction container 13, trap column 16,
When the separation column is separated from the flow path system, that is, when the dotted line portions of the hexagonal valves 6 to 9 are opened, the gas is diffused to the outside.

13は抽出容器であり、試料が収容され、その入口が六
方弁6のボートBに接続され、出口が六方弁6のボート
Eに接続されている。この試料は、液体、固体(扮拉体
を含む)のいずれであってもよく、液体の場合には、吸
液性の物質に試料を吸収させてこれを抽出容器13に収
容する。
Reference numeral 13 denotes an extraction container, which houses a sample, and has an inlet connected to boat B of the six-way valve 6, and an outlet connected to boat E of the six-way valve 6. This sample may be either a liquid or a solid (including an analyte); in the case of a liquid, the sample is absorbed into a liquid-absorbing substance and then stored in the extraction container 13.

14は内容積の小さい(例えば20μC以下)圧力調整
弁であり、例えば弁棒がリターンスプリングの付勢力に
抗しソレノイドで軸方向に駆動されて流路が全開または
全閉される電磁弁で構成されており、その入口は六方弁
7のボートBに接続されている。
Reference numeral 14 designates a pressure regulating valve with a small internal volume (for example, 20 μC or less), which is composed of, for example, an electromagnetic valve whose valve stem is driven in the axial direction by a solenoid against the biasing force of a return spring to fully open or fully close the flow path. The inlet is connected to the boat B of the six-way valve 7.

15は圧力指示調節器であり、圧力調整弁14の上流側
の圧力を検出し、これが設定値になるよう圧力調整弁1
4を制御し、検出圧力を指示する。
15 is a pressure indicating regulator, which detects the pressure on the upstream side of the pressure regulating valve 14 and controls the pressure regulating valve 1 so that this becomes the set value.
4 and indicates the detected pressure.

圧力調整弁14が上記電磁弁である場合には、例えば設
定圧力を越えると全開にし、設定圧力以下になると全閉
にする。この場合、電磁弁のオン・オフの周期は、通常
1〜20Hzになり、特に問題はない。また、電磁弁の
開と閉のデユーティ比を調節して音圧を制御してもよい
。この開閉繰返し動作により、電磁弁内の実質的な流体
滞留量は極めて小さくなり、抽出物が弁内に滞留するの
を阻止できる(特願昭62−008652号明細書参照
)。
When the pressure regulating valve 14 is the above-mentioned electromagnetic valve, for example, it is fully opened when the set pressure is exceeded, and fully closed when the set pressure is lower than the set pressure. In this case, the on/off cycle of the solenoid valve is usually 1 to 20 Hz, and there is no particular problem. Further, the sound pressure may be controlled by adjusting the duty ratio between opening and closing of the solenoid valve. By repeating this opening and closing operation, the actual amount of fluid retained within the solenoid valve becomes extremely small, and it is possible to prevent the extract from retaining within the valve (see Japanese Patent Application No. 62-008652).

16はトラップカラムであり、その入口が圧力調整弁1
4の出口に接続され、出口が六方弁7のボートEに接続
されており、内部には試料から抽出された抽出物を吸着
する吸着剤、例えば多孔性シリカゲルの微粒子が充填さ
れている。
16 is a trap column, the inlet of which is connected to the pressure regulating valve 1.
4, and the outlet is connected to the boat E of the hexagonal valve 7, and the interior thereof is filled with an adsorbent, such as fine particles of porous silica gel, that adsorbs the extract extracted from the sample.

17は標準試料ループであり、一端が六方弁9のボート
Cに接続され他端が六方弁9のボートFに接続されてお
り、六方弁9の注入部I8からマイクロシリンジ(不図
示)を用いて標準試料ループ!7内に標準試料液が注入
される。六方弁9のポートD、Eは外部に連通されてお
り、標準試料ループ17使用後は該ループ内のガスが外
部に放散される。
17 is a standard sample loop, one end of which is connected to the boat C of the six-way valve 9, and the other end connected to the boat F of the six-way valve 9, and a microsyringe (not shown) is used from the injection port I8 of the six-way valve 9. Standard sample loop! A standard sample solution is injected into 7. Ports D and E of the six-way valve 9 are communicated with the outside, and after the standard sample loop 17 is used, the gas in the loop is diffused to the outside.

