JPS648456B2 - - Google Patents

Info

Publication number
JPS648456B2
JPS648456B2 JP55184328A JP18432880A JPS648456B2 JP S648456 B2 JPS648456 B2 JP S648456B2 JP 55184328 A JP55184328 A JP 55184328A JP 18432880 A JP18432880 A JP 18432880A JP S648456 B2 JPS648456 B2 JP S648456B2
Authority
JP
Japan
Prior art keywords
crystals
columnar
crystal
alloy
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55184328A
Other languages
Japanese (ja)
Other versions
JPS57107005A (en
Inventor
Tatsuya Shimoda
Itaru Okonogi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP55184328A priority Critical patent/JPS57107005A/en
Publication of JPS57107005A publication Critical patent/JPS57107005A/en
Publication of JPS648456B2 publication Critical patent/JPS648456B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0558Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、希土類元素と遷移金属を主成分とす
る析出型の希土類永久磁石に関する。 本発明の希土類永久磁石の製造方法を第1図に
示す。この磁石の磁気性能は、合金組成、熱処
理、粉末の粒度ならびに形状、バインダーの種
類、成形法などにより左右されることが以前から
知られていたが、今回新たに鋳造インゴツトのマ
クロ組織により、磁気性能が大きく変化すること
を見出した。 Sm−Ce−Co−Cu合金を使用した磁石は、析
出硬化型あるいは、2相分離型磁石の範疇に入
る。これは、マトリツクス中に異相を析出させ
て、磁気硬化させるためである。本系統の磁石
は、最初Sm−Co−Cu3元系合金で、主に
Sm2Co17型結晶を用いた組成で磁石化されて以
来、今日広く発展してきたものである。Smの一
部をセリウム(Ce)で置き換えると、飽和磁化
4πIsはCe2Co17型はSm2Co17型より若干(約8%)
低いが、Ceの価格がSmに比べて半分以下なの
で、高エネルギー積でしかも価格の低い磁石の製
造が可能となる。また、希土類金属の資源の確保
の観点から言つても、SmとCeの両方を使用でき
るので有利である。Sm2Co17型の異方性磁場は、
室温で約100KOe、一方Ce2Co17型のものは同条
件で、約15KOeである。従つて、Sm2Co17型の
Smの一部をCeで置き換えてゆくと、異方性磁場
が低下し、それだけ保磁力iHcは大きい値が得ら
れにくくなる。それ故、本発明の一つの目的は
SmをCeで置換したことによるiHcの低下を、イ
ンゴツトを柱状晶化することにより防ぐことにあ
る。また他の目的の一つには、SmをCeで置換し
たことによる若干の4πIsの低下を、インゴツトの
柱状晶化により4πIsを高め、相殺することにあ
る。このようにして、磁性材料としては高価な希
土類コバルト磁石のコストを、その性能は低下さ
せないで、コストダウンすることができる。それ
では次に金属の凝固について述べ、何故、柱状晶
合金が性能がよいのか明らかにする。 一般に溶融金属が、るつぼから鋳型に注入され
ると、鋳壁から凝固が開始する。これは、固体異
物質と接触したエンブリオ(晶芽)は、接触しな
いで溶液中に漂つているものに比べて、安定核生
成に対するエネルギー障壁が小さくなるからと説
明されている。鋳壁に生成した結晶は、隣の結晶
と相互に競争しつつ溶湯中に成長する。第3図に
示すような、鋳塊最外層の結晶の競争成長領域を
チル晶帯と呼んでいる。結晶は成長速度に異方性
があるため、最大成長速度をもつ方向が熱流の方
向に平行であるような結晶が、隣接の結晶成長を
抑えて優先的に成長する。結晶の成長中、優先方
位が熱流に近い程長く生き残り、他の結晶は淘汰
される結果、結晶の数は鋳塊内部にゆくに従つて
少なくなり、柱状晶帯が形成される。条件が整え
ば柱状晶帯がぶつかり合い凝固は完了するが、通
常第3図に示すように、柱状晶の内部に等軸晶が
生成する。等軸晶の生因については、以前はよく
知られていなかつたが、現在では鋳壁とか冷却さ
れた湯面で形成された結晶が遊離して自由晶とな
り、この自由晶が等軸晶体を形成することが明ら
かになつている(A.Ohno、T.Motegi、and H.
Soda:Trans.ISIJ.11(1971)18)。 本系の合金でも、前述したように、チル晶帯、
柱状晶帯、等軸晶帯のうちで柱状晶帯が磁石にす
るのに最もすぐれていることが明らかになつた。
チル晶も等軸チル晶と柱状チル晶では、柱状チル
晶の方がすぐれている。今、例を樹脂結合型希土
類コバルト磁石にとつて説明する。この磁石は第
1図に示すような方法で磁石合金を磁石にする。
製法を全く同じにして、等軸晶合金、柱状晶合金
およびチル晶合金を磁石にしてみると、柱状晶合
金が、飽和磁化4πIs、保磁力iHc、bHcあるいは
ヒステリシスループの角形性にと、全ての性能に
わたつてすぐれていることが分かつた。逆に、等
軸晶合金および等軸チル晶合金が性能的に一番劣
つている。柱状チル晶合金からは、これらのもの
の中間の値の磁石ができる。 これは、柱状晶組織が、該合金を熱処理(溶体
化処理および時効処理)する時に有効に作用する
ためであると考えられる。すなわち、柱状晶によ
つてマトリツクス中に析出する異相の析出物の分
布の均一化を促進するものと考えられ、そのため
にヒステリシスの角形性がよくなる。また同時に
析出物の結晶構造、形態もiHcを高める方向に形
成する作用も及ぼすものと考えられ、そのため
iHcも向上する。 本合金の製造は、鋳壁近傍のチル晶帯域は柱状
チル晶にして、他の部分は柱状晶にする製造法が
よい磁石を得るために大切である。チル晶帯は合
金全体では量が少ないので、製造上最も大切なこ
とは、等軸晶帯を防ぎ柱状晶帯の比率を大きくす
ることにあるのである。また、組成的に柱状晶化
によつて最も効果が期待されるのは、原子比を用
いた組成が、 Sm1-xCex(Co1-uCuuz (但し、0<x<0.5 0<u<0.2 6.5≦z<9.0) で表わされる合金である。 それでは以下に成分と組成域を限定した理由を
述べる。 本合金系およびその組成域においては、Sm−
Co系が基本である。中でもSm2Co17型結晶が主
体をなす。CuはSm2Co17型合金の保磁力を得る
ために加えられるものであり、Cuを入れるとiHc
