JPH08201363A - Sample concentrating device for analysis - Google Patents

Sample concentrating device for analysis

Info

Publication number
JPH08201363A
JPH08201363A JP5351685A JP35168593A JPH08201363A JP H08201363 A JPH08201363 A JP H08201363A JP 5351685 A JP5351685 A JP 5351685A JP 35168593 A JP35168593 A JP 35168593A JP H08201363 A JPH08201363 A JP H08201363A
Authority
JP
Japan
Prior art keywords
hollow fiber
gas
sample
temperature
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5351685A
Other languages
Japanese (ja)
Other versions
JP3322325B2 (en
Inventor
Keiichi Ogasawara
啓一 小笠原
Toshio Masuoka
登志夫 増岡
Kensaku Mizoguchi
健作 溝口
Masami Matsui
正己 松居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Shimadzu Corp filed Critical Agency of Industrial Science and Technology
Priority to JP35168593A priority Critical patent/JP3322325B2/en
Publication of JPH08201363A publication Critical patent/JPH08201363A/en
Application granted granted Critical
Publication of JP3322325B2 publication Critical patent/JP3322325B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To selectively concentrate a trace constituent contained in water or a gas and feed it to an analyzer. CONSTITUTION: A hollow fiber 2 made of a polymer material is stored in a container 3 capable of being connected to external pipes at both ends. This sample concentrating device is provided with a gas selecting means 1 having a heater 8 controlling the temperature of the hollow fiber 2, a pump 20 feeding a concentrated fluid to the container 3, and a condenser 12 connected to the hollow fiber 2. When the wall face of the hollow fiber 2 is a molecular sieve having chemical affinity or the hollow fiber 2 is porous, fine holes serve as a sieve. When a fluid transmits the bulkhead of the hollow fiber 2, impurities are adsorbed by the hollow fiber 2 and cannot pass through it, and only the aimed constituent passes through it and is adsorbed by the condenser 12 and concentrated. Such sieve function depends on the temperature of the hollow fiber 2. When the temperature of the hollow fiber 2 is controlled, an object constituent can be selected, and the permeability can be controlled with good reproducibility.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、気体や液体に含まれて
いる微量な成分を濃縮するための分析用試料濃縮装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an analytical sample concentrating device for concentrating a trace amount of components contained in a gas or a liquid.

【0002】[0002]

【従来の技術】気体や液体に含まれているppbオーダ
の微量なガス成分を分析する場合には、サンプルガスを
液体窒素等により冷却して目的成分を液化させて濃縮す
る方法が、また水に含まれている成分を対象とする場合
には空間領域を確保した密閉容器に試料を収容して一定
条件下で気液平衡状態を維持させ、容器の空間の気体を
試料として採取するヘッドスペース法等が常用されてい
る。
2. Description of the Related Art When analyzing a small amount of gas components in the ppb order contained in gas or liquid, a method of cooling the sample gas with liquid nitrogen or the like to liquefy the target component and concentrate it In the case of targeting the components contained in, the head space is used to store the sample in a closed container that secures a space area, maintain a gas-liquid equilibrium state under certain conditions, and collect the gas in the container space as a sample. The law is used regularly.

【0003】しかしながら、サンプルに比較的大量に含
まれている目的物以外の妨害成分も同時に濃縮されてし
まい、分析対象とする成分よりも極めて高い濃度の成分
として分析手段に流入して妨害成分となるため、特に環
境測定のように規制対象成分だけを選択的に検出したい
場合等には、目的とする微量な成分の検出が困難になる
という問題がある。
However, interfering components other than the target substance, which are contained in a relatively large amount in the sample, are also concentrated at the same time, and flow into the analyzing means as a component having an extremely higher concentration than the component to be analyzed, and become interfering components. Therefore, there is a problem that it becomes difficult to detect a target trace amount of components, particularly when it is desired to selectively detect only regulated components such as environmental measurement.

【0004】[0004]

【発明が解決しようとする課題】本発明はこのような問
題に鑑みてなされたものであって、その目的とするとこ
ろは環境測定の対象となる成分を再現性良く、しかも確
実に濃縮することができる新規な分析用試料濃縮装置を
提供することである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to reproducibly and surely concentrate a component to be environmentally measured. It is to provide a novel analytical sample concentrating device capable of performing the above.

【0005】[0005]

【課題を解決するための手段】このような問題を解消す
るために本発明においては、高分子材料により形成され
た中空糸を、その両端を外部管路と接続可能に容器に収
容するとともに、前記中空糸の温度を制御する手段を備
えたガス選択手段と、前記容器に被濃縮流体を供給する
ポンプ手段と、前記中空糸に接続するコンデンサとを備
えてなる分析用試料濃縮装置を備えるようにした。
In order to solve such a problem, in the present invention, a hollow fiber formed of a polymer material is housed in a container such that both ends of the hollow fiber can be connected to an external conduit. A sample concentrator for analysis comprising a gas selection means having a means for controlling the temperature of the hollow fiber, a pump means for supplying a fluid to be concentrated to the container, and a condenser connected to the hollow fiber. I chose

【0006】[0006]

【作用】中空糸の壁面が化学的親和力を有する分子ふる
いや、中空糸が多孔質である場合には細孔がふるいとし
て機能するため、中空糸の隔壁を透過する際、挟雑物は
中空糸に吸着されて通過することができず、目的成分だ
けが透過してコンデンサに吸着して濃縮される。そして
このようなふるいの機能は、中空糸の温度に依存するの
で、中空糸の温度を制御することにより、対象となる成
分を選択したり、また再現性良く透過率を制御すること
が可能となる。
[Function] Since the wall surface of the hollow fiber functions as a molecular sieve having a chemical affinity, and when the hollow fiber is porous, the pores function as a sieve. It is adsorbed on the thread and cannot pass through it, only the target component permeates and is adsorbed on the condenser and concentrated. Since the function of such a sieve depends on the temperature of the hollow fiber, by controlling the temperature of the hollow fiber, it is possible to select the target component and control the transmittance with good reproducibility. Become.