19は分離カラムであり、その入口が六方弁9のポート
Aに接続され、出口が六方弁8のポートEに接続され、
試料を成分に分離するための固定相、例えば多孔性シリ
カゲルの微粒子が充填されている。
19 is a separation column, the inlet of which is connected to port A of six-way valve 9, the outlet connected to port E of six-way valve 8,
It is filled with a stationary phase for separating the sample into its components, such as microparticles of porous silica gel.

20は検出器であり、例えば多波長UV検出器であって
、その入口が六方弁8のポートFに接続されている。
20 is a detector, for example a multi-wavelength UV detector, the inlet of which is connected to port F of the six-way valve 8.

21は圧力指示調整弁であり、分取可能に構成する場合
には14と同じく内容積の小さい圧力調整弁が用いられ
、その入口が検出器20の出口に接続されている。
Reference numeral 21 denotes a pressure control valve, and when configured to allow fractionation, a pressure control valve with a small internal volume is used like 14, and its inlet is connected to the outlet of the detector 20.

22は圧力指示調節器であり、圧力調整弁21の上流側
の圧力を検出し、これが設定圧力になるよう圧力調整弁
2菫の開度を調節するとともに、検出圧力を指示する。
A pressure indicating regulator 22 detects the pressure on the upstream side of the pressure regulating valve 21, adjusts the opening degree of the two pressure regulating valves so that this becomes the set pressure, and indicates the detected pressure.

23はフラクションコレクタであり、圧力調整弁2■を
通って排出される溶出物を分取するためのものである。
23 is a fraction collector, which is used to separate the eluate discharged through the pressure regulating valve 2.

24は恒温槽であり、上記構成要1g5.6〜9.13
、!6.17および19が収容され、所定の超臨界温度
以上の温度に保つものであって、例えば液化ガスがCO
3である場合には、室温より10〜80℃高い所定値に
保つものである。
24 is a constant temperature bath, the above-mentioned components 1g 5.6 to 9.13
,! 6.17 and 19 are housed and kept at a temperature above a predetermined supercritical temperature, for example, when the liquefied gas is CO
3, the temperature is maintained at a predetermined value 10 to 80°C higher than room temperature.

次に、上記の如く構成された本実施例の動作を説明する
。最初に抽出・吸着処理を行い、次に分離、分取処理を
行う。
Next, the operation of this embodiment configured as described above will be explained. First, extraction and adsorption processing is performed, followed by separation and preparative processing.

(A)抽出・吸着処理 六方弁6および8は点線で示す流路開通させ、六方弁7
は実線で示す流路を開通させる。
(A) Extraction/adsorption processing The six-way valves 6 and 8 are opened to the flow paths shown by dotted lines, and the six-way valve 7 is opened.
opens the channel shown by the solid line.

恒温槽24および圧力指示調節@15の設定値を、液化
ガスが、試料から目的物質を抽出するのに好ましい超臨
界流体になる値にする。また、圧力指示調節器22の設
定圧力を零に、すなわち圧力調整弁2Iを全開にする。
The temperature chamber 24 and pressure indication adjustment @15 are set to values that result in the liquefied gas being a supercritical fluid preferred for extracting the target substance from the sample. Further, the set pressure of the pressure indicating regulator 22 is set to zero, that is, the pressure regulating valve 2I is fully opened.

二の状態で、ポンプ3を作動させ、ボンベl内の液化ガ
スを流路系に送液する。この液化ガスが熱交換器5を通
過すると、超臨界流体になる。
In the second state, the pump 3 is operated to send the liquefied gas in the cylinder 1 to the channel system. When this liquefied gas passes through the heat exchanger 5, it becomes a supercritical fluid.

