JPS648762B2 - - Google Patents

Info

Publication number
JPS648762B2
JPS648762B2 JP19104581A JP19104581A JPS648762B2 JP S648762 B2 JPS648762 B2 JP S648762B2 JP 19104581 A JP19104581 A JP 19104581A JP 19104581 A JP19104581 A JP 19104581A JP S648762 B2 JPS648762 B2 JP S648762B2
Authority
JP
Japan
Prior art keywords
roll
distance
measured
distance sensor
horizontal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19104581A
Other languages
Japanese (ja)
Other versions
JPS5892807A (en
Inventor
Kazuharu Hanazaki
Kyotaka Inada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP19104581A priority Critical patent/JPS5892807A/en
Publication of JPS5892807A publication Critical patent/JPS5892807A/en
Publication of JPS648762B2 publication Critical patent/JPS648762B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/12Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring roll camber
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/245Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using a plurality of fixed, simultaneously operating transducers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【発明の詳細な説明】 本発明は圧延機のロール形状をミルハウジング
に組み込んだままの状態で測定し得るロール形状
測定方法を提案するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention proposes a roll shape measuring method that can measure the roll shape of a rolling mill while it is assembled in a mill housing.

圧延機におけるロールの摩耗は不可避であるの
で、ロールは周期的に取り替えられ、使用済のロ
ールは再使用のための研削に供される。ところが
このロールの取替えには多大の労力を要し、また
取り替えてはみたものの、旧ロールが未だ使用可
能な状態にあつたり、逆に取替えが遅れて圧延不
良を惹起する等の問題があつた。このためにミル
ハウジングにロールを組み込んだまま、所謂イン
ラインでロール形状を測定する方法が種々開発さ
れている。この方法としてはロールの軸心と平行
になるようにロール表面に沿つて水平横架した架
台に複数の距離センサ(差動トランス式、渦流
式、容量式等)を取り付けて、このセンサとロー
ル表面との距離を検知してロールのプロフイール
を求めんとする方法が知られている。而して測定
精度としては10〜30μm程度が必要であるにも拘
らず、測定の基準となる前記架台の寸法精度を、
強振動、且つ、高温環境の下に高精度に保つこと
は極めて困難である。特にロール形状を測定する
上では、ロール軸心に対して水平方向に安定した
平行度を維持せしめることが重要であるが、それ
を高精度に保つためには経済性を度外視した仕様
にせざるを得ない。
Since roll wear in rolling mills is unavoidable, the rolls are replaced periodically and used rolls are subjected to grinding for reuse. However, replacing these rolls required a lot of effort, and even after replacing them, there were problems such as the old rolls still being usable, or conversely, replacement was delayed, causing poor rolling. . For this reason, various methods have been developed for measuring the roll shape in-line while the roll is still installed in the mill housing. In this method, multiple distance sensors (differential transformer type, eddy current type, capacitive type, etc.) are attached to a frame horizontally mounted along the roll surface parallel to the axis of the roll. A method is known in which the profile of the roll is determined by detecting the distance to the surface. Although the measurement accuracy is required to be around 10 to 30 μm, the dimensional accuracy of the mount, which is the standard for measurement, is
It is extremely difficult to maintain high precision under strong vibration and high temperature environments. Particularly when measuring roll shapes, it is important to maintain stable parallelism in the horizontal direction with respect to the roll axis, but in order to maintain high accuracy, specifications must be made that ignore economic efficiency. I don't get it.

本発明は斯かる事情に鑑みてなされたものであ
つて、ロール形状測定精度の向上を図る方法とし
て、上記架台の寸法精度を高精度に保つ考えは棄
て、距離センサの取付け位置の変位量を求め、該
変位量に基づいてロール形状測定値を補正する方
法を提供することを目的とする。
The present invention was made in view of the above circumstances, and as a method for improving roll shape measurement accuracy, the idea of maintaining high dimensional accuracy of the mount is abandoned, and the displacement amount of the mounting position of the distance sensor is changed. It is an object of the present invention to provide a method for correcting a roll shape measurement value based on the amount of displacement.

本発明に係るロール形状測定方法は、圧延機の
ロール軸心に平行的に配された架台に取り付けた
複数の距離計にて各センサとロール表面との距離
を測定する一方、ロールに対する架台の相対的変
位量を架台に対してロールとは反対側に光学系を
位置せしめた光学距離計にて測定し、該測定変位
量に基づいて距離センサとロール表面との距離測
定値を補正してロール形状データとすることを特
徴とする。
In the roll shape measuring method according to the present invention, the distance between each sensor and the roll surface is measured using a plurality of distance meters attached to a pedestal arranged parallel to the roll axis of a rolling mill. The amount of relative displacement is measured with an optical distance meter that has an optical system located on the opposite side of the roll with respect to the mount, and the distance measurement value between the distance sensor and the roll surface is corrected based on the measured amount of displacement. It is characterized by being roll shape data.

次に本発明方法をその実施に使用する装置を示
す図面に基づいて具体的に説明する。第1図は本
発明装置の全体を示す模式的平面図である。ロー
ル11を支承しているミルハウジング12,12
の入側(又は出側)にはロール軸心11aと平行
で水平に、且つ、同レベルに水平架台21が取り
付けられている。この水平架台21のロール11
に対向する面には、公知の(差動トランス式、渦
流式、容量式等)距離センサ22が複数個(図面
では6個表われている)、等間隔に取り付けられ
ており、各距離センサ22とロール11表面との
距離を夫々測定するようになつている。また水平
架台21のロール11に対向する面と反対側の面
の中央には、レーザ距離計3の一部を構成する反
射鏡33が取り付けられている。該レーザ距離計
3は、マイケルソン型干渉計を応用したものであ
り、前記反射鏡33の取付け位置からロール11
に対して水平に離隔する方向の基準位置に設けら
れた干渉計32を用いて、レーザ光源31から所
定周波数にて変調して発せしめたレーザビーム
に、干渉計32内の基準キユーブコーナにて反射
する光路と前記反射鏡33にて反射する光路との
2つの光路をとらしめ、その光路差による光の干
渉現象をレシーバ34にて捉えることにより、干
渉計32と反射鏡33との距離を高精度に測定す
るものである。そして上述したレーザ光源31、
干渉計32、レシーバ34はいずれも強振動、高
温環境の悪条件から回避できるように設置されて
いる。
Next, the method of the present invention will be specifically explained based on the drawings showing the apparatus used for carrying out the method. FIG. 1 is a schematic plan view showing the entire apparatus of the present invention. Mill housings 12, 12 supporting rolls 11
A horizontal pedestal 21 is attached to the inlet side (or outlet side) of the roll axis 11a, parallel to and at the same level as the roll axis 11a. The roll 11 of this horizontal frame 21
A plurality of known (differential transformer type, eddy current type, capacitive type, etc.) distance sensors 22 (six are shown in the drawing) are attached at equal intervals on the surface facing the . The distance between each roller 22 and the surface of the roll 11 is measured. Further, a reflecting mirror 33 configuring a part of the laser distance meter 3 is attached to the center of the surface of the horizontal mount 21 opposite to the surface facing the roll 11 . The laser distance meter 3 is an application of a Michelson type interferometer, and the distance from the mounting position of the reflecting mirror 33 to the roll 11 is
A laser beam modulated at a predetermined frequency is emitted from a laser light source 31 using an interferometer 32 installed at a reference position horizontally away from The distance between the interferometer 32 and the reflecting mirror 33 can be increased by determining two optical paths, one being reflected by the reflecting mirror 33 and the other reflecting by the reflecting mirror 33, and capturing the interference phenomenon of light due to the optical path difference with the receiver 34. It measures with precision. And the above-mentioned laser light source 31,
Both the interferometer 32 and the receiver 34 are installed to avoid adverse conditions such as strong vibrations and high temperature environments.

51はマイクロコンピユータ等を用いてなる演
算装置であつて、前述した各距離センサ22にて
得られた各距離センサ22とロール11表面との
距離に関するデータと前記レシーバ34にて得ら
れた水平架台21の水平方向への変位量、即ち撓
み具合に関するデータとが該演算装置51へ入力
されるようになつている。更にロール11に連動
連結されたエンコーダ41の出力信号は、ロール
形状測定位置(周方向)特定のためのデータとし
て演算装置51へ入力される。そして演算装置5
1は、上述した各データに基づいてロール11の
ロール形状を演算してプロツタ52にその結果を
記録せしめるようになつている。
Reference numeral 51 denotes a calculation device using a microcomputer or the like, which calculates data regarding the distance between each distance sensor 22 and the surface of the roll 11 obtained by each of the distance sensors 22 described above and the horizontal mount obtained by the receiver 34. 21 in the horizontal direction, that is, data regarding the degree of deflection, is input to the arithmetic unit 51. Further, an output signal from an encoder 41 interlocked with the roll 11 is input to the arithmetic unit 51 as data for specifying the roll shape measurement position (circumferential direction). and computing device 5
1 calculates the roll shape of the roll 11 based on the above-mentioned data and causes the plotter 52 to record the results.

上述の如く構成された装置を用いてロール11
のロール形状を測定する場合、各距離センサ22
により各距離センサ22とロール11表面との距
離を測定し、該測定値を、エンコーダ41の出力
信号によりロール形状測定位置(周方向)に特定
せしめてロール11のロール形状を求めるわけで
あるが、各距離センサ22による測定値は、各距
離センサ22が取り付けられている水平架台21
が強振動、且つ、高温環境の下において不可避的
に変形するので、その変形量による誤差を補正す
ることが必要となる。本発明においては、ロール
形状を測定する上で特に大きな影響を及ぼす水平
架台21の水平方向への変位量即ち撓み量を干渉
計32と反射鏡33との距離を測定することによ
り求める。然るに前述の如くレーザ光源31、干
渉計32、レシーバ34はいずれも強振動、高温
環境の悪条件から回避せしめてあるので、高精度
の測定が可能となる。なおレーザ光源31、干渉
計32、レシーバ34を悪条件から回避せしめる
のは水平架台21を高精度に保つほどの困難性は
伴わない。然して得られた撓み量測定値により、
上述した各距離センサ22による測定値を補正す
る。
The roll 11 is made using the apparatus configured as described above.
When measuring the roll shape of , each distance sensor 22
The distance between each distance sensor 22 and the surface of the roll 11 is measured, and the measured value is specified at the roll shape measurement position (circumferential direction) using the output signal of the encoder 41 to determine the roll shape of the roll 11. , the measured values by each distance sensor 22 are measured by the horizontal mount 21 to which each distance sensor 22 is attached.
is inevitably deformed under strong vibration and high temperature environment, so it is necessary to correct errors due to the amount of deformation. In the present invention, the amount of horizontal displacement, that is, the amount of deflection, of the horizontal pedestal 21, which has a particularly large effect on measuring the roll shape, is determined by measuring the distance between the interferometer 32 and the reflecting mirror 33. However, as described above, since the laser light source 31, interferometer 32, and receiver 34 are all protected from adverse conditions such as strong vibrations and high temperature environments, highly accurate measurements are possible. Note that avoiding the laser light source 31, interferometer 32, and receiver 34 from adverse conditions is not as difficult as maintaining the horizontal mount 21 with high accuracy. Based on the deflection measurement value obtained,
The measured values by each of the distance sensors 22 described above are corrected.

第2図は、その補正方法の説明図であり、水平
架台21をミルハウジング12,12に取り付け
た左右の取付位置A,A′は、強振動、且つ、高
温環境の下においても変動しないものとし、その
2点を結ぶ直線上に、その2点の中央位置Bを原
点とするx軸をとり、該x軸と直交し、原点から
ロール11に対して水平に離隔する方向を正方向
とするy軸をとつたx−y直交座標を示してい
る。この座標においては、前記干渉計32が設け
られた基準位置Cは、y軸上に存在することとな
る。そしてA又はA′とBとの距離をaとし、レ
ーザ距離計3にて測定された水平架台21中央の
水平方向の撓み量をy0とし、水平架台21が円弧
状に撓んでいるものとすると、原点Bからの離隔
量xとその各位置における水平架台21の撓み量
yとの間には下記(1)式が成立する。
Fig. 2 is an explanatory diagram of the correction method, and the left and right mounting positions A and A' where the horizontal frame 21 is attached to the mill housings 12 and 12 are those that do not change even under strong vibration and high temperature environments. Then, on the straight line connecting the two points, take an x-axis with the origin at the center position B of the two points, and the direction perpendicular to the x-axis and horizontally away from the origin with respect to the roll 11 is the positive direction. It shows the x-y orthogonal coordinates with the y-axis. In this coordinate, the reference position C where the interferometer 32 is provided is on the y-axis. Let the distance between A or A' and B be a, and let the amount of deflection in the horizontal direction at the center of the horizontal pedestal 21 measured by the laser distance meter 3 be y 0 , and assume that the horizontal pedestal 21 is bent in an arc shape. Then, the following equation (1) is established between the distance x from the origin B and the deflection amount y of the horizontal frame 21 at each position.

x2+(y+a2−y2 0/2y02=(a2+y2 0/2y02……
(1) 従つて各位置における撓み量yは原点Bからの
離隔量xにより下記(2)式の如く求めることができ
る。
x 2 + (y + a 2 - y 2 0 /2y 0 ) 2 = (a 2 +y 2 0 /2y 0 ) 2 ...
(1) Therefore, the amount of deflection y at each position can be determined from the distance x from the origin B as shown in equation (2) below.

然るに水平架台21が撓んでいない状態におけ
る各距離センサ22取付け位置は原点Bからの離
隔量xにて表わすことができ、また水平架台21
が撓んだ後も各距離センサ22取付け位置は原点
Bからの離隔量xにて近似できるので、各距離セ
ンサ22取付け位置における水平架台21の撓み
量yは上記(2)式にて求めることができる。この撓
み量を用いて前述した各距離センサ22による測
定値を補正し、その補正された値によりロール形
状を求めることとすれば、各距離センサ22が取
り付けられた水平架台21が強振動、且つ、高温
環境の下にて変形してもロール形状測定精度を高
精度に保つことができる。
However, when the horizontal frame 21 is not bent, the mounting position of each distance sensor 22 can be expressed by the distance x from the origin B, and the horizontal frame 21
Even after the distance sensor 22 is deflected, the mounting position of each distance sensor 22 can be approximated by the distance x from the origin B, so the deflection amount y of the horizontal frame 21 at the mounting position of each distance sensor 22 can be calculated using the above equation (2). I can do it. If the measured values by each distance sensor 22 described above are corrected using this amount of deflection, and the roll shape is determined from the corrected value, the horizontal pedestal 21 to which each distance sensor 22 is attached is subject to strong vibrations and Even if the roll shape is deformed in a high-temperature environment, the roll shape measurement accuracy can be maintained at high accuracy.

なお図面においては、レーザ距離計3の光学系
を全て一列に配するように示しているが、ロール
11近傍のレイアウトに応じて、ビームベンダを
用いてレーザビームを適切に、例えば垂直に方向
転換し、レーザ距離計3の光学系がロール11近
傍の設備と干渉し合わないように、またレーザ距
離計3の光学系が良好な環境の下に配されるよう
にできることは勿論である。
Although the drawing shows that all the optical systems of the laser distance meter 3 are arranged in a line, depending on the layout near the roll 11, the direction of the laser beam can be changed appropriately, for example vertically, using a beam bender. However, it is of course possible to prevent the optical system of the laser range finder 3 from interfering with equipment near the roll 11 and to arrange the optical system of the laser range finder 3 in a favorable environment.

また本実施例においては、水平架台21をミル
ハウジング12,12に取り付けた取付け位置は
変化しないことを前提としたが、該取付け位置が
変化する虞れがある場合には、該取付け位置にも
前記反射鏡33と同様の反射鏡を取り付け、それ
に対応したレーザ距離計によりその部分の変位を
測定し、該測定値を考慮した補正を行うとよい。
Furthermore, in this embodiment, it is assumed that the mounting position where the horizontal frame 21 is attached to the mill housings 12, 12 does not change. However, if there is a possibility that the mounting position changes, the mounting position may also be changed. It is preferable to attach a reflecting mirror similar to the reflecting mirror 33, measure the displacement of that part with a corresponding laser distance meter, and perform correction taking the measured value into consideration.

なお水平架台21の各距離センサ22取付け位
置に前記反射鏡33と同様の反射鏡を夫々取り付
け、それに対応したレーザ距離計により、その部
分の変位即ち改距離センサ22取付け位置の変位
を直接的に測定し、該測定値を考慮した補正を行
つてもよいことは勿論である。
Incidentally, a reflector similar to the reflector 33 is attached to each distance sensor 22 attachment position of the horizontal mount 21, and a corresponding laser distance meter is used to directly measure the displacement of that part, that is, the displacement of the revised distance sensor 22 attachment position. Of course, it is also possible to measure and perform correction taking the measured value into consideration.

またレーザ距離計に替えて、高精度に水平架台
21の変位を測定し得る他の光学距離計を用いて
も本発明の目的は達成できるのはいうまでもな
い。
It goes without saying that the object of the present invention can also be achieved by using another optical distance meter that can measure the displacement of the horizontal mount 21 with high precision in place of the laser distance meter.

以上詳述した如く本発明は、圧延機のロール表
面に沿つて複数の距離センサを配し、該距離セン
サとロール表面との距離を測定する一方、該距離
センサを配した位置の変位量を求め、該変位量に
基づいて距離センサとロール表面との距離測定値
を補正することによりロール形状を測定するの
で、距離センサを配した架台が強振動、且つ、高
温環境の下において変形しても高精度の測定が可
能となる。
As detailed above, the present invention arranges a plurality of distance sensors along the roll surface of a rolling mill, measures the distance between the distance sensors and the roll surface, and measures the amount of displacement at the position where the distance sensors are arranged. Since the roll shape is measured by correcting the measured value of the distance between the distance sensor and the roll surface based on the amount of displacement, the pedestal on which the distance sensor is placed will not deform under strong vibration and high temperature environment. It also enables highly accurate measurements.

従つて本発明はロールをミルハウジングに組み
込んだままその形状を高精度にて測定することを
可能とするので、無駄なロール取替え、取替え遅
れが回避でき、更にロールをミルハウジングに組
み込んだままのロール研削が可能になる等、本発
明は優れた効果を奏する。
Therefore, the present invention makes it possible to measure the shape of the roll with high accuracy while it is still assembled in the mill housing, thereby avoiding wasteful roll replacement or delay in replacement. The present invention has excellent effects such as enabling roll grinding.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の全体を示す模式的平面
図、第2図は誤差補正方法の説明図である。 11……ロール、12,12……ミルハウジン
グ、21……水平架台、22,22…22……距
離センサ、3……レーザ距離計、51……演算装
置。
FIG. 1 is a schematic plan view showing the entire apparatus of the present invention, and FIG. 2 is an explanatory diagram of an error correction method. DESCRIPTION OF SYMBOLS 11... Roll, 12, 12... Mill housing, 21... Horizontal frame, 22, 22... 22... Distance sensor, 3... Laser distance meter, 51... Arithmetic device.

Claims (1)

【特許請求の範囲】[Claims] 1 圧延機のロール軸心に平行的に配された架台
に取り付けた複数の距離計にて各距離センサとロ
ール表面との距離を測定する一方、ロールに対す
る架台の相対的変位量を架台に対してロールとは
反対側に光学系を位置せしめた光学距離計にて測
定し、該測定変位量に基づいて距離センサとロー
ル表面との距離測定値を補正してロール形状デー
タとすることを特徴とするロール形状測定方法。
1 The distance between each distance sensor and the roll surface is measured using multiple distance meters attached to a pedestal placed parallel to the roll axis of the rolling mill, while the relative displacement of the pedestal with respect to the roll is measured with respect to the pedestal. The method is characterized in that the distance measured by the distance sensor and the roll surface is corrected to obtain roll shape data based on the measured displacement amount. Roll shape measurement method.
JP19104581A 1981-11-27 1981-11-27 Measuring method for roll shape Granted JPS5892807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19104581A JPS5892807A (en) 1981-11-27 1981-11-27 Measuring method for roll shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19104581A JPS5892807A (en) 1981-11-27 1981-11-27 Measuring method for roll shape

Publications (2)

Publication Number Publication Date
JPS5892807A JPS5892807A (en) 1983-06-02
JPS648762B2 true JPS648762B2 (en) 1989-02-15

Family

ID=16267968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19104581A Granted JPS5892807A (en) 1981-11-27 1981-11-27 Measuring method for roll shape

Country Status (1)

Country Link
JP (1) JPS5892807A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10063773A1 (en) * 2000-12-21 2002-06-27 Sms Demag Ag Contour measuring device and method for measuring a contour
DE102008001749A1 (en) 2008-05-14 2009-11-19 Bühler AG System and process for the grinding stock characterization in a grinding plant

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538166A (en) * 1976-07-12 1978-01-25 Sumitomo Metal Ind Method of measuring round bar with stage
JPS5648507A (en) * 1979-09-28 1981-05-01 Sumitomo Metal Ind Ltd Profile detecting device for rolling roll

Also Published As

Publication number Publication date
JPS5892807A (en) 1983-06-02

Similar Documents

Publication Publication Date Title
JPH02291908A (en) Inspection of tandem-layout shaft
JPH03501052A (en) Calibration system for coordinate measuring machines
CN102072710B (en) Optical angle measuring device and angle measuring method
JP3031529B2 (en) Method and apparatus for measuring sectional dimensions of H-section steel
US4523380A (en) Measuring apparatus
JPS648762B2 (en)
JP4131843B2 (en) Chatter mark detector
CN218411080U (en) Automatic plane flat crystal detection device based on machine vision
JP5290038B2 (en) Measuring apparatus and measuring method
JP2020153809A (en) Information processing device, information processing method, and information processing system
CN113340403B (en) Rotating shaft radial vibration measuring method based on circumferential stripes and linear array camera
CN108180934B (en) Detection device and detection method of optical fiber sensing device
JPH01221605A (en) Thickness measuring instrument
JPH06273162A (en) Flatness measuring device
JPH08304068A (en) Method and equipment for measuring distance
JP4238402B2 (en) Length measuring device that eliminates errors due to attitude error of moving table
CN219736756U (en) Bridge deflection measuring sensor based on symmetrical collimating laser and receiver
CN113029614B (en) Geometric error compensation method and device for high-speed rail wheel pair measuring machine
JP3239682B2 (en) Segment position measurement method
JP2003121131A (en) Measuring method for straightness by scanning gap amount detection
JPH0781841B2 (en) Thickness measuring device
JPH0428686A (en) Installation error measuring device for elevator guide rail
JP2001280919A (en) Instrument and method for measuring plate width of rolled material
JPH03255305A (en) Method and apparatus for measuring surface profile
JPS63163110A (en) Method for measuring center line profile