【0007】[0007]

【実施例】そこで以下に本発明の詳細を図示した実施例
に基づいて説明する。図1は本発明の実施例を示すもの
であって、図中符号1は、ガス選択手段で、高分子材
料、例えばシリコンやポリエステル、弗素樹脂等からな
る細い糸に一端から他端に貫通する直径1乃至100μ
mの通孔を形成してパイプ状の隔壁として機能する中空
糸2を、円筒状容器3の内部空間7に収容し、その両端
2a、2bを外部の管路との接続が可能なように円筒容
器3の両端で封止するともに、中空糸2を常温以上、例
えば40°C乃至150°Cに加熱するヒータ8を設け
て構成されている。円筒状容器3の端部近傍には外部管
路と接続するための接続口4、5が設けられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below with reference to the illustrated embodiments. FIG. 1 shows an embodiment of the present invention, in which reference numeral 1 is a gas selecting means which penetrates a thin thread made of a polymer material such as silicon, polyester, or fluororesin from one end to the other end. Diameter 1 to 100μ
A hollow fiber 2 which forms a through hole of m and functions as a pipe-shaped partition wall is housed in an internal space 7 of a cylindrical container 3 so that both ends 2a, 2b thereof can be connected to an external conduit. In addition to sealing at both ends of the cylindrical container 3, there is provided a heater 8 for heating the hollow fiber 2 at room temperature or higher, for example, 40 ° C to 150 ° C. In the vicinity of the end of the cylindrical container 3, connection ports 4 and 5 for connecting to an external conduit are provided.

【0008】12は、コンデンサで、室温程度の低温状
態では分析対象となる気体を吸着し、また200°C程
度では吸着している気体を脱離する吸着剤をカラムに収
容して構成されている。コンデンサ12は、その周囲に
フラッシュヒータ13を備え、一端がガス選択手段1の
中空糸2の一端2aに接続され、また他端が切換弁14
を介して分析用カラム15と、キャリアガス源16に選
択的に接続可能になっている。分析用カラム15の他端
にはガスクロマトグラフ用検出器17が接続されてい
る。これら分析用カラム15、及び検出器17は、恒温
槽18に収容されてガスクロマトグラフを構成してい
る。
Reference numeral 12 is a condenser, which is constructed by adsorbing an adsorbent which adsorbs a gas to be analyzed at a low temperature of about room temperature and desorbs the adsorbed gas at about 200 ° C. in a column. There is. The condenser 12 is provided with a flash heater 13 around its periphery, one end of which is connected to one end 2a of the hollow fiber 2 of the gas selection means 1, and the other end of which is the switching valve 14.
The column for analysis 15 and the carrier gas source 16 can be selectively connected via the. A gas chromatograph detector 17 is connected to the other end of the analytical column 15. The analytical column 15 and the detector 17 are housed in a constant temperature bath 18 to form a gas chromatograph.

【0009】14は、切換弁で、キャリアガス源16−
中空糸2−コンデンサ12−排出口23、及びキャリア
ガス源16−分析用カラム15とを連通させる第1の流
路(図中、切換弁の点線で示す流路)と、キャリアガス
源16−中空糸2−コンデンサ12−分析用カラム15
とを接続する第2の流路(図中、切換弁の実線で示す流
路)とを切換えるものである。
A switching valve 14 is a carrier gas source 16-
Hollow fiber 2-condenser 12-exhaust port 23, and carrier gas source 16-first channel for communicating with analytical column 15 (channel shown by dotted line of switching valve in the figure), carrier gas source 16- Hollow fiber 2-condenser 12-column 15 for analysis
And a second flow path (the flow path shown by the solid line of the switching valve in the figure) that connects and.

【0010】19は、試料計量手段をなすシリンダで、
一端がプランジャポンプ20を介してガス選別手段1の
円筒状容器3の接続口5に、また他端が円筒状容器3の
他方の接続口4に接続され、内部の試料をプランジャポ
ンプ20により中空糸2の外周、つまり円筒状容器3の
空間7を循環させるように接続されている。なお、図中
符号21は、試料計量手段19の試料注入口を、また2
2はガスクロマトグラフの試料注入機構を示す。
Numeral 19 is a cylinder forming a sample measuring means,
One end is connected to the connection port 5 of the cylindrical container 3 of the gas selection means 1 via the plunger pump 20, and the other end is connected to the other connection port 4 of the cylindrical container 3, and the sample inside is hollowed by the plunger pump 20. It is connected so as to circulate the outer circumference of the yarn 2, that is, the space 7 of the cylindrical container 3. In the figure, reference numeral 21 designates the sample injection port of the sample weighing means 19 and 2
Reference numeral 2 shows a sample injection mechanism of the gas chromatograph.

【0011】この実施例において、ヒータ8により中空
糸2の温度を、目的成分を選択的に通過させることがで
きる温度、例えば80°Cに設定するとともに、試料注
入口21から試料計量手段19に試料、例えば水を充填
する。
In this embodiment, the temperature of the hollow fiber 2 is set by the heater 8 to a temperature at which the target component can be selectively passed, for example, 80 ° C., and the sample injection port 21 is connected to the sample measuring means 19. Fill with sample, eg water.

【0012】この状態で、切換弁14を第1の流路(図
中、点線により示す流路)に切換えて、プランジャポン
プ20を作動させると、試料計量手段19内の試料はガ
ス選択手段1の円筒状容器3の接続口5から空間7に流
れ込み、他方の接続口4から再び計量手段19に戻ると
いうルートを循環する。またキャリアガス源16からの
キャリアガスが中空糸2の一端2bから流れ込み、他端
2aからコンデンサ12を経由して排出口23より排出
される。
In this state, when the switching valve 14 is switched to the first flow path (flow path indicated by the dotted line in the figure) and the plunger pump 20 is operated, the sample in the sample measuring means 19 is gas selection means 1 It circulates through a route of flowing from the connection port 5 of the cylindrical container 3 into the space 7 and returning from the other connection port 4 to the measuring means 19 again. Further, the carrier gas from the carrier gas source 16 flows in from the one end 2b of the hollow fiber 2 and is discharged from the other end 2a through the condenser 12 and the discharge port 23.

【0013】この循環の過程で分析対象となる試料に含
まれているガス成分は、中空糸2を構成している材料に
より決まる選択機能、例えばシリコンの場合には材料中
の浸透により、また弗素樹脂の場合には細孔の通過によ
り中空糸2の通孔に侵入し、キャリアガスによりコンデ
ンサ12に運ばれる。
The gas component contained in the sample to be analyzed during this circulation process has a selective function determined by the material constituting the hollow fiber 2, for example, in the case of silicon, it permeates into the material and fluorine. In the case of resin, it penetrates the through holes of the hollow fiber 2 by passing through the pores and is carried to the condenser 12 by the carrier gas.

