JPS648690B2 - - Google Patents

Info

Publication number
JPS648690B2
JPS648690B2 JP6179685A JP6179685A JPS648690B2 JP S648690 B2 JPS648690 B2 JP S648690B2 JP 6179685 A JP6179685 A JP 6179685A JP 6179685 A JP6179685 A JP 6179685A JP S648690 B2 JPS648690 B2 JP S648690B2
Authority
JP
Japan
Prior art keywords
aluminum
particles
mold
aluminum alloy
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6179685A
Other languages
Japanese (ja)
Other versions
JPS61221342A (en
Inventor
Yasuo Nakamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAMAGUCHIKEN
Original Assignee
YAMAGUCHIKEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAMAGUCHIKEN filed Critical YAMAGUCHIKEN
Priority to JP6179685A priority Critical patent/JPS61221342A/en
Publication of JPS61221342A publication Critical patent/JPS61221342A/en
Publication of JPS648690B2 publication Critical patent/JPS648690B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はアルミニウム又はアルミニウム合金
と、それよりも融点の高い粒体との複合材である
アルミニウム系複合材の製造方法に係り、特に複
合される粒体の種類(無機質粒子や金属粒子)、
形状、複合箇所等を複合材の使用目的に応じて任
意に選定してアルミニウム系複合材を製造する方
法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for producing an aluminum-based composite material, which is a composite material of aluminum or aluminum alloy and particles having a higher melting point than that of aluminum or an aluminum alloy, and particularly relates to type of particles (inorganic particles and metal particles),
The present invention relates to a method of manufacturing an aluminum-based composite material by arbitrarily selecting the shape, composite location, etc. according to the intended use of the composite material.

(従来の技術及び問題点) 従来、金属とセラミツクスとの分散複合体や合
成樹脂と無機材料との分散複合体等が周知である
が、アルミニウムとそれよりも融点の高い粒体と
の複合材である粒子分散アルミニウム系複合体も
既知であり、その製造方法としては、無機質粒子
と金属粒子の均一な混合物を耐熱、耐圧型内に充
填し、これをアルミニウムの熔融温度以下の温度
に予熱した後、熔融したアルミニウムを同型内へ
注湯し、油圧プレスを利用して、充填した粒子混
合物の粒子間隙に圧入し、冷却・凝固している。
(Prior art and problems) Dispersion composites of metal and ceramics, dispersion composites of synthetic resin and inorganic materials, etc. are well known, but composites of aluminum and particles with a higher melting point are known. A particle-dispersed aluminum-based composite is also known, and its production method involves filling a homogeneous mixture of inorganic particles and metal particles into a heat-resistant and pressure-resistant mold, and preheating this to a temperature below the melting temperature of aluminum. After that, molten aluminum is poured into the same mold, and a hydraulic press is used to press it into the gaps between particles in the filled particle mixture, where it is cooled and solidified.

また、無機質粒子や金属粒子が部分的に分散し
た、すなわち、第4図に示したような円柱体の表
層部のみ粒体が分散された複合体を製造するに
は、まず第3図に示すごとき加圧型内にその中央
に小径のアルミニウム円柱体を立置してからそれ
と加圧型との間の空所に粒体を上方より落下させ
て充填し、その後更に熔融金属を上方より型内へ
注湯して後プレスで加圧することによつて製造す
ることができる。しかし、粒体を型内の空所に所
望パターンに充填しそのままの状態を維持しつ
つ、熔融金属を注湯、圧入する作業は非常にむず
かしく、なんとか粒体を希望パターンで空所に充
填してもその後わずかな振動、衝撃を受けると、
たちまち崩壊してしまつてそのパターンをもつ複
合体が得られなくなつてしまう。
In addition, in order to manufacture a composite in which inorganic particles and metal particles are partially dispersed, that is, in which particles are dispersed only in the surface layer of a cylindrical body as shown in Fig. 4, first, as shown in Fig. 3, A small-diameter aluminum cylindrical body is placed in the center of a pressurized mold, and the space between it and the pressurized mold is filled with particles by falling from above, and then molten metal is further poured into the mold from above. It can be manufactured by pouring molten metal and then pressurizing it with a press. However, it is very difficult to fill the voids in a mold with particles in a desired pattern and maintain that state while pouring and press-fitting molten metal. However, if it is subjected to slight vibration or shock,
It immediately collapses and it becomes impossible to obtain a complex with that pattern.