は向上する。しかし、4πIsは低下するので実用磁
性材料としては、組成式中のuの値は、u<0.2
が望ましい。zの値が、5z8.5の時にはSm
−Co合金は、SmCo5型化合物とSm2Co17型化合
物に分離する。4πIsは、Sm2Co17型の方が20%程
高いので、高4πIsの磁石を実現するには、z
6.5が望ましい。またzが9.0以上になると、Co相
が多くなりヒステリシス曲線の角形性が低下し好
ましくない。また、前述したようにCe2Co17型化
合物は、Sm2Co17型化合物に比べて、異方性磁場
Haが低く保磁力が得られにくく、しかも4πIsも
若干低いので、高エネルギー積の磁石実現のため
には、Sm1-xCex(CoCu)z組成においては、x<
0.5が望ましい。 鋳造時の、マクロ組織の改良でインゴツトの磁
気性能が改良されることは、前述したが、この事
実を最も良く利用することのできる磁石製造法
は、微粉末結合型磁石である。何故なら、該磁石
を製造するには第1図で示すような工程を取るの
で、インゴツトのまま熱処理で磁気硬化させ、そ
の後粉砕してバインダーで結合する。それ故、イ
ンゴツトの状態で磁石にすることができる。この
点では鋳造磁石と少しも変わらない。バインダー
で結合する目的は、結晶を配向させるためと、実
際の製品を作るときの成形性を向上させ、コスト
を低下するためにあり、磁性の本質は、鋳造磁石
と同じである。もしも、磁石を焼結法で製造する
と、焼結時の焼結過程、再結晶過程により、磁石
の性能はインゴツトの鋳造組織に殆んど左右され
ない。しかし、微粉末結合法では前述したように
鋳造組織におおいに影響されるのである。逆に言
うと、この事実を利用して、鋳造組織の改良によ
り微粉末結合磁石の性能は高められるのである。 以下、実施例に従い本発明を詳細に説明してゆ
く。 実施例 1 高周波溶解炉を用い、アルゴンガス雰囲気中で
第1表に示される組成の合金を溶解した。鋳造時
の金型は、第2図に示される円筒の鉄製のものを
使用した。
The present invention relates to a precipitation-type rare earth permanent magnet whose main components are rare earth elements and transition metals. A method for manufacturing a rare earth permanent magnet according to the present invention is shown in FIG. It has long been known that the magnetic performance of this magnet is influenced by alloy composition, heat treatment, powder particle size and shape, binder type, molding method, etc. We found that the performance changed significantly. Magnets using Sm-Ce-Co-Cu alloys fall into the category of precipitation hardening type or two-phase separation type magnets. This is because a different phase is precipitated in the matrix and magnetically hardened. This series of magnets was initially made of Sm-Co-Cu ternary alloy, mainly
It has been widely developed since it was first made into a magnet with a composition using Sm 2 Co 17 type crystal. When part of Sm is replaced with cerium (Ce), saturation magnetization
4πIs is slightly higher (about 8%) in Ce 2 Co 17 type than in Sm 2 Co 17 type.
Although it is low, since the price of Ce is less than half that of Sm, it is possible to manufacture magnets with a high energy product and at a low price. Also, from the viewpoint of securing rare earth metal resources, it is advantageous because both Sm and Ce can be used. The anisotropic magnetic field of Sm 2 Co 17 type is
It is about 100 KOe at room temperature, while the Ce 2 Co 17 type has about 15 KOe under the same conditions. Therefore, Sm 2 Co 17 type
As part of Sm is replaced with Ce, the anisotropy field decreases, making it difficult to obtain a large coercive force iHc. Therefore, one objective of the present invention is to
The objective is to prevent the decrease in iHc caused by replacing Sm with Ce by converting the ingot into columnar crystals. Another purpose is to offset the slight decrease in 4πIs caused by replacing Sm with Ce by increasing 4πIs by crystallizing the ingot into columnar shapes. In this way, the cost of rare earth cobalt magnets, which are expensive as magnetic materials, can be reduced without reducing their performance. Next, we will discuss the solidification of metals and clarify why columnar crystal alloys have good performance. Generally, when