【0014】一方、妨害成分は中空糸2の隔壁を通過す
る過程で中空糸2を構成している材料の親和力により吸
着されたり、また弗素樹脂の場合には細孔によりはばま
れて中空糸2の細孔に侵入することができない。
On the other hand, the interfering component is adsorbed by the affinity of the material constituting the hollow fiber 2 in the process of passing through the partition wall of the hollow fiber 2, or in the case of a fluororesin, it is scattered by the pores and is thus hollow fiber. 2 cannot penetrate into the pores.

【0015】中空糸2を透過した成分は、ここに流れ込
んでくるキャリアガスによりコンデンサ12に運ばれて
コンデンサ12の吸着剤に吸着されて順次濃縮されてい
く。
The component that has permeated the hollow fiber 2 is carried to the condenser 12 by the carrier gas flowing therein and is adsorbed by the adsorbent of the condenser 12 to be successively concentrated.

【0016】ところで、ガス成分が、中空糸2等の高分
子膜を透過する際のガス透過係数Pは、ガスの溶解度を
K、拡散係数をDとすると、一般的に P=K×D なる関係で表すことができる。一方、ガスの溶解度は、
中空糸2の温度に依存しているから、ガス選択手段1の
ヒータ8の温度を制御して中空糸2の温度を変えると、
ガスの溶解度Kが変化するため、中空糸2を透過する対
象ガスの透過率を調整することが可能となる。すなわ
ち、ヒータ8の温度により透過させたいガスの種類を選
択することが可能となるばかりでなく、透過率が一定と
なるように制御することが可能となる。
By the way, the gas permeation coefficient P when the gas component permeates the polymer membrane such as the hollow fiber 2 is generally P = K × D, where K is the solubility of the gas and D is the diffusion coefficient. It can be expressed as a relationship. On the other hand, the solubility of gas is
Since the temperature depends on the temperature of the hollow fiber 2, if the temperature of the heater 8 of the gas selecting means 1 is controlled to change the temperature of the hollow fiber 2,
Since the gas solubility K changes, the transmittance of the target gas that permeates the hollow fiber 2 can be adjusted. That is, it is possible not only to select the type of gas to be transmitted depending on the temperature of the heater 8, but also to control the transmittance to be constant.

【0017】このようにして所定時間が経過した時点で
切換弁14を第2の流路(図中、切換弁14の実線によ
り示す流路)に切換えると、キャリアガス源16−中空
糸2−コンデンサ12−分析用カラム15−検出手段1
7という流路が形成される。この段階でフラッシュヒ−
タ13に電流を供給すると、コンデンサ12に吸着され
ている成分が吸着剤から脱離し、ここに流れ込んで来る
キャリアガスにより極めて短時間で分析用カラム15に
追い出される。分析用カラム15に流れ込んだ試料は、
分析カラム15で成分毎に分離され、カラム充填剤によ
り決まる溶出時間の経過後に検出器17に流れ込み、そ
の濃度が検出される。
When the switching valve 14 is switched to the second flow path (the flow path shown by the solid line of the switching valve 14 in the drawing) when the predetermined time has elapsed, the carrier gas source 16-hollow fiber 2- Capacitor 12-Analysis column 15-Detection means 1
The flow path 7 is formed. Flash heat at this stage
When a current is supplied to the capacitor 13, the components adsorbed on the condenser 12 are desorbed from the adsorbent and are expelled to the analytical column 15 in an extremely short time by the carrier gas flowing therein. The sample flowing into the analytical column 15 is
The components are separated in the analytical column 15, and after the elution time determined by the column packing material has passed, they flow into the detector 17 and the concentration thereof is detected.

【0018】このように中空糸2は、表1に示したよう
にエタノール、アセトニトリル等の有機溶媒や酢酸を選
択的に排除するばかりでなく、試料を構成している水の
透過も阻止するから、特に水に溶解している気体成分を
濃縮した場合には、ガス成分だけを選択的に取り出すこ
とができ、操作が比較的簡単なガス分析装置により分析
することができる。
Thus, as shown in Table 1, the hollow fiber 2 not only selectively eliminates organic solvents such as ethanol and acetonitrile and acetic acid, but also prevents permeation of water constituting the sample. In particular, when the gas component dissolved in water is concentrated, only the gas component can be selectively taken out and can be analyzed by a gas analyzer which is relatively easy to operate.

【表1】[Table 1]

【0019】(比較例)純水にメタノール200pp
b、クロロホルム50ppb、ベンゼン100ppbを
溶解したサンプルを用いて、上述の分析装置により分析
したところ、図2(イ)に示したように挟雑物となる
水、及びメタノールを完全に排除してクロロホルム(P
1)とベンゼン(P2)だけのピークを得ることができ
た。
(Comparative Example) 200 pp of methanol in pure water
b, chloroform 50 ppb, and benzene 100 ppb were dissolved in the sample and analyzed by the above-described analyzer. As shown in FIG. (P
Only peaks of 1) and benzene (P2) could be obtained.

【0020】一方、比較のために従来のパージ・トラッ
プ法により試料を濃縮して同一の分析手段で分析したと
ころ、図2(ロ)に示したように通常、環境測定におい
ては挟雑物として扱われているメタノールの大きなピー
ク(P3)を伴ってクロロホルム(P1)、ベンゼン
(P2)とが検出された。このように分析対象となる成
分よりも極めて高い濃度の試料が流入すると、ピークの
テールエンドが長くなり、目的成分のピークがこのテー
ルエンド領域に位置すると分析誤差を含むことになる。
On the other hand, for comparison, when the sample was concentrated by the conventional purge trap method and analyzed by the same analyzing means, as shown in FIG. Chloroform (P1) and benzene (P2) were detected with a large peak of methanol being handled (P3). Thus, when a sample having a concentration extremely higher than that of the component to be analyzed flows in, the tail end of the peak becomes long, and if the peak of the target component is located in this tail end region, an analysis error will be included.

【0021】このことから本発明は、環境中に比較的高
い濃度で存在する有機溶媒等を排除して、分析対象とな
るガスを選択的に濃縮するため、高濃度挟雑物に起因す
るピークやテールエンドと目的成分のピークとの重なり
を防止することができて、微量成分を高い濃度で分析で
きることが判明した。
From the above, the present invention eliminates the organic solvent and the like existing in a relatively high concentration in the environment and selectively concentrates the gas to be analyzed. It was found that the peak of the target component could be prevented from overlapping with the tail end and the trace component could be analyzed at a high concentration.