次に、抽出容器13内に試料を収容し、六方弁6を切り
換えて実線で示す流路を開通させる。これにより、超臨
界流体は抽出容器13内に入り、試料の可溶成分を抽出
する。その後、六方弁6のEF間、六方弁7のAB間を
通り、圧力調整弁14を通過すると、減圧されてその溶
解度が急激に低下する。このため、抽出物がトラップカ
ラム16内の吸着物質に全て吸着される。超臨界流体は
ガスになり、トラップカラム16を通って六方弁7のE
F間、六方弁8のAP間、検出器20および圧力調整弁
21を通って大気中に放散される。
Next, the sample is placed in the extraction container 13, and the hexagonal valve 6 is switched to open the flow path shown by the solid line. As a result, the supercritical fluid enters the extraction vessel 13 and extracts the soluble components of the sample. Thereafter, when it passes between EF of the six-way valve 6 and between AB of the six-way valve 7, and passes through the pressure regulating valve 14, the pressure is reduced and its solubility decreases rapidly. Therefore, all of the extract is adsorbed by the adsorbent in the trap column 16. The supercritical fluid becomes a gas and passes through the trap column 16 to the E of the six-way valve 7.
F, the AP of the six-way valve 8, the detector 20, and the pressure regulating valve 21, and are emitted into the atmosphere.

(B)分離・分取処理 上記抽出・吸着処理が終了すると、六方弁6〜8を切り
換え、六方弁6および7は点線で示す流路を開通させ、
六方弁8は実線で示す流路を開通させる。また、六方弁
9は実線で示す流路を開通させておく。
(B) Separation/Preparation Process When the extraction/adsorption process described above is completed, the six-way valves 6 to 8 are switched, and the six-way valves 6 and 7 open the channels shown by dotted lines.
The six-way valve 8 opens the flow path shown by the solid line. Further, the hexagonal valve 9 leaves the flow path shown by the solid line open.

次に、圧力指示調整器15の圧力設定値を零、すなわち
圧力F4整弁14を全開にさせ、圧力指示調整器22の
圧力設定値を、その上流側で超臨界流体に保つための圧
力にする。この状態でポンプ4をも作動させる。
Next, the pressure setting value of the pressure indicating regulator 15 is set to zero, that is, the pressure F4 regulating valve 14 is fully opened, and the pressure setting value of the pressure indicating regulator 22 is set to the pressure that maintains the supercritical fluid on the upstream side. do. In this state, the pump 4 is also operated.

設定流遣の液化ガスおよびモディファイア溶媒は熱交換
器5を通り、この液化ガスは熱交換器5を通過して超臨
界流体になり、両者の混合液は六方弁6のAP間、六方
弁7のAP間、六方弁8のAB間、六方弁9のBA間、
分離カラム19、六方弁8のEF間及び検出器20を通
り、次いで圧力調整弁21を通過すると、大気圧まで減
圧されて超臨界流体がガス化され、大気中に放散される
The set flow of liquefied gas and modifier solvent passes through the heat exchanger 5, and this liquefied gas passes through the heat exchanger 5 and becomes a supercritical fluid. between AP of 7, between AB of six-way valve 8, between BA of six-way valve 9,
After passing through the separation column 19, the EF section of the six-way valve 8, and the detector 20, and then through the pressure regulating valve 21, the pressure is reduced to atmospheric pressure, and the supercritical fluid is gasified and released into the atmosphere.

また、モディファイア溶媒は廃液される。Additionally, the modifier solvent is discarded.

この状態を一定時間経て分離カラム19を安定させた後
、六、方弁7を切り換えて実線で示す流路を開通させる
。この流路系では、超臨界流体およびモディファイア溶
媒はトラップカラム16を通り、その吸着物質に吸着さ
れている抽出物を溶解して分離させ、六方弁8のAB間
、六方弁9のBA間を介し分離カラム19を通って成分
に分離され、次いで六方弁8のFE間を介し検出器20
を通って該成分が検出される。
After this state has passed for a certain period of time and the separation column 19 is stabilized, the six-way valve 7 is switched to open the flow path shown by the solid line. In this flow path system, the supercritical fluid and the modifier solvent pass through the trap column 16 to dissolve and separate the extract adsorbed on the adsorbent, and between AB of the six-way valve 8 and BA of the six-way valve 9. It passes through the separation column 19 and is separated into components, and then passes through the FE of the six-way valve 8 to the detector 20.
The component is detected through.

場合により、検出器20でモニタしながらフラクション
コレクタ23により目的成分を分取する。
Depending on the case, the target component is fractionated using the fraction collector 23 while being monitored using the detector 20 .