molten metal is poured from a crucible into a mold, solidification begins at the casting walls. This is explained by the fact that the energy barrier for stable nucleation of embryos (crystal buds) that have come into contact with a solid foreign material is smaller than that of embryos that are floating in solution without contact. Crystals formed on the casting wall grow into the molten metal while competing with neighboring crystals. The competitive growth region of crystals in the outermost layer of the ingot, as shown in FIG. 3, is called the chill crystal zone. Since crystals have anisotropy in growth rate, crystals whose direction of maximum growth rate is parallel to the direction of heat flow grow preferentially, suppressing the growth of adjacent crystals. During crystal growth, the closer the preferred orientation is to the heat flow, the longer the crystals survive, and other crystals are weeded out.As a result, the number of crystals decreases as they move inside the ingot, forming columnar crystal zones. When the conditions are right, the columnar crystal bands collide and solidification is completed, but as shown in FIG. 3, equiaxed crystals are usually formed inside the columnar crystals. Although the origin of equiaxed crystals was not well known before, it is now known that crystals formed on the casting wall or on the cooled surface of the liquid become free crystals, and these free crystals form equiaxed crystals. (A. Ohno, T. Motegi, and H.
Soda: Trans.ISIJ.11 (1971) 18). Even in this alloy, as mentioned above, chill crystal bands,
It has become clear that among the columnar crystal bands and equiaxed crystal bands, the columnar crystal band is the most suitable for making into magnets.
Regarding chill crystals, between equiaxed chill crystals and columnar chill crystals, columnar chill crystals are superior. An example will now be explained using a resin bonded rare earth cobalt magnet. This magnet is made from a magnetic alloy by the method shown in FIG.
If we make magnets using equiaxed crystal alloys, columnar crystal alloys, and chilled crystal alloys using exactly the same manufacturing method, we find that the columnar crystal alloys have the same characteristics as the saturation magnetization 4πIs, the coercive forces iHc, bHc, and the squareness of the hysteresis loop. It was found that the performance was excellent across the board. On the contrary, equiaxed crystal alloys and equiaxed chill crystal alloys have the poorest performance. Columnar chill crystal alloys produce magnets with values intermediate between these. This is thought to be because the columnar crystal structure acts effectively when the alloy is heat treated (solution treatment and aging treatment). That is, it is thought that the columnar crystals promote uniform distribution of different phase precipitates precipitated in the matrix, thereby improving the squareness of the hysteresis. At the same time, it is thought that the crystal structure and morphology of precipitates also act to increase iHc, and therefore