(問題点を解決するための手段) 本発明は上記の点に鑑みてなされたもので、即
ち、アルミニウム又はアルミニウム合金と、それ
らよりも高融点の粒体とからなる複合材を製造す
る方法において、アルミニウム合金の粒体同士を
少量の粘結剤で点接触状で相互に接合されている
連通多孔質の成形体と、前記高融点の粒体同士又
はこれに加えて混合されたアルミニウム又はアル
ミニウム合金の粒体との粒体同士が少量の粘着剤
により点接触状態で相互に接合されている連通多
孔質成形体とを、製造すべき複合材の形状、構造
に合わせて、加圧型内に組み合わせて配置し、該
加圧型及び該型内の前記成形体をアルミニウム又
はアルミニウム合金の熔融温度より若干低い温度
に維持する一方、熔融したアルミニウム又はアル
ミニウム合金を前記加圧型内へ注湯して加圧し、
該型内で前記成形体の粒子間隙にアルミニウム又
はアルミニウム合金を圧入して後、冷却、凝固し
てから、脱型することを特徴とするアルミニウム
又はアルミニウム合金より高融点の粒体が部分的
に分散された粒子分散アルミニウム系複合材の製
造方法、を提供するものである。
(Means for Solving the Problems) The present invention has been made in view of the above points, that is, a method for manufacturing a composite material consisting of aluminum or aluminum alloy and particles having a higher melting point than the aluminum or aluminum alloy. , a continuous porous molded body in which aluminum alloy grains are joined to each other in point contact with a small amount of binder, and aluminum or aluminum mixed with or in addition to the high melting point grains. The alloy particles and the continuous porous formed body, in which the particles are joined to each other in point contact with a small amount of adhesive, are placed in a pressure mold according to the shape and structure of the composite material to be manufactured. While maintaining the pressure mold and the molded body in the mold at a temperature slightly lower than the melting temperature of the aluminum or aluminum alloy, pour the molten aluminum or aluminum alloy into the pressure mold and heat it. Press,
The aluminum or aluminum alloy is press-fitted into the intergranular spaces of the molded body in the mold, cooled and solidified, and then removed from the mold. A method for producing a dispersed particle-dispersed aluminum-based composite material is provided.

(手段の詳細な説明) 以下に本発明の粒子分散されたアルミニウム系
複合材の製造方法について詳細に説明する。
(Detailed Description of Means) The method for manufacturing the particle-dispersed aluminum composite material of the present invention will be described in detail below.

アルミニウム又はアルミニウム合金 本発明の技術思想としては使用目的に応じ、ア
ルミニウム、銅、鉛、亜鉛等を選択使用すること
ができるのであるが、本発明においては、熔融圧
入操作の容易性、製品の強度、機械加工の容易性
等の点からみて、アルミニウム又はアルミニウム
合金を選択した。具体的には、アルミニウム金属
単体、あるいはアルミニウムと珪素、マンガン、
マグネシウム、銅、亜鉛などとの合金、あるいは
これらに鉄、ニツケル、チタン等の少量配合した
合金のごときアルミニウムを約80重量%以上含有
するアルミニウム合金が使用される。
Aluminum or aluminum alloy The technical idea of the present invention is that aluminum, copper, lead, zinc, etc. can be selected and used depending on the purpose of use. Aluminum or an aluminum alloy was selected from the viewpoint of ease of machining. Specifically, aluminum metal alone, aluminum and silicon, manganese,
Aluminum alloys containing about 80% by weight or more of aluminum, such as alloys with magnesium, copper, zinc, etc., or alloys with small amounts of iron, nickel, titanium, etc., are used.

複合粒子 前記アルミニウム又はアルミニウム合金に複合
される無機質粒子及び又は金属粒子としては、前
記アルミニウム又はアルミニウム合金よりも高い
融点を有していることが重要である。そのような
粒子としては、通常ピツチコークス、石油コーク
ス、木炭、黒鉛電極屑などの炭素粒体、酸化アル
ミニウム、酸化マグネシウム、酸化鉄、酸化クロ
ム、酸化ジルコニウムなどの金属酸化物、窒化珪
素、窒化アルミニウムなどの窒化物、炭化珪素、
炭化ほう素などの炭化物、食塩、塩化カリウム、
塩化バリウムなどの塩化物、石英ガラス、結晶化
ガラスなどのガラス粒体、あるいは鉄、銅、ニツ
ケル、チタン、コバルト、クロム、マンガン、な
どの金属粒子などがある。これら粒子の内、水溶
性の塩化物の場合は複合化後にその塩化物を水で
溶出させることにより、多孔質・通気性の材料が
得られ、またガラス粒の場合には透光性を付与さ
せることができる。
Composite Particles It is important that the inorganic particles and/or metal particles composited with the aluminum or aluminum alloy have a higher melting point than the aluminum or aluminum alloy. Such particles usually include pitch coke, petroleum coke, charcoal, carbon particles such as graphite electrode scrap, metal oxides such as aluminum oxide, magnesium oxide, iron oxide, chromium oxide, zirconium oxide, silicon nitride, aluminum nitride, etc. nitride, silicon carbide,
Carbides such as boron carbide, salt, potassium chloride,
These include chlorides such as barium chloride, glass particles such as quartz glass and crystallized glass, and metal particles such as iron, copper, nickel, titanium, cobalt, chromium, and manganese. Among these particles, in the case of water-soluble chloride, by eluting the chloride with water after compounding, a porous and breathable material can be obtained, and in the case of glass particles, translucency can be imparted. can be done.