(C)標準試料との対比 標準試料について分析を行い、目的とする抽出物の分析
結果と対比させる場合には、次のような処理を行う。
(C) Comparison with a standard sample When analyzing a standard sample and comparing it with the analysis results of the target extract, the following processing is performed.

六方弁6および7は点線で示す流路を開通させ、六方弁
8および9は実線で示す流路を開通させる。
The six-way valves 6 and 7 open the flow path shown in dotted lines, and the six-way valves 8 and 9 open the flow path shown in solid lines.

この状態で、ポンプ3および4を作動させて超臨界流体
およびモディファイア溶媒を分離カラム19に通す。次
に、マイクロシリンジを用いて注入部18から標準試料
ループ17内へ標準液を注入した後、六方弁9を切り換
えて点線で示す流路を開通させる。これにより、標準試
料ループ17内の標準試料の分析が行われる。
In this state, pumps 3 and 4 are activated to pass the supercritical fluid and modifier solvent through the separation column 19. Next, after injecting the standard solution from the injection part 18 into the standard sample loop 17 using the microsyringe, the six-way valve 9 is switched to open the flow path shown by the dotted line. As a result, the standard sample in the standard sample loop 17 is analyzed.

(2)試験例 次に、上記装置の効果を示す試験例を説明する。(2) Test example Next, a test example showing the effects of the above device will be explained.

装置の条件は次の通りである。The conditions of the apparatus are as follows.

抽出カラム13  :内径1ha、長さ13.8mmト
ラップカラム16:内径4.6m11.長さloom履
吸着剤は直径5μmの多孔性 シリカゲル 分離カラム19  :内径4;6m11.長さ250m
5固定相は直径5μmの多、孔性 シリカゲル 圧力調整弁14,21:上記電磁弁であり弁棒の直径3
.48m霞、 ストローク長01mm 検出器20    :紫外・可視多波長検出器マルチ−
330型、 日本分光工業株式会社製 配管        :内径1/16インチ、外径0.
5’ms移動相の条件は次の通りである。
Extraction column 13: inner diameter 1ha, length 13.8mm Trap column 16: inner diameter 4.6m11. The adsorbent is a porous silica gel separation column 19 with a diameter of 5 μm: inner diameter 4; 6 m 11. length 250m
5 The stationary phase is a polyporous silica gel with a diameter of 5 μm.Pressure regulating valves 14 and 21: These are the above electromagnetic valves, and the valve stem has a diameter of 3
.. 48m haze, stroke length 01mm Detector 20: Ultraviolet/visible multi-wavelength detector multi-
330 type, JASCO Corporation piping: inner diameter 1/16 inch, outer diameter 0.
The conditions for the 5'ms mobile phase are as follows.

液化ガス     :CO2 流量5.0ag/−in 超臨界流体にするための圧 力200kg/am、温度40℃ モディファイア溶媒:メタノール 流量0.2烏Q/園in 試料としては、ポリマーからの抽出効率誤差をなくすた
め、ポリマー中の添加剤であるBIT(トリターシャル
ブチルハイドロキシベンゼン)、I rg、1076(
イルガノックス1076)およびIrg、1010ノメ
タノール溶液を使用した、各濃度は、I B/mρに調
整した。この混合溶媒をマイクロシリンジでlOμり、
抽出容器13の中に注入し、上記の抽出、吸着、分離、
分取処理を行った。但し、分離処理においては、分離カ
ラム19を安定化させた後は、六方弁7は点線で示す流
路を連続開通させた。得 −られた結果を下記表1に示
す。
Liquefied gas: CO2 flow rate 5.0ag/-in Pressure 200kg/am to make supercritical fluid, temperature 40°C Modifier solvent: Methanol flow rate 0.2 Karasu Q/in As a sample, extraction efficiency error from polymer In order to eliminate the
Irganox 1076) and Irg, 1010 nomethanol solutions were used, and the respective concentrations were adjusted to I B/mρ. Dispense 10μ of this mixed solvent with a microsyringe,
Injected into the extraction container 13, the above extraction, adsorption, separation,
Preparative processing was performed. However, in the separation process, after the separation column 19 was stabilized, the six-way valve 7 continuously opened the flow path shown by the dotted line. The results obtained are shown in Table 1 below.