iHc also improves. In manufacturing this alloy, it is important to produce a good magnet by using columnar chill crystals in the chill crystal zone near the casting wall and columnar crystals in other parts. Since the amount of chill crystal bands is small in the overall alloy, the most important thing in manufacturing is to prevent equiaxed crystal bands and increase the ratio of columnar crystal bands. In addition, the composition that is expected to have the most effect due to columnar crystallization is the composition using the atomic ratio: Sm 1-x Ce x (Co 1-u Cu u ) z (where 0<x< 0.5 0<u<0.2 6.5≦z<9.0). The reason for limiting the components and composition range will be explained below. In this alloy system and its composition range, Sm-
Co type is the basic type. Among them, Sm 2 Co 17 type crystals are the main type. Cu is added to obtain the coercive force of the Sm 2 Co 17 type alloy, and when Cu is added, iHc
will improve. However, since 4πIs decreases, for practical magnetic materials, the value of u in the composition formula should be u<0.2
is desirable. When the value of z is 5z8.5, Sm
-Co alloy is separated into SmCo 5 type compound and Sm 2 Co 17 type compound. 4πIs is about 20% higher for Sm 2 Co 17 type, so to realize a magnet with high 4πIs, z
6.5 is preferable. Moreover, when z is 9.0 or more, the Co phase increases and the squareness of the hysteresis curve deteriorates, which is not preferable. Furthermore, as mentioned above, Ce 2 Co 17 type compounds are more sensitive to anisotropic magnetic fields than Sm 2 Co 17 type compounds.
Since Ha is low and it is difficult to obtain a coercive force, and 4πIs is also slightly low, in order to realize a magnet with a high energy product, in the Sm 1-x Ce x (CoCu) z composition, x <
0.5 is preferable. As mentioned above, the magnetic performance of the ingot is improved by improving the macrostructure during casting, and the magnet manufacturing method that can best utilize this fact is the fine powder bonded magnet. This is because manufacturing the magnet requires the steps shown in FIG. 1, so the ingot is magnetically hardened by heat treatment, then crushed and bonded with a binder. Therefore, it can be made into a magnet in the ingot state. In this respect, it is no different from a cast magnet. The purpose of binding with a binder is to orient the crystals, improve formability and reduce costs when making actual products, and the essence of magnetism is the same as that of cast magnets. If a magnet is manufactured by a sintering method, the performance of the magnet will hardly be affected by the cast structure of the ingot due to the sintering process and recrystallization process during sintering. However, as mentioned above, the fine powder bonding method is greatly affected by the casting structure. Conversely, this fact can be used to improve the performance of fine powder bonded magnets by improving the casting structure. Hereinafter, the present invention will be explained in detail according to examples. Example 1 An alloy having the composition shown in Table 1 was melted in an argon gas atmosphere using a high frequency melting furnace. The cylindrical iron mold shown in FIG. 2 was used for casting.