前記本発明に使用される無機質粒子及び又は金
属粒子の形状は任意であり、粒径は約1μ〜5mm
までのものを複合させることが可能である。50μ
〜5mm程度までの場合は前記粒子間隙に圧入する
熔融金属の押圧力は一般に500Kgf/cm2以下で製造
可能であるが、粒径が約50μ以下の場合には500K
gf/cm2以上で加圧することが必要となる。一般に
加圧力を増すほど巣やピンホールの発生を防止で
き、複合状態が極めて良好な複合体が得られる。
The shape of the inorganic particles and/or metal particles used in the present invention is arbitrary, and the particle size is about 1 μ to 5 mm.
It is possible to combine the above. 50μ
~5mm, the pressing force of the molten metal press-fitted into the gap between the particles is generally less than 500Kgf/ cm2 , but when the particle size is about 50μ or less, production is possible with a pressure of 500Kgf/cm2 or less.
It is necessary to pressurize at gf/cm 2 or more. Generally, as the pressing force increases, the generation of cavities and pinholes can be prevented, and a composite with an extremely good composite state can be obtained.

連通多孔質成形体(予備成形体)の製造 前記無機質粒子又は金属粒子は加圧型内に装着
する前に複合材の使用目的に応じて、予め複合さ
せるべき粒子の種類や粒径を選び、それら粒子を
製品複合材のどの部分にどのように分散させるか
予め複合構造を決定しておき、素材の一部分に部
分的に分散させる部分分散、素材に層状に分散さ
せる層状分散などを行えるよう加圧型内の任意の
箇所に任意の状態で任意の分散割合に部分複合や
層状複合させるべく、予めそのような形状に前記
粒子を粘結剤を用いて、あるいは該粒子を一部焼
結させる等して、連通する多孔を有する成形体を
形成しておく。成形体の成形時に使用される粘結
剤としては熱分解性の良い周知のセラミツクス成
形用有機粘結剤が使用でき、これらの中でもフラ
ン樹脂系粘結剤は好ましいものの一つである。該
粘結剤の使用量は粒体を点接触状態で接合する程
度の少量が良く、通常前記粒子に対して1.0〜2.0
重量%であり、粒子成形体が加圧型内で壊れない
程度の少量で良い。粘結剤は予熱の段階で大部分
が蒸発して消失してしまうが一部炭化物になつて
残存する。しかし、粒子を複合させるためにはほ
とんど影響のない程度の残存量であり、個々の粒
子同士の結合も無く分散状態の極めて良好な複合
体が得られる。
Production of continuous porous molded body (preformed body) Before the inorganic particles or metal particles are placed in a pressurized mold, the type and particle size of the particles to be composited are selected in advance according to the purpose of use of the composite material, and the particles are mixed. The composite structure is determined in advance to determine where and how the particles will be dispersed in the product composite material, and the pressurized type can be used to perform partial dispersion in which particles are dispersed partially in a part of the material, layered dispersion in which they are dispersed in layers in the material, etc. In order to form a partial composite or a layered composite in an arbitrary location in an arbitrary state and at an arbitrary dispersion ratio, the particles are preliminarily shaped into such a shape by using a binder or by partially sintering the particles. A molded body having communicating pores is formed in advance. As the binder used in molding the molded article, well-known organic binders for ceramic molding having good thermal decomposition properties can be used, and among these, furan resin binders are one of the preferred ones. The amount of the binder used is preferably a small amount that allows the particles to be bonded in a point contact state, and is usually 1.0 to 2.0% of the amount of binder used for the particles.
% by weight, and the amount may be small enough that the particle molded body does not break in the pressurized mold. Most of the binder evaporates and disappears during the preheating stage, but some remains in the form of carbide. However, the residual amount is such that it has almost no effect on the composite of particles, and a composite with an extremely good dispersion state can be obtained without bonding between individual particles.

前記少量の粘結剤と無機質粒子及び又は金属粒
子とを混合し、予備成形型に入れ、所定の形状に
成形した後、型より取り出す。
The small amount of the binder and the inorganic particles and/or metal particles are mixed, put into a preforming mold, molded into a predetermined shape, and then taken out from the mold.