表1 上表から分かるように、相対標準偏差(R3D) 1.
2〜1.7%と良好な値が得られた。
Table 1 As can be seen from the above table, relative standard deviation (R3D) 1.
Good values of 2 to 1.7% were obtained.

次に、ポリプロピレン中にこれらの添加剤を既知!!1
混入し、上記同様の操作をおこなった。定食結果は、ク
ロロフォルムを用いたソックスレー/HPLCと同じ値
であった。再現性はR2O3,0%以下と良好な値を得
た。また、試料負倚に対する直線性も60mgまで確認
できた。(3)拡張なお、本発明には外にも種々の変形
例が含まれる。
Then know these additives in polypropylene! ! 1
The same operation as above was performed. The set meal results were the same as Soxhlet/HPLC using chloroform. A good reproducibility of R2O3.0% or less was obtained. Furthermore, linearity with respect to sample negative force was also confirmed up to 60 mg. (3) Expansion Note that the present invention includes various other modifications.

例えば、超臨界流体の代わりに液化ガスを用いて抽出又
はクロマトグラフ分離を行9てもよい。
For example, extraction or chromatographic separation 9 may be performed using liquefied gas instead of supercritical fluid.

また、主に目的とする抽出物を抽出する前に、主に目的
としない抽出物を、目的とする抽出とは異なる温度及び
圧力条件のもとに抽出し、これを六方弁7.8の点線部
流路を通して外部に排出してもよい。この場合、目的と
する抽出物を高濃度で抽出することができる。
In addition, before extracting the main target extract, extract the non-main target extract under different temperature and pressure conditions from the target extraction, and use the six-way valve 7.8. It may be discharged to the outside through the dotted line channel. In this case, the desired extract can be extracted at a high concentration.

また、試料によっては超臨界流体のみで抽出及びクロマ
トグラフ分離を行うことも可能であるので、モディファ
イア溶媒は必ずしも必要はない。
Further, depending on the sample, it is possible to perform extraction and chromatographic separation using only a supercritical fluid, so a modifier solvent is not necessarily necessary.

さらに、六方弁の代わりに他の弁を用いて上記と同一に
流路切換えを行ってもよい。
Furthermore, the flow path switching may be performed in the same manner as described above using another valve instead of the hexagonal valve.

また、検出器20を流路に沿って配置せずに、溶出物を
複数のフラクションコレクタ23により順次分取した後
に、オンラインまたはオフラインで検出器により分析を
行ってもよい。
Furthermore, without disposing the detector 20 along the flow path, the eluate may be sequentially fractionated by a plurality of fraction collectors 23 and then analyzed by the detector online or offline.

また、上記弁棒の駆動装置としてソレノイドを用いた場
合を説明したが、例えば、圧電素子を駆動源として用い
たり、或は弁棒そのものを圧電素子で構成してもよい。
Furthermore, although a case has been described in which a solenoid is used as the drive device for the valve stem, for example, a piezoelectric element may be used as the drive source, or the valve stem itself may be composed of a piezoelectric element.

この弁は、入口と出口の間の流路を開閉するもであれば
よく、弁棒がその軸方向へ往復移動するものに限られず
、スライドスプール型またはロータリースプール型等で
あってもよい。
This valve may be one that opens and closes a flow path between an inlet and an outlet, and is not limited to one in which the valve stem reciprocates in its axial direction, and may be of a slide spool type, a rotary spool type, or the like.