【表】 鋳造インゴツトのマクロ組織は、第3図のよう
になつていた。A,BそしてCは、それぞれチル
晶帯、柱状晶帯そして等軸晶帯を示している。B
とCの部分を各インゴツトから切り出し、第1図
に示す樹脂結合型磁石の製造工程に従い、磁石を
作製した。ただし、溶体化処理は1100〜1200℃の
間の各組成に合つた温度で24時間行い、時効は
800℃で24時間行つた。磁石の成形法は、製法1
に従つた。この結果を第4図に示す。Ceの含有
量が高くなつても柱状晶のものは、Ceなしの等
軸晶に比べ、4πIsは低くない。またiHcは柱状晶
のものがよい。チル晶のものは、柱状晶より4πIs
は0.2KG程低目で、iHcは同等であつた。 実施例 2 実施例1と同じ方法で、第2表に示される合金
を鋳造した。 柱状晶部分と等軸晶部分を切り出し、実施例1
で行つた方法と同様にして、樹脂結合型磁石を作
製した。その結果を第3表に示す。
[Table] The macrostructure of the cast ingot was as shown in Figure 3. A, B and C indicate the chill zone, columnar zone and equiaxed zone, respectively. B
The portions C and C were cut out from each ingot, and magnets were manufactured according to the manufacturing process for resin-bonded magnets shown in FIG. However, solution treatment is performed at a temperature between 1100 and 1200℃ for 24 hours, and aging is
The temperature was 800℃ for 24 hours. The magnet molding method is Manufacturing Method 1
I followed. The results are shown in FIG. Even if the Ce content is high, the 4πIs of the columnar crystal is not lower than that of the equiaxed crystal without Ce. Also, iHc is preferably a columnar crystal. Chill crystals are more 4πIs than columnar crystals.
The weight was about 0.2KG lower, and the iHc was the same. Example 2 In the same manner as in Example 1, the alloys shown in Table 2 were cast. Example 1: Cut out the columnar crystal part and the equiaxed crystal part.
A resin-bonded magnet was fabricated using the same method as in . The results are shown in Table 3.

【表】 柱状晶のものに比べ、等軸晶のものは、4πIs、
Br、iHcが低いばかりでなく、角形比Br/4πIsも
低くなる。従つて、柱状晶によつて、Sm−Ce−
Co−Cu合金の磁性は大きく改善されることが分
かつた。 このようにSm−Co−Cu合金にCeを入れてコ
ストを低め、柱状晶化により保磁力と角形性を向
上させた合金を使用した微粉末結合型磁石は磁気
性能、成形性、加工性、コスト面においてすぐ
れ、精密業界のみならず各業界に与える効用は
[Table] Compared to columnar crystals, equiaxed crystals have 4πIs,
Not only are Br and iHc low, but the squareness ratio Br/4πIs is also low. Therefore, due to columnar crystals, Sm−Ce−
It was found that the magnetism of the Co-Cu alloy was greatly improved. In this way, fine powder bonded magnets using an alloy that lowers cost by adding Ce to the Sm-Co-Cu alloy and improves coercive force and squareness through columnar crystallization have excellent magnetic performance, formability, workability, It is excellent in terms of cost and has benefits not only for the precision industry but also for other industries.

【表】【table】

【表】 大きい。【table】 big.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は樹脂結合型磁石の製造工程を示す。第
2図は、丸型の鉄製鋳型を示す。寸法の単位はmm
である。第3図は、第2図で示される鋳型に鋳込
まれたときのインゴツトのマクロ組織を示す。A
はチル晶帯、Bは柱状晶等、Cは等軸晶帯、Dは
鋳型の側面の断面である。第4図は、Sm1-xCex
(Co0.9Cu0.18.3においてxを変化させた時の樹脂
結合型磁石の磁気特性を示す。
FIG. 1 shows the manufacturing process of a resin-bonded magnet. Figure 2 shows a round iron mold. Dimensions are in mm
It is. FIG. 3 shows the macrostructure of the ingot when it is cast into the mold shown in FIG. A
is a chill crystal zone, B is a columnar crystal etc., C is an equiaxed crystal zone, and D is a cross section of the side surface of the mold. Figure 4 shows Sm 1-x Ce x
(Co 0.9 Cu 0.1 ) The magnetic properties of the resin-bonded magnet when x is changed in 8.3 are shown.

Claims (1)

【特許請求の範囲】 1 Sm2Co17型結晶を主体とする合金の粉末にバ
インダーを混合して成形してなる希土類永久磁石
において、前記合金として原子比を用いた組成
が、 Sm1-xCex(Co1-uCuuz (但し、0<x<0.5 0<u<0.2 6.5≦z<9.0) で表わされ、かつマクロ組織が主に柱状晶組織で
ある合金を使用したことを特徴とする希土類永久
磁石。
[Claims] 1. A rare earth permanent magnet formed by mixing a binder with powder of an alloy mainly composed of Sm 2 Co 17 type crystals and molding the mixture, wherein the alloy has a composition using an atomic ratio of Sm 1-x We used an alloy represented by Ce x (Co 1-u Cu u ) z (0<x<0.5 0<u<0.2 6.5≦z<9.0) and whose macrostructure is mainly a columnar crystal structure. A rare earth permanent magnet characterized by:
JP55184328A 1980-12-25 1980-12-25 Permanent magnet made of rare-earth cobalt Granted JPS57107005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55184328A JPS57107005A (en) 1980-12-25 1980-12-25 Permanent magnet made of rare-earth cobalt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55184328A JPS57107005A (en) 1980-12-25 1980-12-25 Permanent magnet made of rare-earth cobalt

Publications (2)

Publication Number Publication Date
JPS57107005A JPS57107005A (en) 1982-07-03
JPS648456B2 true JPS648456B2 (en) 1989-02-14

Family

ID=16151393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55184328A Granted JPS57107005A (en) 1980-12-25 1980-12-25 Permanent magnet made of rare-earth cobalt

Country Status (1)

Country Link
JP (1) JPS57107005A (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216444A (en) * 1975-07-30 1977-02-07 Matsushita Refrigeration Automatic spot welding process

Also Published As

Publication number Publication date
JPS57107005A (en) 1982-07-03

Similar Documents

Publication Publication Date Title
US4536233A (en) Columnar crystal permanent magnet and method of preparation
US2578407A (en) Method of making cast alnico magnets
JPS648456B2 (en)
JPS648458B2 (en)
JPS648448B2 (en)
JPS648454B2 (en)
JPH0125819B2 (en)
JPS648449B2 (en)
JPH031802B2 (en)
JPS648447B2 (en)
JPS648455B2 (en)
JPS6111304B2 (en)
JPS648452B2 (en)
JPS648453B2 (en)
JPS6111303B2 (en)
JPS648459B2 (en)
JPS6111447B2 (en)
JPS648445B2 (en)
JPS648450B2 (en)
JPS648457B2 (en)
JPS648460B2 (en)
JPH0147543B2 (en)
JPH031803B2 (en)
JPH0147542B2 (en)
JP3380575B2 (en) RB-Fe cast magnet