取り出された成形体は切断、切削等により各種
形状体としたり、複数個組み合わせたりして、加
圧型内の適宜箇所に設置する。
The molded body taken out is cut into various shapes by cutting, cutting, etc., or a plurality of bodies are combined, and the molded body is placed at an appropriate location in the pressurizing mold.

このようにして得られた粒子成形体にアルミニ
ウム又はアルミニウム合金を複合するのである
が、理解を深めるためにその例を以下図面に基づ
き説明する。
Aluminum or an aluminum alloy is composited into the particle molded body thus obtained, and an example thereof will be explained below based on the drawings for better understanding.

第1図は無機質粒子及び又は金属粒子を用いて
成形された異種の円筒状及び円柱状の多孔質成形
体1,2の斜視図であり、第2図は第1図の1及
び2の成形体を組み合わせたものの斜視図、第3
図は第2図の組み合わせた成形体を加圧型内に配
設装着して複合体を製造する加圧装置の縦断面図
であり、第4図は製造された複合体の縦断面状態
を示す。
FIG. 1 is a perspective view of different types of cylindrical and cylindrical porous molded bodies 1 and 2 formed using inorganic particles and/or metal particles, and FIG. 2 is a perspective view of molded bodies 1 and 2 of FIG. 1. Perspective view of assembled body, 3rd
The figure is a longitudinal sectional view of a pressurizing device for manufacturing a composite by disposing and mounting the combined molded bodies of Fig. 2 in a pressurizing mold, and Fig. 4 shows a longitudinal sectional state of the manufactured composite. .

まず、第1図のごとく、複合させる部分につい
てはアルミニウム又はアルミニウム合金の粒子と
それぞれの複合させる粒子とで、複合させる位
置、分散形態、分散割合等に応じて配合を調整
し、有機粘結剤を混入して粒子成形体1を製造す
る。また、複合させない部分については、アルミ
ニウム又はアルミニウム合金の粒子だけによる粒
子成形体2を製造する。
First, as shown in Figure 1, for the part to be composited, the combination of aluminum or aluminum alloy particles and each composite particle is adjusted according to the composite position, dispersion form, dispersion ratio, etc., and an organic binder is added. A particle molded body 1 is manufactured by mixing the particles. In addition, for the parts that are not combined, a particle molded body 2 is manufactured using only aluminum or aluminum alloy particles.

次いで、第2図の通り粒子成形体1及び2を組
み合わせる。
Next, as shown in FIG. 2, the particle molded bodies 1 and 2 are combined.

複合化 第3図の通り金型3架台4に固定させ、金型3
の内面には、黒鉛、窒化ほう素などの離型剤を塗
布する。架台4には粘結剤分解ガス及び空気を排
出するためのガス抜き孔5が設けられており、そ
の上部には前記成形体の粒子が加圧力によりガス
抜き孔5から落下しないよう金網6を置く。この
金型3の内側底部に第3図のごとく組み合わされ
た粒子成形体を載置し、この型を無機質粒子及
び、又は金属粒子の熔融温度以下の温度でかつア
ルミニウム系金属の凝固温度より若干低い温度を
維持できるよう加熱する。次いでその上部より熔
融したアルミニウム系金属7を注湯し、熔融状態
を維持しながら油圧プレスのシリンダー8により
前記粒子間隙に熔融したアルミニウム系金属7を
400Kgf/cm2程度の圧力で圧入する。これにより粒
子間隙の空気は粒子層中の有機粘結剤が燃焼して
できた気体が連通多孔等を通じて、金網6及びガ
ス抜き孔5を通過して外部へ排出される一方、粒
子間隙には熔融状態のアルミニウム系金属7が充
填される。
Composite As shown in Figure 3, the mold 3 is fixed to the stand 4, and the mold 3
A mold release agent such as graphite or boron nitride is applied to the inner surface of the mold. The frame 4 is provided with a gas vent hole 5 for discharging binder decomposition gas and air, and a wire mesh 6 is placed above the gas vent hole 5 to prevent the particles of the molded body from falling through the gas vent hole 5 due to pressure. put. The combined particle molded body as shown in Fig. 3 is placed on the inner bottom of this mold 3, and the mold is heated to a temperature lower than the melting temperature of the inorganic particles and/or metal particles and slightly higher than the solidification temperature of the aluminum metal. Heat to maintain a low temperature. Next, the molten aluminum metal 7 is poured into the upper part of the metal, and while maintaining the molten state, the molten aluminum metal 7 is poured into the gaps between the particles using the cylinder 8 of a hydraulic press.
Press in with a pressure of about 400Kgf/cm 2 . As a result, the air in the interparticle spaces is discharged to the outside through the continuous pores, etc., and the gas created by the combustion of the organic binder in the particle layer passes through the wire mesh 6 and the gas vent holes 5. The aluminum metal 7 in a molten state is filled.