[発明の効果] 以上説明した如く、本発明に係る抽出・クロマトグラフ
分離装置及びその方法によれば、従来よりも再現性を充
分向上でき、試料負荷に対する直線性を従来装置の10
倍以上に高めることができ、かつ、取り扱える試料量の
範囲を従来よりも充分広くできるできるという優れた効
果がある。
[Effects of the Invention] As explained above, according to the extraction/chromatographic separation apparatus and method according to the present invention, reproducibility can be sufficiently improved compared to the conventional apparatus, and the linearity with respect to sample load can be improved by 10% compared to the conventional apparatus.
It has the excellent effect of being able to more than double the amount of sample that can be handled, and making the range of sample amounts that can be handled much wider than before.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る抽出・クロマトグラフ
分離装置の流体回路図である。 1:液化ガスボンベ 2:モディファイア溶媒貯槽 3.4:ポンプ 5:熱交換器 6〜9;方法バルブ to−12;排気弁 13:抽出容器 14.21:圧力調整弁 15:警報付圧力指示調節器 16:トラップカラム 17:標準試料ループ 18:標準試料注入部 19:分離カラム 20:検出器 22:圧力指示調節器 23:フラクションコレクタ 24:恒温槽
FIG. 1 is a fluid circuit diagram of an extraction/chromatographic separation apparatus according to an embodiment of the present invention. 1: Liquefied gas cylinder 2: Modifier solvent storage tank 3.4: Pump 5: Heat exchanger 6-9; Method valve to-12; Exhaust valve 13: Extraction vessel 14.21: Pressure adjustment valve 15: Pressure indication adjustment with alarm Instrument 16: Trap column 17: Standard sample loop 18: Standard sample injection section 19: Separation column 20: Detector 22: Pressure indicator regulator 23: Fraction collector 24: Constant temperature bath

Claims (1)

【特許請求の範囲】 1)、抽出部、吸着部および分離部が順に縦続接続され
、超臨界流体または液化ガスを含む抽出・溶離流体が該
抽出部に供給される抽出・クロマトグラフ分離装置にお
いて、 該抽出部は、 試料が収容される抽出容器(13)と、 該抽出容器(13)を通る流路と該抽出容器(13)を
バイパスする流路とに切り換える切換バルブ(6)とを
有し、 該吸着部は、 圧力調整弁(14)と、 該圧力調整弁(14)の後流側に接続され、抽出物を吸
着する吸着剤が充填されたトラップカラム(16)と、 該圧力調整弁(14)を介し該トラップカラム(16)
を通る流路とこれらをバイパスする流路とに切り換える
切換バルブ(7)とを有し、 該分離部は、 抽出物を成分に分離する分離カラム(19)と、該分離
カラム(19)を通る流路と該分離カラムをバイパスす
る流路とに切り換える切換バルブ(8)と、 該切換バルブ(8)の後流側に設けられ、溶出物を検出
する検出器(20)と、 該切換バルブ(8)の後流側に接続された圧力調整弁(
21)と、 を有することを特徴とする抽出・クロマトグラフ分離装
置。 2)超臨界流体または液化ガスを含む抽出・溶離流体を
、抽出容器(13)内の試料に通して試料の可溶成分を
抽出し、トラップカラム(16)に充填された吸着剤に
その抽出物を導き、該抽出・溶離流体を減圧してその溶
解度を低下させることにより該抽出物を吸着剤に吸着さ
せる抽出・吸着工程と、次に、該トラップカラム(16
)をバイパスさせて、加圧して溶解度を高めた抽出・溶
離流体をトラップカラムに導き、抽出・溶離流体を高め
ることにより吸着剤に吸着されている抽出物をトラップ
カラム(16)から溶出させ、抽出物のうち目的とする
抽出物以外の大部分を、分離カラム(19)をバイパス
させて排出させ、目的とする抽出物を分離カラム(19
)に通すとともに、該抽出容器(13)及び該トラップ
カラム(16)をバイパスさせて抽出・溶離流体を分離
カラム(19)に通し、目的とする抽出物を成分に分離
させる分離工程と、 を有することを特徴とする抽出・クロマトグラフ分離方
法。
[Claims] 1) An extraction/chromatographic separation device in which an extraction section, an adsorption section, and a separation section are sequentially connected in cascade, and an extraction/elution fluid containing a supercritical fluid or liquefied gas is supplied to the extraction section. , the extraction unit includes: an extraction container (13) in which a sample is stored; and a switching valve (6) that switches between a flow path passing through the extraction container (13) and a flow path bypassing the extraction container (13). The adsorption unit includes: a pressure adjustment valve (14); a trap column (16) connected to the downstream side of the pressure adjustment valve (14) and filled with an adsorbent that adsorbs the extract; The trap column (16) via the pressure regulating valve (14)
The separation section includes a separation column (19) that separates the extract into components, and a separation column (19) that separates the extract into components. a switching valve (8) that switches between a flow path passing through the separation column and a flow path that bypasses the separation column; a detector (20) that is provided on the downstream side of the switching valve (8) and detects eluate; The pressure regulating valve (
21) An extraction/chromatographic separation device characterized by having the following. 2) Extraction/elution fluid containing supercritical fluid or liquefied gas is passed through the sample in the extraction container (13) to extract the soluble components of the sample, and the soluble components are extracted to the adsorbent packed in the trap column (16). an extraction/adsorption step in which the extract is adsorbed onto an adsorbent by reducing the pressure of the extraction/elution fluid to reduce its solubility;
), the extraction/elution fluid whose solubility has been increased by pressurization is guided to the trap column, and the extract adsorbed on the adsorbent is eluted from the trap column (16) by increasing the extraction/elution fluid; Most of the extract other than the target extract is discharged by bypassing the separation column (19), and the target extract is discharged through the separation column (19).
) and bypassing the extraction container (13) and the trap column (16) to pass the extraction/elution fluid through a separation column (19) to separate the target extract into components; An extraction/chromatographic separation method characterized by:
JP63048185A 1988-03-01 1988-03-01 Extraction / chromatographic separation apparatus and extraction / chromatographic separation method Expired - Fee Related JP2596582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63048185A JP2596582B2 (en) 1988-03-01 1988-03-01 Extraction / chromatographic separation apparatus and extraction / chromatographic separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63048185A JP2596582B2 (en) 1988-03-01 1988-03-01 Extraction / chromatographic separation apparatus and extraction / chromatographic separation method