【0022】もとより、上述したように中空糸2は、そ
の温度により成分の透過率が変化するので、中空糸の温
度を制御することによりサンプル中から目的成分を選択
的に濃縮して取り出すことができる。
Of course, as described above, the hollow fiber 2 has a change in the transmittance of the components depending on its temperature. Therefore, by controlling the temperature of the hollow fibers, the target component can be selectively concentrated and taken out from the sample. it can.

【0023】なお、この実施例においては、ガス選択手
段に独立のヒータ8を設けているが、円筒状容器、及び
中空糸からなるモジュールとして構成して、分析用カラ
ム15や検出器17を収容している恒温槽18に収容す
ることもできる。
In this embodiment, the gas selection means is provided with an independent heater 8. However, it is constructed as a module consisting of a cylindrical container and a hollow fiber to accommodate an analytical column 15 and a detector 17. It can also be housed in the constant temperature bath 18 in which it is operated.

【0024】また、上述の実施例においては、円筒状容
器に中空糸を1本だけ収容した場合について説明した
が、複数本の中空糸を同一の容器に収容しても同様の作
用を奏することは明らかである。
Further, in the above embodiment, the case where only one hollow fiber is accommodated in the cylindrical container has been described, but the same effect can be obtained even if a plurality of hollow fibers are accommodated in the same container. Is clear.

【0025】さらに上述の実施例においてはガスの成分
をガスクロマトグラフにより分析するようにしている
が、分離手段を必要としないスペクトル分析装置や、質
量分析装置等を用いて検出するようにしても同様の作用
を奏することは明らかである。
Further, in the above-mentioned embodiment, the gas components are analyzed by a gas chromatograph, but the same applies even if the components are detected using a spectrum analyzer or a mass spectrometer which does not require a separating means. It is clear that the action of

【0026】[0026]

【発明の効果】以上、説明したように本発明において
は、高分子材料により形成された中空糸を、その両端を
外部管路と接続可能に容器に収容するとともに、中空糸
の温度を制御する手段を備えたガス選択手段と、容器に
被濃縮流体を供給するポンプ手段と、中空糸に接続する
コンデンサとを備えるようにしたので、試料が水の場合
にはこれ排除しながら、中空糸の温度を制御することに
より妨害成分を排除して分析対象となる微量な成分だけ
を選択的に濃縮することができるばかりでなく、液体試
料の分析に比較して操作の簡単なガス分析手段により分
析することができる。
INDUSTRIAL APPLICABILITY As described above, in the present invention, the hollow fiber formed of the polymer material is housed in the container so that both ends thereof can be connected to the external conduit, and the temperature of the hollow fiber is controlled. Since the gas selection means provided with the means, the pump means for supplying the fluid to be concentrated to the container, and the condenser connected to the hollow fiber are provided, when the sample is water, it is excluded while the sample is water. By controlling the temperature, interfering components can be eliminated and only a small amount of components to be analyzed can be selectively concentrated. In addition, analysis by gas analysis means that is simpler to operate than liquid sample analysis can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の試料濃縮装置を使用したガスクロマト
グラフの一実施例を示す構成図である。
FIG. 1 is a configuration diagram showing an example of a gas chromatograph using a sample concentrating device of the present invention.

【図2】図(イ)(ロ)は、それぞれ本発明の装置によ
る分析結果を示すクロマトグラム、及び従来の試料濃縮
法により得たサンプルのクロマトグラムである。
2 (a) and (b) are a chromatogram showing an analysis result by the device of the present invention and a chromatogram of a sample obtained by a conventional sample concentration method, respectively.

【符号の説明】[Explanation of symbols]

1 ガス選択手段 2 高分子中空糸 3 容器 7 空間 12 コンデンサ 13 フラッシュヒータ 14 切換弁 15 分析用カラム 16 キャリアガス源 19 試料計量手段 20 ポンプ 1 Gas Selector 2 Polymer Hollow Fiber 3 Container 7 Space 12 Condenser 13 Flash Heater 14 Switching Valve 15 Analytical Column 16 Carrier Gas Source 19 Sample Measuring Means 20 Pump

【手続補正書】[Procedure amendment]

【提出日】平成8年3月27日[Submission date] March 27, 1996

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【書類名】 明細書[Document name] Statement

【発明の名称】 分析用試料濃縮装置Title of the invention Sample concentrator for analysis

【特許請求の範囲】[Claims]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、気体や液体に含まれて
いる微量な成分を濃縮するための分析用試料濃縮装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an analytical sample concentrating device for concentrating a trace amount of components contained in a gas or a liquid.

【0002】[0002]

【従来の技術】気体や液体に含まれているppbオーダ
の微量なガス成分を分析する場合には、サンプルガスを
液体窒素等により冷却して目的成分を液化させて濃縮す
る方法が、また水に含まれている成分を対象とする場合
には空間領域を確保した密閉容器に試料を収容して一定
条件下で気液平衡状態を維持させ、容器の空間の気体を
試料として採取するヘッドスペース法等が常用されてい
る。
2. Description of the Related Art When analyzing a small amount of gas components in the ppb order contained in gas or liquid, a method of cooling the sample gas with liquid nitrogen or the like to liquefy the target component and concentrate it In the case of targeting the components contained in, the head space is used to store the sample in a closed container that secures a space area, maintain a gas-liquid equilibrium state under certain conditions, and collect the gas in the container space as a sample. The law is used regularly.

【0003】しかしながら、サンプルに比較的大量に含
まれている目的物以外の妨害成分も同時に濃縮されてし
まい、分析対象とする成分よりも極めて高い濃度の成分
として分析手段に流入して妨害成分となるため、特に環
境測定のように規制対象成分だけを選択的に検出したい
場合等には、目的とする微量な成分の検出が困難になる
という問題がある。
However, interfering components other than the target substance, which are contained in a relatively large amount in the sample, are also concentrated at the same time, and flow into the analyzing means as a component having an extremely higher concentration than the component to be analyzed, and become interfering components. Therefore, there is a problem that it becomes difficult to detect a target trace amount of components, particularly when it is desired to selectively detect only regulated components such as environmental measurement.

【0004】[0004]

【発明が解決しようとする課題】本発明はこのような問
題に鑑みてなされたものであって、その目的とするとこ
ろは環境測定の対象となる成分を再現性良く、しかも確
実に濃縮することができる新規な分析用試料濃縮装置を
提供することである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to reproducibly and surely concentrate a component to be environmentally measured. It is to provide a novel analytical sample concentrating device capable of performing the above.

【0005】[0005]

【課題を解決するための手段】このような問題を解消す
るために本発明においては、高分子材料により形成され
た中空糸を、その両端を外部管路と接続可能に容器に収
容するとともに、前記中空糸の温度を制御する手段を備
えたガス選択手段と、前記容器に被濃縮流体を供給する
ポンプ手段と、前記中空糸に接続するコンデンサとを備
えてなる分析用試料濃縮装置を備えるようにした。
In order to solve such a problem, in the present invention, a hollow fiber formed of a polymer material is housed in a container such that both ends of the hollow fiber can be connected to an external conduit. A sample concentrator for analysis comprising a gas selection means having a means for controlling the temperature of the hollow fiber, a pump means for supplying a fluid to be concentrated to the container, and a condenser connected to the hollow fiber. I chose

【0006】[0006]

【作用】中空糸の壁面が化学的親和力を有する分子ふる
いや、中空糸が多孔質である場合には細孔がふるいとし
て機能するため、中空糸の隔壁を透過する際、挟雑物は
中空糸に吸着されて通過することができず、目的成分だ
けが透過してコンデンサに吸着して濃縮される。そして
このようなふるいの機能は、中空糸の温度に依存するの
で、中空糸の温度を制御することにより、対象となる成
分を選択したり、また再現性良く透過率を制御すること
が可能となる。
[Function] Since the wall surface of the hollow fiber functions as a molecular sieve having a chemical affinity, and when the hollow fiber is porous, the pores function as a sieve. It is adsorbed on the thread and cannot pass through it, only the target component permeates and is adsorbed on the condenser and concentrated. Since the function of such a sieve depends on the temperature of the hollow fiber, by controlling the temperature of the hollow fiber, it is possible to select the target component and control the transmittance with good reproducibility. Become.

【0007】[0007]

【実施例】そこで以下に本発明の詳細を図示した実施例
に基づいて説明する。図1は本発明の実施例を示すもの
であって、図中符号1は、ガス選択手段で、高分子材
料、例えばシリコンやポリエステル、弗素樹脂等からな
る細い糸に一端から他端に貫通する直径1乃至100μ
mの通孔を形成してパイプ状の隔壁として機能する中空
糸2を、円筒状容器3の内部空間7に収容し、その両端
2a、2bを外部の管路との接続が可能なように円筒容
器3の両端で封止するともに、中空糸2を常温以上、例
えば40°C乃至150°Cに加熱するヒータ8を設け
て構成されている。円筒状容器3の端部近傍には外部管
路と接続するための接続口4、5が設けられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below with reference to the illustrated embodiments. FIG. 1 shows an embodiment of the present invention, in which reference numeral 1 is a gas selecting means which penetrates a thin thread made of a polymer material such as silicon, polyester, or fluororesin from one end to the other end. Diameter 1 to 100μ
A hollow fiber 2 which forms a through hole of m and functions as a pipe-shaped partition wall is housed in an internal space 7 of a cylindrical container 3 so that both ends 2a, 2b thereof can be connected to an external conduit. In addition to sealing at both ends of the cylindrical container 3, there is provided a heater 8 for heating the hollow fiber 2 at room temperature or higher, for example, 40 ° C to 150 ° C. In the vicinity of the end of the cylindrical container 3, connection ports 4 and 5 for connecting to an external conduit are provided.

【0008】12は、コンデンサで、室温程度の低温状
態では分析対象となる気体を吸着し、また200°C程
度では吸着している気体を脱離する吸着剤をカラムに収
容して構成されている。コンデンサ12は、その周囲に
フラッシュヒータ13を備え、一端がガス選択手段1の
中空糸2の一端2aに接続され、また他端が切換弁14
を介して分析用カラム15と、キャリアガス源16に選
択的に接続可能になっている。分析用カラム15の他端
にはガスクロマトグラフ用検出器17が接続されてい
る。これら分析用カラム15、及び検出器17は、恒温
槽18に収容されてガスクロマトグラフを構成してい
る。
Reference numeral 12 is a condenser, which is constructed by adsorbing an adsorbent which adsorbs a gas to be analyzed at a low temperature of about room temperature and desorbs the adsorbed gas at about 200 ° C. in a column. There is. The condenser 12 is provided with a flash heater 13 around its periphery, one end of which is connected to one end 2a of the hollow fiber 2 of the gas selection means 1, and the other end of which is the switching valve 14.
The column for analysis 15 and the carrier gas source 16 can be selectively connected via the. A gas chromatograph detector 17 is connected to the other end of the analytical column 15. The analytical column 15 and the detector 17 are housed in a constant temperature bath 18 to form a gas chromatograph.

【0009】14は、切換弁で、キャリアガス源16−
中空糸2−コンデンサ12−排出口23、及びキャリア
ガス源16−分析用カラム15とを連通させる第1の流
路(図中、切換弁の点線で示す流路)と、キャリアガス
源16−中空糸2−コンデンサ12−分析用カラム15
とを接続する第2の流路(図中、切換弁の実線で示す流
路)とを切換えるものである。
A switching valve 14 is a carrier gas source 16-
Hollow fiber 2-condenser 12-exhaust port 23, and carrier gas source 16-first channel for communicating with analytical column 15 (channel shown by dotted line of switching valve in the figure), carrier gas source 16- Hollow fiber 2-condenser 12-column 15 for analysis
And a second flow path (the flow path shown by the solid line of the switching valve in the figure) that connects and.

【0010】19は、試料計量手段をなすシリンダで、
一端がプランジャポンプ20を介してガス選別手段1の
円筒状容器3の接続口5に、また他端が円筒状容器3の
他方の接続口4に接続され、内部の試料をプランジャポ
ンプ20により中空糸2の外周、つまり円筒状容器3の
空間7を循環させるように接続されている。なお、図中
符号21は、試料計量手段19の試料注入口を、また2
2はガスクロマトグラフの試料注入機構を示す。
Numeral 19 is a cylinder forming a sample measuring means,
One end is connected to the connection port 5 of the cylindrical container 3 of the gas selection means 1 via the plunger pump 20, and the other end is connected to the other connection port 4 of the cylindrical container 3, and the sample inside is hollowed by the plunger pump 20. It is connected so as to circulate the outer circumference of the yarn 2, that is, the space 7 of the cylindrical container 3. In the figure, reference numeral 21 designates the sample injection port of the sample weighing means 19 and 2
Reference numeral 2 shows a sample injection mechanism of the gas chromatograph.

【0011】この実施例において、ヒータ8により中空
糸2の温度を、目的成分を選択的に通過させることがで
きる温度、例えば80°Cに設定するとともに、試料注
入口21から試料計量手段19に試料、例えば水を充填
する。
In this embodiment, the temperature of the hollow fiber 2 is set by the heater 8 to a temperature at which the target component can be selectively passed, for example, 80 ° C., and the sample injection port 21 is connected to the sample measuring means 19. Fill with sample, eg water.

【0012】この状態で、切換弁14を第1の流路(図
中、点線により示す流路)に切換えて、プランジャポン
プ20を作動させると、試料計量手段19内の試料はガ
ス選択手段1の円筒状容器3の接続口5から空間7に流
れ込み、他方の接続口4から再び計量手段19に戻ると
いうルートを循環する。またキャリアガス源16からの
キャリアガスが中空糸2の一端2bから流れ込み、他端
2aからコンデンサ12を経由して排出口23より排出
される。
In this state, when the switching valve 14 is switched to the first flow path (flow path indicated by the dotted line in the figure) and the plunger pump 20 is operated, the sample in the sample measuring means 19 is gas selection means 1 It circulates through a route of flowing from the connection port 5 of the cylindrical container 3 into the space 7 and returning from the other connection port 4 to the measuring means 19 again. Further, the carrier gas from the carrier gas source 16 flows in from the one end 2b of the hollow fiber 2 and is discharged from the other end 2a through the condenser 12 and the discharge port 23.

【0013】この循環の過程で分析対象となる試料に含
まれているガス成分は、中空糸2を構成している材料に
より決まる選択機能、例えばシリコンの場合には材料中
の浸透により、また弗素樹脂の場合には細孔の通過によ
り中空糸2の通孔に侵入し、キャリアガスによりコンデ
ンサ12に運ばれる。
The gas component contained in the sample to be analyzed during this circulation process has a selective function determined by the material constituting the hollow fiber 2, for example, in the case of silicon, it permeates into the material and fluorine. In the case of resin, it penetrates the through holes of the hollow fiber 2 by passing through the pores and is carried to the condenser 12 by the carrier gas.

【0014】一方、妨害成分は中空糸2の隔壁を通過す
る過程で中空糸2を構成している材料の親和力により吸
着されたり、また弗素樹脂の場合には細孔によりはばま
れて中空糸2の細孔に侵入することができない。
On the other hand, the interfering component is adsorbed by the affinity of the material constituting the hollow fiber 2 in the process of passing through the partition wall of the hollow fiber 2, or in the case of a fluororesin, it is scattered by the pores and is thus hollow fiber. 2 cannot penetrate into the pores.

【0015】中空糸2を透過した成分は、ここに流れ込
んでくるキャリアガスによりコンデンサ12に運ばれて
コンデンサ12の吸着剤に吸着されて順次濃縮されてい
く。
The component that has permeated the hollow fiber 2 is carried to the condenser 12 by the carrier gas flowing therein and is adsorbed by the adsorbent of the condenser 12 to be successively concentrated.

【0016】ところで、ガス成分が、中空糸2等の高分
子膜を透過する際のガス透過係数Pは、ガスの溶解度を
K、拡散係数をDとすると、一般的に P=K×D なる関係で表すことができる。一方、ガスの溶解度は、
中空糸2の温度に依存しているから、ガス選択手段1の
ヒータ8の温度を制御して中空糸2の温度を変えると、
ガスの溶解度Kが変化するため、中空糸2を透過する対
象ガスの透過率を調整することが可能となる。すなわ
ち、ヒータ8の温度により透過させたいガスの種類を選
択することが可能となるばかりでなく、透過率が一定と
なるように制御することが可能となる。
By the way, the gas permeation coefficient P when the gas component permeates the polymer membrane such as the hollow fiber 2 is generally P = K × D, where K is the solubility of the gas and D is the diffusion coefficient. It can be expressed as a relationship. On the other hand, the solubility of gas is
Since the temperature depends on the temperature of the hollow fiber 2, if the temperature of the heater 8 of the gas selecting means 1 is controlled to change the temperature of the hollow fiber 2,
Since the gas solubility K changes, the transmittance of the target gas that permeates the hollow fiber 2 can be adjusted. That is, it is possible not only to select the type of gas to be transmitted depending on the temperature of the heater 8, but also to control the transmittance to be constant.

【0017】このようにして所定時間が経過した時点で
切換弁14を第2の流路(図中、切換弁14の実線によ
り示す流路)に切換えると、キャリアガス源16−中空
糸2−コンデンサ12−分析用カラム15−検出手段1
7という流路が形成される。この段階でフラッシュヒ−
タ13に電流を供給すると、コンデンサ12に吸着され
ている成分が吸着剤から脱離し、ここに流れ込んで来る
キャリアガスにより極めて短時間で分析用カラム15に
追い出される。分析用カラム15に流れ込んだ試料は、
分析カラム15で成分毎に分離され、カラム充填剤によ
り決まる溶出時間の経過後に検出器17に流れ込み、そ
の濃度が検出される。
When the switching valve 14 is switched to the second flow path (the flow path shown by the solid line of the switching valve 14 in the drawing) when the predetermined time has elapsed, the carrier gas source 16-hollow fiber 2- Capacitor 12-Analysis column 15-Detection means 1
The flow path 7 is formed. Flash heat at this stage
When a current is supplied to the capacitor 13, the components adsorbed on the condenser 12 are desorbed from the adsorbent and are expelled to the analytical column 15 in an extremely short time by the carrier gas flowing therein. The sample flowing into the analytical column 15 is
The components are separated in the analytical column 15, and after the elution time determined by the column packing material has passed, they flow into the detector 17 and the concentration thereof is detected.

【0018】このように中空糸2は、表1に示したよう
にエタノール、アセトニトリル等の有機溶媒や酢酸を選
択的に排除するばかりでなく、試料を構成している水の
透過も阻止するから、特に水に溶解している気体成分を
濃縮した場合には、ガス成分だけを選択的に取り出すこ
とができ、操作が比較的簡単なガス分析装置により分析
することができる。
Thus, as shown in Table 1, the hollow fiber 2 not only selectively eliminates organic solvents such as ethanol and acetonitrile and acetic acid, but also prevents permeation of water constituting the sample. In particular, when the gas component dissolved in water is concentrated, only the gas component can be selectively taken out and can be analyzed by a gas analyzer which is relatively easy to operate.

【表1】 [Table 1]

【0019】(比較例)純水にメタノール200pp
b、クロロホルム50ppb、ベンゼン100ppbを
溶解したサンプルを用いて、上述の分析装置により分析
したところ、図2(イ)に示したように挟雑物となる
水、及びメタノールを完全に排除してクロロホルム(P
1)とベンゼン(P2)だけのピークを得ることができ
た。
(Comparative Example) 200 pp of methanol in pure water
b, chloroform 50 ppb, and benzene 100 ppb were dissolved in the sample and analyzed by the above-described analyzer. As shown in FIG. (P
Only peaks of 1) and benzene (P2) could be obtained.

【0020】一方、比較のために従来のパージ・トラッ
プ法により試料を濃縮して同一の分析手段で分析したと
ころ、図2(ロ)に示したように通常、環境測定におい
ては挟雑物として扱われているメタノールの大きなピー
ク(P3)を伴ってクロロホルム(P1)、ベンゼン
(P2)とが検出された。このように分析対象となる成
分よりも極めて高い濃度の試料が流入すると、ピークの
テールエンドが長くなり、目的成分のピークがこのテー
ルエンド領域に位置すると分析誤差を含むことになる。
On the other hand, for comparison, when the sample was concentrated by the conventional purge trap method and analyzed by the same analyzing means, as shown in FIG. Chloroform (P1) and benzene (P2) were detected with a large peak of methanol being handled (P3). Thus, when a sample having a concentration extremely higher than that of the component to be analyzed flows in, the tail end of the peak becomes long, and if the peak of the target component is located in this tail end region, an analysis error will be included.

【0021】このことから本発明は、環境中に比較的高
い濃度で存在する有機溶媒等を排除して、分析対象とな
るガスを選択的に濃縮するため、高濃度挟雑物に起因す
るピークやテールエンドと目的成分のピークとの重なり
を防止することができて、微量成分を高い濃度で分析で
きることが判明した。
From the above, the present invention eliminates the organic solvent and the like existing in a relatively high concentration in the environment and selectively concentrates the gas to be analyzed. It was found that the peak of the target component could be prevented from overlapping with the tail end and the trace component could be analyzed at a high concentration.

【0022】もとより、上述したように中空糸2は、そ
の温度により成分の透過率が変化するので、中空糸の温
度を制御することによりサンプル中から目的成分を選択
的に濃縮して取り出すことができる。
Of course, as described above, the hollow fiber 2 has a change in the transmittance of the components depending on its temperature. Therefore, by controlling the temperature of the hollow fibers, the target component can be selectively concentrated and taken out from the sample. it can.

【0023】なお、この実施例においては、ガス選択手
段に独立のヒータ8を設けているが、円筒状容器、及び
中空糸からなるモジュールとして構成して、分析用カラ
ム15や検出器17を収容している恒温槽18に収容す
ることもできる。
In this embodiment, the gas selection means is provided with an independent heater 8. However, it is constructed as a module consisting of a cylindrical container and a hollow fiber to accommodate an analytical column 15 and a detector 17. It can also be housed in the constant temperature bath 18 in which it is operated.

【0024】また、上述の実施例においては、円筒状容
器に中空糸を1本だけ収容した場合について説明した
が、複数本の中空糸を同一の容器に収容しても同様の作
用を奏することは明らかである。
Further, in the above embodiment, the case where only one hollow fiber is accommodated in the cylindrical container has been described, but the same effect can be obtained even if a plurality of hollow fibers are accommodated in the same container. Is clear.

【0025】さらに上述の実施例においてはガスの成分
をガスクロマトグラフにより分析するようにしている
が、分離手段を必要としないスペクトル分析装置や、質
量分析装置等を用いて検出するようにしても同様の作用
を奏することは明らかである。
Further, in the above-mentioned embodiment, the gas components are analyzed by a gas chromatograph, but the same applies even if the components are detected using a spectrum analyzer or a mass spectrometer which does not require a separating means. It is clear that the action of

【0026】[0026]

【発明の効果】以上、説明したように本発明において
は、高分子材料により形成された中空糸を、その両端を
外部管路と接続可能に容器に収容するとともに、中空糸
の温度を制御する手段を備えたガス選択手段と、容器に
被濃縮流体を供給するポンプ手段と、中空糸に接続する
コンデンサとを備えるようにしたので、試料が水の場合
にはこれ排除しながら、中空糸の温度を制御することに
より妨害成分を排除して分析対象となる微量な成分だけ
を選択的に濃縮することができるばかりでなく、液体試
料の分析に比較して操作の簡単なガス分析手段により分
析することができる。
INDUSTRIAL APPLICABILITY As described above, in the present invention, the hollow fiber formed of the polymer material is housed in the container so that both ends thereof can be connected to the external conduit, and the temperature of the hollow fiber is controlled. Since the gas selection means provided with the means, the pump means for supplying the fluid to be concentrated to the container, and the condenser connected to the hollow fiber are provided, when the sample is water, it is excluded while the sample is water. By controlling the temperature, interfering components can be eliminated and only a small amount of components to be analyzed can be selectively concentrated. In addition, analysis by gas analysis means that is simpler to operate than liquid sample analysis can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の試料濃縮装置を使用したガスクロマト
グラフの一実施例を示す構成図である。
FIG. 1 is a configuration diagram showing an example of a gas chromatograph using a sample concentrating device of the present invention.

【図2】図(イ)(ロ)は、それぞれ本発明の装置によ
る分析結果を示すクロマトグラム、及び従来の試料濃縮
法により得たサンプルのクロマトグラムである。
2 (a) and (b) are a chromatogram showing an analysis result by the device of the present invention and a chromatogram of a sample obtained by a conventional sample concentration method, respectively.

【符号の説明】 1 ガス選択手段 2 高分子中空糸 3 容器 7 空間 12 コンデンサ 13 フラッシュヒータ 14 切換弁 15 分析用カラム 16 キャリアガス源 19 試料計量手段 20 ポンプ[Explanation of Codes] 1 Gas selection means 2 Polymer hollow fiber 3 Container 7 Space 12 Condenser 13 Flash heater 14 Switching valve 15 Analytical column 16 Carrier gas source 19 Sample measuring means 20 Pump

───────────────────────────────────────────────────── フロントページの続き (72)発明者 増岡 登志夫 茨城県つくば市東1丁目1番 工業技術院 物質工学工業技術研究所内 (72)発明者 溝口 健作 茨城県つくば市東1丁目1番 工業技術院 物質工学工業技術研究所内 (72)発明者 松居 正己 茨城県つくば市吾妻3丁目17−1 株式会 社島津製作所つくば分析センター内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshio Masuoka 1-1, Higashi, Tsukuba-shi, Ibaraki Institute of Industrial Science and Technology, Institute of Materials Engineering (72) Inventor Kensaku Mizoguchi 1-1-1, Higashi, Tsukuba, Ibaraki (72) Inventor, Masami Matsui, 3-17-1 Azuma, Tsukuba, Ibaraki Shimadzu Corporation Tsukuba Analysis Center

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高分子材料により形成された中空糸を、
その両端を外部管路と接続可能に容器に収容するととも
に、前記中空糸の温度を制御する手段を備えたガス選択
手段と、前記容器に被濃縮流体を供給するポンプ手段
と、前記中空糸に接続するコンデンサとを備えてなる分
析用試料濃縮装置。
1. A hollow fiber formed of a polymer material,
Both ends of the hollow fiber are housed in a container so that they can be connected to an external conduit, and a gas selection means having means for controlling the temperature of the hollow fiber, a pump means for supplying a fluid to be concentrated to the container, and the hollow fiber A sample concentrator for analysis comprising a connecting capacitor.
【請求項2】 前記中空糸は高分子材料で構成されてい
る請求項1の分析用試料濃縮装置。
2. The analytical sample concentrating apparatus according to claim 1, wherein the hollow fiber is made of a polymer material.
JP35168593A 1993-12-28 1993-12-28 Sample concentrator for analysis Expired - Lifetime JP3322325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35168593A JP3322325B2 (en) 1993-12-28 1993-12-28 Sample concentrator for analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35168593A JP3322325B2 (en) 1993-12-28 1993-12-28 Sample concentrator for analysis

Publications (2)

Publication Number Publication Date
JPH08201363A true JPH08201363A (en) 1996-08-09
JP3322325B2 JP3322325B2 (en) 2002-09-09

Family

ID=18418932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35168593A Expired - Lifetime JP3322325B2 (en) 1993-12-28 1993-12-28 Sample concentrator for analysis

Country Status (1)

Country Link
JP (1) JP3322325B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007518997A (en) * 2004-01-23 2007-07-12 エンバイロニクス、オケサ、ユキチュア Gas chromatograph
JP2008002916A (en) * 2006-06-21 2008-01-10 Okayama Univ Component removing system for in-line removing specific component in sample liquid
JP2011007758A (en) * 2009-06-29 2011-01-13 Nippon Telegr & Teleph Corp <Ntt> Gas separator, gas separating method, and gas measuring instrument
CN102175507A (en) * 2010-12-31 2011-09-07 国家海洋环境监测中心 On-line concentration system suitable for large-flow enriching instrument
CN114053984A (en) * 2020-07-30 2022-02-18 深圳市帝迈生物技术有限公司 Reaction device, sample analysis device and liquid adding method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007518997A (en) * 2004-01-23 2007-07-12 エンバイロニクス、オケサ、ユキチュア Gas chromatograph
JP4903056B2 (en) * 2004-01-23 2012-03-21 エンバイロニクス、オケサ、ユキチュア Gas chromatograph
JP2008002916A (en) * 2006-06-21 2008-01-10 Okayama Univ Component removing system for in-line removing specific component in sample liquid
JP2011007758A (en) * 2009-06-29 2011-01-13 Nippon Telegr & Teleph Corp <Ntt> Gas separator, gas separating method, and gas measuring instrument
CN102175507A (en) * 2010-12-31 2011-09-07 国家海洋环境监测中心 On-line concentration system suitable for large-flow enriching instrument
CN114053984A (en) * 2020-07-30 2022-02-18 深圳市帝迈生物技术有限公司 Reaction device, sample analysis device and liquid adding method

Also Published As

Publication number Publication date
JP3322325B2 (en) 2002-09-09

Similar Documents

Publication Publication Date Title
US6541272B1 (en) Pulse introduction membrane extraction apparatus and method for separating and analyzing at least one component in a fluid contaminated with the at least one component
JP4231480B2 (en) Compound pretreatment concentrator for gas chromatography
US6652625B1 (en) Analyte pre-concentrator for gas chromatography
Yang et al. Membrane extraction with a sorbent interface for capillary gas chromatography
US7552618B2 (en) Chromatographic interface for thermal desorption systems
US10338044B2 (en) Method and apparatus for reducing gas consumption in continuous flow analytical instruments
US10067100B2 (en) Method and apparatus for preconcentrating a gaseous sample
KR20010034530A (en) Method and device for identifying gaseous compounds
US5104810A (en) Zero gravity purge and trap for monitoring volatile organic compounds
US6063166A (en) Chromatograph having a gas storage system
JPH08201363A (en) Sample concentrating device for analysis
Papaefstathiou et al. Hyphenated pervaporation—solid-phase preconcentration—gas chromatography for the determination of volatile organic compounds in solid samples
Crespin et al. Trace enrichment of phenols by on-line solid-phase extraction and gas chromatographic determination
US11275060B2 (en) Device for preparing a liquid sample for a gas chromatograph
WO1997031257A1 (en) Preparation of gaseous mixtures for isotopic analysis
Slack et al. Extraction of volatile organic compounds from solids and liquids
JP2526244B2 (en) Chromatography-analysis method
US6368559B1 (en) Device for analyzing organic compounds particularly in aqueous and gaseous samples
JP2001133445A (en) Liquid chromatograph
RU2125723C1 (en) Device taking and injecting samples
JP2002107349A (en) Gas chromatograph, and analysis method of aromatic hydrocarbons in carbon dioxide
WO1998049554A1 (en) Method and apparatus for concentrating solution
Moskvin et al. Automation of Sample Preparation Using Principles of Chromatomembrane Separation Methods in the Analysis of Aqueous and Air Media
RU2122729C1 (en) Gas chromatograph for analysis of substances in mixtures of gases and/or vapors
SU1689844A1 (en) Gas chromatograph

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020612

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080628

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090628

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100628

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100628

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110628

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110628

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120628

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130628

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130628

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140628

Year of fee payment: 12

EXPY Cancellation because of completion of term