その結果、組み合わされた粒子成形体中のアル
ミニウム系金属粒子2は熔融状態のアルミニウム
系金属熔湯7と一体化し、第4図に示されるよう
な状態に、粒子が表面に分散したアルミニウム系
複合材9となる。この時、組み合わされた粒子成
形体1,2の予熱温度はアルミニウム系金属粒子
2の凝固温度より若干低く設定されているため、
加圧された熔融状態のアルミニウム系金属7は凝
固することなく粒子間隙に流入し、ガス抜き孔5
付近に達して外気温により冷却され凝固する。し
たがつて熔湯がガス抜き孔5を通じて流出し続け
ることは無い。
As a result, the aluminum-based metal particles 2 in the combined particle molded body are integrated with the molten aluminum-based metal molten liquid 7, and an aluminum-based composite with particles dispersed on the surface is formed in the state shown in FIG. It becomes material 9. At this time, since the preheating temperature of the combined particle compacts 1 and 2 is set slightly lower than the solidification temperature of the aluminum-based metal particles 2,
The pressurized aluminum metal 7 in a molten state flows into the interparticle gap without solidifying, and flows into the gas vent hole 5.
When it reaches the vicinity, it is cooled by the outside temperature and solidifies. Therefore, the molten metal does not continue to flow out through the gas vent hole 5.

また、熔湯の流れが停止された後も冷却するま
で加圧保持することにより、型内部では一部の残
留液相がアルミニウム系金属粒子2と一体化し、
熔湯と分散粒子との接着、凝固・収縮に極めて有
効に作用する。
Furthermore, even after the flow of the molten metal is stopped, by keeping it under pressure until it cools down, some of the residual liquid phase is integrated with the aluminum-based metal particles 2 inside the mold.
It acts extremely effectively on adhesion, coagulation, and shrinkage between molten metal and dispersed particles.

製品複合材 このようにして製造された部分分散、あるいは
層状分散された複合材は、そのまま製品として、
あるいは機械、装置等の部材として使用すること
も、更に粒体分散部外のアルミニウム又はアルミ
ニウム合金素体部を切削、螺刻するなど機械加工
することも可能である。このようにして該複合材
は耐摩耗、震動吸収、耐食、耐熱、部材等として
使用される。
Product Composite Material The partially dispersed or layered composite material produced in this way can be used as a product as it is.
Alternatively, it can be used as a member of a machine, a device, etc., or it can be further machined by cutting, threading, etc. the aluminum or aluminum alloy body part outside the particle dispersion part. In this way, the composite material can be used as wear-resistant, vibration-absorbing, corrosion-resistant, heat-resistant, members, etc.

(実施例) 実施例 1 粒径1〜2mmのアルミニウム金属粒子にフラン
樹脂系粘結剤をアルミニウム金属粒子に対して
1.0〜2.0重量%配合し、そして均一に混和した
後、外径20mmφ×高さ30mmの大きさの円柱状成形
体に成形した。
(Example) Example 1 A furan resin binder was applied to aluminum metal particles with a particle size of 1 to 2 mm.
After blending 1.0 to 2.0% by weight and mixing uniformly, it was molded into a cylindrical molded body with an outer diameter of 20 mmφ and a height of 30 mm.

また、平均粒径1mmの黒鉛電極屑にフラン樹脂
系粘結剤を黒鉛電極屑粒子に対し、1.0〜2.0重量
%配合し、そして均一に混和した後、内径20mm
φ、外径30mmφ、高さ30mmの中空円筒状の成形体
を成形した。
In addition, furan resin binder was added to graphite electrode scrap with an average particle size of 1 mm in an amount of 1.0 to 2.0% by weight based on the graphite electrode scrap particles, and after uniformly mixing, the inner diameter was 20 mm.
A hollow cylindrical molded body with a diameter of 30 mm and a height of 30 mm was molded.

次いでこの中空円筒状成形体の中空部分に前記
円柱成形体を挿入して2種類の粒子成形体を組み
合わせ、110℃で1時間乾燥させた。
Next, the cylindrical molded body was inserted into the hollow part of this hollow cylindrical molded body, and the two types of particle molded bodies were combined and dried at 110° C. for 1 hour.

一方、内径30mmφ、外径48mmφ、高さ75mmの円
筒状の耐圧金型を製作し、この金型の底部の架台
には直径3mmφのガス抜孔4ヶを設け、その上面
には30mmφのステンレス製金網を置き、金型の内
面には黒鉛離型剤を塗布した。
On the other hand, a cylindrical pressure-resistant mold with an inner diameter of 30 mmφ, an outer diameter of 48 mmφ, and a height of 75 mm was manufactured, and the pedestal at the bottom of this mold was provided with four gas vent holes with a diameter of 3 mmφ, and the top surface was made of stainless steel with a diameter of 30 mmφ. A wire mesh was placed, and graphite mold release agent was applied to the inner surface of the mold.

そして上記組み合わされた粒子成形体を金型上
方より型内に挿入し、この金型をアルミニウム金
属粒子成形体の溶解温度以下の600℃の温度に予
熱して型内の成形体を同温度程度となして後、
780℃の熔融アルミニウムを金型上方より型内に
注湯し、次いで金型上方より外径30mmφの油圧プ
レスシリンダーにて400Kgf/cm2の圧力でアルミニ
ウム金属の熔湯を加圧して成形体粒子間隙及び成
形体同士の接触間隙に圧入した。圧入後冷却して
複合体を取り出した。
Then, the combined particle compact is inserted into the mold from above, and the mold is preheated to a temperature of 600°C, which is below the melting temperature of the aluminum metal particle compact, and the compact in the mold is heated to about the same temperature. After that,
Molten aluminum at 780℃ is poured into the mold from above, and then the molten aluminum is pressurized from above the mold using a hydraulic press cylinder with an outer diameter of 30mmφ at a pressure of 400Kgf/cm 2 to form compact particles. It was press-fitted into the gap and the contact gap between the molded bodies. After press-fitting, the composite was cooled and taken out.

得られたアルミニウム系複合材はアルミニウム
金属の熔湯が成形体粒子の粒子間隙に充分浸透し
ており、アルミニウム金属粒子は熔融アルミニウ
ム金属と一体化し、表層部に黒鉛電極屑が分散さ
れてなるアルミニウム系複合体であつた。この複
合体は内部がアルミニウム金属素体の物理、化学
特性を有し、表層部が耐摩耗性、震動吸収性など
の特性を有する摺動材料、回転部分の軸受け部材
等として使用することができ、極めて有用な素材
である。
The obtained aluminum-based composite material has aluminum metal molten metal that has sufficiently penetrated into the interparticle gaps of the compact particles, the aluminum metal particles are integrated with the molten aluminum metal, and graphite electrode scraps are dispersed in the surface layer. It was a system complex. This composite has the physical and chemical properties of an aluminum metal body inside, and the surface layer has properties such as wear resistance and vibration absorption, so it can be used as a sliding material, a bearing member for rotating parts, etc. , is an extremely useful material.

実施例 2 平均粒径0.15mmの黒鉛電極屑、平均粒径0.4mm
の黒鉛電極屑及び平均粒径1.0mmの黒鉛電極屑の
3種類の粒子を選び、それら3種のそれぞれの粒
子にフラン樹脂系粘結剤を前記粒子に対して1.0
〜2.0重量%配合し、それを混和した後、それぞ
れを30mmφ×5mmの大きさの円板状の成形体に成
形して各々110℃で1時間乾燥させた。
Example 2 Graphite electrode scraps with average particle size of 0.15 mm, average particle size of 0.4 mm
Three types of particles were selected: graphite electrode scrap with an average particle size of 1.0 mm, and furan resin-based binder was added to each of the three types of particles at a rate of 1.0 mm per particle.
~2.0% by weight was blended, and after mixing, each was molded into a disc-shaped molded product with a size of 30 mmφ x 5 mm, and each was dried at 110° C. for 1 hour.

これら3枚の円板状成形体を、上層に前記平均
粒径0.15mmの黒鉛電極屑より成形した成形板を、
中間層に平均粒径0.4mmの黒鉛電極屑より成形し
た成形板を、また、下層に平均粒径1.0mmの黒鉛
電極屑より成形した板形板を重ねて3層に組み合
わせ、実施例1と同様の耐圧金型に装填した。こ
れら成形体を600℃の温度に予熱する一方780℃の
熔融アルミニウム合金(JIS―AC4A:AL―Si―
Mg系アルミニウム合金)の熔湯を該型内に注湯
し、金型上方より外径30mmφの油圧プレスシリン
ダーにて600Kgf/cm2の圧力でアルミニウム合金の
熔湯を加圧して成形体粒子間隙に圧入した。圧入
後冷却、脱型して複合体を得た。
A molded plate formed by forming these three disk-shaped molded bodies from graphite electrode scraps having an average particle size of 0.15 mm as an upper layer,
A molded plate formed from graphite electrode scraps with an average particle size of 0.4 mm was used as the middle layer, and a plate-shaped plate formed from graphite electrode scraps with an average particle size of 1.0 mm was stacked on the lower layer to form a three-layer structure. It was loaded into a similar pressure mold. These molded bodies were preheated to a temperature of 600℃, while molten aluminum alloy (JIS-AC4A:AL-Si-
A molten aluminum alloy (Mg-based aluminum alloy) is poured into the mold, and a hydraulic press cylinder with an outer diameter of 30 mm is used from above the mold to press the molten aluminum alloy at a pressure of 600 Kgf/cm 2 to create spaces between the particles of the compact. It was press-fitted into. After press-fitting, the mixture was cooled and demolded to obtain a composite.

得られたアルミニウム系複合体はアルミニウム
金属の熔湯が成形体粒子の粒子間隙の全域に充分
に浸透しており、各々の粒子による3層に積層し
た複合材が得られた。
In the obtained aluminum-based composite, the molten aluminum metal sufficiently permeated throughout the interparticle gaps between the molded body particles, and a composite material in which each particle was laminated in three layers was obtained.

この複合材は実施例1と同様に耐摩耗性、震動
吸収性などの機能を有し、素材の軽量化も図られ
ており、実施例1と同様に摺動材料として使用可
能である。
Similar to Example 1, this composite material has functions such as wear resistance and vibration absorption, and the material is also lightweight, so it can be used as a sliding material as in Example 1.

(発明の効果) 本発明によれば、以上実施例等で詳述したごと
く、予め一定形状に成形した無機質粒子及び、又
は金属粒子より成る連通多孔質成形体を複数個組
み合わせて加圧型内の適宜位置に配設させること
により、所望の複合材の用途等に応じ、粒体が複
雑なパターンで分散した複合材を正確かつ簡易に
製造することができる。そうしたものは、単純構
造の複合材に比べてその利用分野の著しい拡大が
期待され、そうした新規な複合材の容易な製造法
を提供できる点で本発明は極めて有利なものであ
る。
(Effects of the Invention) According to the present invention, as described in detail in the Examples and the like, a plurality of continuous porous molded bodies made of inorganic particles and/or metal particles that have been previously molded into a certain shape are combined to form a molded body in a pressure mold. By arranging them at appropriate positions, it is possible to accurately and easily produce a composite material in which particles are dispersed in a complicated pattern depending on the desired use of the composite material. Such a material is expected to have a significantly expanded field of use compared to a composite material with a simple structure, and the present invention is extremely advantageous in that it can provide an easy manufacturing method for such a novel composite material.

予め成形された一定形状のブロツク状成形体を
積み木細工のように金型内へ配置するだけで良い
ので、従来法のごとく粒体を型内の特定箇所へ細
心の注意を払つて充填するような場合に比べて作
業、操作性に極めて優れ、製造速度を大幅に早め
ることもできる。
All you have to do is place the pre-formed blocks of a certain shape into the mold like building blocks, so you don't have to pay close attention to filling specific parts of the mold with granules like in the conventional method. It is extremely easy to work with and operate, and can significantly speed up production.

このように本発明は、優れた作用効果を奏する
複合材の製造法であつて斯界に貢献するところが
非常に大きいものである。
As described above, the present invention is a method for manufacturing a composite material that exhibits excellent effects and greatly contributes to this field.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜4図は本発明の一実施例を説明するため
の素材、装置等を表す図面であり、第1図は無機
質粒子又は金属粒子より円筒状及び円柱状に形成
した成形体の斜視図、第2図は第1図の1及び2
の成形体を組み合わせたものの斜視図、第3図は
第2図の組み合わされて配置されている加圧型内
に熔融アルミニウムを注湯し、それを圧入しよう
とする加圧装置の縦断面図、第4図は取得された
複合体の縦断面図を表す。 1,2:連通多孔質の成形体、3:耐圧金型、
4:架台、5:ガス抜き孔、6:金網、7:熔融
したアルミニウム、8:油圧プレスシリンダー、
9:アルミニウム系複合材。
Figures 1 to 4 are drawings showing materials, devices, etc. for explaining one embodiment of the present invention, and Figure 1 is a perspective view of a molded body formed into a cylindrical shape and a columnar shape from inorganic particles or metal particles. , Figure 2 shows 1 and 2 in Figure 1.
FIG. 3 is a vertical sectional view of a pressurizing device for pouring molten aluminum into the pressurizing molds arranged in combination in FIG. 2 and press-fitting the molten aluminum; FIG. 4 represents a longitudinal cross-sectional view of the obtained composite. 1, 2: Open porous molded body, 3: Pressure-resistant mold,
4: Frame, 5: Gas vent hole, 6: Wire mesh, 7: Molten aluminum, 8: Hydraulic press cylinder,
9: Aluminum composite material.

Claims (1)

【特許請求の範囲】 1 アルミニウム又はアルミニウム合金と、それ
らよりも高融点の粒体とからなる複合材を製造す
る方法において、アルミニウム又はアルミニウム
合金の粒体同士を少量の粘結剤で点接触状で相互
に接合されている連通多孔質の成形体と、前記高
融点の粒体同士又はこれに加えて混合されたアル
ミニウム又はアルミニウム合金の粒体との粒体同
士が少量の粘着剤により点接触状態で相互に接合
されている連通多孔質成形体とを、製造すべき複
合材の形状、構造に合わせて、加圧型内に組み合
わせて配置し、該加圧型及び該型内の前記成形体
をアルミニウム又はアルミニウム合金の熔融温度
より若干低い温度に維持する一方、熔融したアル
ミニウム又はアルミニウム合金を前記加圧型内へ
注湯して加圧し、該型内で前記成形体の粒子間隙
にアルミニウム又はアルミニウム合金を圧入して
後、冷却、凝固してから、脱型することを特徴と
するアルミニウム又はアルミニウム合金より高融
点の粒体が部分的に分散された粒子分散アルミニ
ウム系複合材の製造方法。 2 粒体の粘結剤がフラン樹脂系粘着剤であるこ
とを特徴とする特許請求の範囲第1項記載の粒子
分散アルミニウム系複合材の製造方法。
[Claims] 1. In a method for producing a composite material consisting of aluminum or aluminum alloy and particles having a higher melting point than those, the particles of aluminum or aluminum alloy are brought into point contact with each other using a small amount of a binder. A small amount of adhesive is used to make point contact between the continuous porous formed body and the high melting point particles or the aluminum or aluminum alloy particles mixed therewith. The communicating porous molded bodies, which are joined to each other in a state of While maintaining the temperature slightly lower than the melting temperature of aluminum or aluminum alloy, molten aluminum or aluminum alloy is poured into the pressurizing mold and pressurized, and aluminum or aluminum alloy is poured into the gaps between particles of the molded body within the mold. A method for producing a particle-dispersed aluminum-based composite material in which particles having a higher melting point than aluminum or an aluminum alloy are partially dispersed, the method comprising press-fitting, cooling and solidifying, and then demolding. 2. The method for producing a particle-dispersed aluminum composite material according to claim 1, wherein the binder of the particles is a furan resin adhesive.
JP6179685A 1985-03-28 1985-03-28 Production of particle-dispersed aluminum composite material Granted JPS61221342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6179685A JPS61221342A (en) 1985-03-28 1985-03-28 Production of particle-dispersed aluminum composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6179685A JPS61221342A (en) 1985-03-28 1985-03-28 Production of particle-dispersed aluminum composite material

Publications (2)

Publication Number Publication Date
JPS61221342A JPS61221342A (en) 1986-10-01
JPS648690B2 true JPS648690B2 (en) 1989-02-15

Family

ID=13181421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6179685A Granted JPS61221342A (en) 1985-03-28 1985-03-28 Production of particle-dispersed aluminum composite material

Country Status (1)

Country Link
JP (1) JPS61221342A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100410401C (en) * 2006-06-15 2008-08-13 太原科技大学 Indenter of device for preparing foamed aluminium product

Also Published As

Publication number Publication date
JPS61221342A (en) 1986-10-01

Similar Documents

Publication Publication Date Title
CN1082567C (en) Method for forming metal matrix composite containing three-dimensionally inter-connected co-matices
CN1082566C (en) Method for forming metal matrix composites having variable filler loadings
CN1064289C (en) Methods for forming macrocomposite bodies and macrocomposite bodies produced thereby
JP2905516B2 (en) Directional solidification of metal matrix composites
JPH09227969A (en) Production of metal ceramic composite material molding, constituting members consisting of this molding in machine production, device production, motor use under corrosion condition and/or oxidation condition
JPH06509841A (en) Gradient composite and its manufacturing method
CN1042490A (en) Be used to prepare the fusible pattern casting of metal matrix composite and the product produced of method thus thereof
JP2905520B2 (en) Method of forming metal matrix composite
KR0148356B1 (en) A method of thermo-forming a novel metal matrix composite body and products produced therefrom
JP2905518B2 (en) Method of forming metal matrix composite
CN105458254A (en) Thixotropic liquid metal base fluid, laminated plate, and metal construction forming method thereof
JP2905517B2 (en) Method of forming metal matrix composite
US5667742A (en) Methods for making preforms for composite formation processes
JPH06144948A (en) Production of ceramic porous body
CN1082568C (en) Inverse shape replication method for forming metal matrix composite bodies and products produced therefrom
CN1070537C (en) Method of providing gating means, and products thereby
JPS62197264A (en) Production of wear resistant layer
JPS648690B2 (en)
JPH01212283A (en) Production of joined body of ceramics and metal
JPS59147769A (en) Production of composite casting
JP4524591B2 (en) Composite material and manufacturing method thereof
JP3256216B2 (en) Method for producing macro composite
JPH11172348A (en) Metal-ceramics composite and its production
JPH0157989B2 (en)
KR100216333B1 (en) Thin metal matrix composites and production method