Publications (2)

Publication Number Publication Date
JPH01221660A true JPH01221660A (en) 1989-09-05
JP2596582B2 JP2596582B2 (en) 1997-04-02

Family

ID=12796325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63048185A Expired - Fee Related JP2596582B2 (en) 1988-03-01 1988-03-01 Extraction / chromatographic separation apparatus and extraction / chromatographic separation method

Country Status (1)

Country Link
JP (1) JP2596582B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06154507A (en) * 1992-08-28 1994-06-03 Kobe Steel Ltd Weak polar useful component and method for extracting, separating and purifying the same
JP2699121B2 (en) * 1990-03-21 1998-01-19 ギルソン メデイカル エレクトロニクス(フランス) Pressure regulation system in open circuit for a given rate of fluid flow
JP2010101875A (en) * 2008-09-29 2010-05-06 Jasco Corp Device and method for injecting sample in supercritical fluid chromatography
CN106662554A (en) * 2014-08-28 2017-05-10 株式会社岛津制作所 Analysis device
WO2017149620A1 (en) * 2016-02-29 2017-09-08 株式会社島津製作所 Preparative device
CN108072721A (en) * 2016-11-10 2018-05-25 道尼克斯索芙特隆公司 Introduce the sample into the method in splitter and corresponding system
CN109030647A (en) * 2018-07-30 2018-12-18 天津出入境检验检疫局动植物与食品检测中心 The online affine in immunity of Terbutaline, salbutamol, Ractopamine, Clenbuterol purifies detection device
CN110393945A (en) * 2019-09-04 2019-11-01 睿科集团(厦门)股份有限公司 A kind of multichannel pressure extraction flow path and its extracting process
CN112180021A (en) * 2019-07-01 2021-01-05 豪夫迈·罗氏有限公司 Liquid chromatography system
US12000805B2 (en) 2016-11-10 2024-06-04 Dionex Softron Gmbh Method of introducing a sample into a separation column and corresponding system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS608747A (en) * 1983-06-29 1985-01-17 Morinaga & Co Ltd Analyzer using supercritical fluid
JPS6227660A (en) * 1985-07-29 1987-02-05 Japan Spectroscopic Co Method for directly introducing liquid extract into chromatography apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS608747A (en) * 1983-06-29 1985-01-17 Morinaga & Co Ltd Analyzer using supercritical fluid
JPS6227660A (en) * 1985-07-29 1987-02-05 Japan Spectroscopic Co Method for directly introducing liquid extract into chromatography apparatus

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2699121B2 (en) * 1990-03-21 1998-01-19 ギルソン メデイカル エレクトロニクス(フランス) Pressure regulation system in open circuit for a given rate of fluid flow
JPH06154507A (en) * 1992-08-28 1994-06-03 Kobe Steel Ltd Weak polar useful component and method for extracting, separating and purifying the same
JP2010101875A (en) * 2008-09-29 2010-05-06 Jasco Corp Device and method for injecting sample in supercritical fluid chromatography
CN106662554B (en) * 2014-08-28 2019-04-02 株式会社岛津制作所 Analytical equipment and analysis method
CN106662554A (en) * 2014-08-28 2017-05-10 株式会社岛津制作所 Analysis device
WO2017149620A1 (en) * 2016-02-29 2017-09-08 株式会社島津製作所 Preparative device
US10816515B2 (en) 2016-11-10 2020-10-27 Dionex Softron Gmbh Method of introducing a sample into a separation column and corresponding system
CN108072721A (en) * 2016-11-10 2018-05-25 道尼克斯索芙特隆公司 Introduce the sample into the method in splitter and corresponding system
US12000805B2 (en) 2016-11-10 2024-06-04 Dionex Softron Gmbh Method of introducing a sample into a separation column and corresponding system
CN109030647A (en) * 2018-07-30 2018-12-18 天津出入境检验检疫局动植物与食品检测中心 The online affine in immunity of Terbutaline, salbutamol, Ractopamine, Clenbuterol purifies detection device
CN109030647B (en) * 2018-07-30 2024-03-22 天津海关动植物与食品检测中心 Online immunoaffinity purification detection device for terbutaline, salbutamol, ractopamine and clenbuterol
CN112180021A (en) * 2019-07-01 2021-01-05 豪夫迈·罗氏有限公司 Liquid chromatography system
CN112180021B (en) * 2019-07-01 2023-11-14 豪夫迈·罗氏有限公司 Liquid Chromatography System
CN110393945A (en) * 2019-09-04 2019-11-01 睿科集团(厦门)股份有限公司 A kind of multichannel pressure extraction flow path and its extracting process
CN110393945B (en) * 2019-09-04 2024-03-08 睿科集团(厦门)股份有限公司 Multichannel pressurized extraction flow path and extraction method thereof

Also Published As

Publication number Publication date
JP2596582B2 (en) 1997-04-02

Similar Documents

Publication Publication Date Title
US4597943A (en) Apparatus for analyzing solid sample with supercritical fluid
US4681678A (en) Sample dilution system for supercritical fluid chromatography
US8495906B2 (en) Degasifier and liquid chromatograph equipped therewith
SU1041925A1 (en) Gas chromatograph
Deans An improved technique for back-flushing gas chromatographic columns
JPH01221660A (en) Extraction chromatograph separator
US4124358A (en) Sample-injection device for process gas chromatography with capillary columns
US20160320355A1 (en) Method and Apparatus for Preconcentrating a Gaseous Sample
JPS63243864A (en) Interface of gas chromatograph mass spectrometer
US6447575B2 (en) Method and apparatus for gas chromatography analysis of samples
US3471692A (en) Gas analyzer system employing a gas chromatograph and a mass spectrometer with a gas switch therebetween
JPH0445781B2 (en)
US3398505A (en) Dual stage membrane gas separators with variable conductance means for varying their throughput
US3494174A (en) Gas chromatography apparatus
JPH0715458B2 (en) Extraction / chromatographic separation / preparation device
SU651727A3 (en) Device for introducing liquid sample in gas chromatograph
CN202486108U (en) Chromatographic analysis system
CN114034795B (en) Method and device for separating and analyzing argon krypton-xenon full-component gas chromatography in atmosphere based on multidimensional chromatography, center cutting and reverse purging
US3604268A (en) Method and device for introducing samples into chromatographic columns
JP2001219024A (en) Nitrogen generating device
CN102539590B (en) Chromatographic analysis system and chromatographic analysis method
JPH0291564A (en) Head space sampler
JPH08201363A (en) Sample concentrating device for analysis
CN114354791B (en) System and method for detecting non-methane total hydrocarbons
CN114609257B (en) Gas chromatograph mass spectrometer and gas circuit control method thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees