JPS648449B2 - - Google Patents

Info

Publication number
JPS648449B2
JPS648449B2 JP55178436A JP17843680A JPS648449B2 JP S648449 B2 JPS648449 B2 JP S648449B2 JP 55178436 A JP55178436 A JP 55178436A JP 17843680 A JP17843680 A JP 17843680A JP S648449 B2 JPS648449 B2 JP S648449B2
Authority
JP
Japan
Prior art keywords
crystals
magnet
columnar
crystal
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55178436A
Other languages
Japanese (ja)
Other versions
JPS57102001A (en
Inventor
Tatsuya Shimoda
Itaru Okonogi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP55178436A priority Critical patent/JPS57102001A/en
Publication of JPS57102001A publication Critical patent/JPS57102001A/en
Publication of JPS648449B2 publication Critical patent/JPS648449B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0558Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、希土類元素と遷移金属を主成分とす
る析出型の希土類永久磁石に関する。 本発明の希土類永久磁石の製造方法を第1図に
示す。この磁石の磁気性能は、合金組成、熱処
理、粉末の粒度ならびに形状、バインダーの種
類、成形法などにより左右されることが以前から
知られていたが、今回新たに鋳造インゴツトのマ
クロ組織により、磁気性能が大きく変化すること
を見出した。 Sm−Y−Co−Cu合金を使用した磁石は、析出
硬化型あるいは、2相分離型磁石の範疇に入る。
これは、マトリツクス中に異相を析出させて、磁
気硬化させるためである。本系統の磁石は、最初
Sm−Co−Cu3元系合金で、主にSm2Co17型結晶
を用いた組成で磁石化されて以来、今日広く発展
してきたものである。Smの一部をイツトリウム
(Y)で置き換えると、Sm2Co17型よりもY2Co17
型の方が飽和磁化4πIsが高いので、高エネルギー
積の磁石を得ることが可能になる。また、希土類
金属の資源の確保の観点から言つても、SmとY
を両方を使用することがるので都合がよい。 しかしながら、Smの一部をYで置き換えてゆ
くと、4πIsは上昇するが、異方性磁場Haの値は
小さくなる。Haが低下すれば、保磁力iHcも必
然的に低くなる。それ故本発明の一つの目的は、
このYを入れたことによるiHcの低下を、インゴ
ツトを柱状晶化することにより防ぐことにある。 一般に溶融金属が、るつぼから鋳型に注入され
ると、鋳壁から凝固が開始する。これは、固体異
物質と接触したエンブリオ(晶芽)は、接触しな
いで溶液中に漂つているものに比べて、安定核生
成に対するエネルギー障壁が小さくなるからと説
明されている。鋳壁に生成した結晶は、隣の結晶
と相互に競争しつつ溶湯中に成長する。第3図に
示すような、鋳塊最外層の結晶の競争成長領域を
チル晶帯と呼んでいる。結晶は成長速度に異方性
があるため、最大成長速度をもつ方向が熱流の方
向に平行であるような結晶が、隣接の結晶成長を
抑えて優先的に成長する結晶の成長中、優先方位
が熱流に近い程長く生き残り、他の結晶は淘汰さ
れる結晶、結晶の数は鋳塊内部にゆくに従つて少
なくなり、柱状晶帯が形成される。条件が整えば
柱状晶帯がぶつかり合い凝固は完了するが、通常
第3図に示すように、柱状晶の内部に等軸晶が生
成する。等軸晶の生因については、以前はよく知
られていなかつたが、現在では鋳壁とか冷却され
た湯面で形成された結晶が遊離して自由晶とな
り、この自由晶が等軸晶体を形成することが明ら
かになつている(A.Ohno、T.Motegi、and H.
Soda:Trans.ISIJ.11(1971)18)。本系の合金で
も、前述したように、チル晶帯、柱状晶帯、等軸
晶帯のうちで柱状晶帯が磁石にするのに最もすぐ
れていることが明らかになつた。チル晶も等軸チ
ル晶と柱状チル晶では、柱状チル晶の方がすぐれ
ている。今、、例を樹脂結合型希土類コバルト磁
石にとつて説明する。この磁石は第1図に示すよ
うな方法で磁石合金を磁石にする。製法を全く同
じにして、等軸晶合金、柱状晶合金およびチル晶
合金を磁石にしてみると、柱状晶合金が、飽和磁
化4πIs、保磁力iHc、bHcあるいはヒステリシス
ループの角形性にと、全ての性能にわたつてすぐ
れていることが分かつた。逆に、等軸晶合金およ
び等軸チル晶合金が性能的に一番劣つている。柱
状チル晶合金からは、これらのものの中間の値の
磁石ができる。 これは、柱状晶組織が、該合金を熱処理(溶体
化処理および時効処理)する時に有効に作用する
ためであると考えられる。すなわち、柱状晶によ
つてマトリツクス中に析出する異相の析出物の分
布の均一化を促進するものと考えられ、そのため
にヒステリシスの角形性がよくなる。また同時に
析出物の結晶構造、形態もiHcを高める方向に形
成する作用も及ぼすものと考えられ、そのため
iHcも向上する。 本合金の製造は、鋳壁近傍のチル晶帯域は柱状
チル晶にして、他の部分は柱状晶にする製造法が
よい磁石を得るために大切である。チル晶帯は合
金全体では量が少ないので、製造上最も大切なこ
とは、等軸晶帯を防ぎ柱状晶帯の比率を大きくす
ることにあるのである。また、組成的には柱状晶
化によつて最も効果が期待されるのは、原子比を
用いた組成が、 Sm1-xYx(Co1-uCuuz (但し、0<x<0.5 0<u<0.2 6.5≦z<9.0) で表わされる合金である。 それでは以下に成分と組成域を限定した理由を
述べる。 本合金系およびその組成域においては、Sm−
Co系が基本である。中でもSm2Co17型結晶が主
体をなす。CuはSm2Co17型合金の保磁力を得る
ために加えられるものであり、Cuを入れること
でiHcは向上するが、4πIsは低下する。このため
実用磁性材料としては、組成式中のuの値は、u
<0.2が望ましい。zの値が、5z8.5の間に
ある時は、Sm−Co合金は、SmCo5型化合物と
Sm2Co17型化合物に分離する。4πIsの値は、
Sm2Co17型の方が高い。よつて、高い4πIsを実現
するためには、zは6.5以上が望ましい。またz
が9.0以上になると、Co相が多くなるのでヒステ
リシスループの角形性が悪くなり好ましくない。
また、Y2Co17型化合物は、Sm2Co17型化合物よ
りも4πIsの値は大きいが結晶磁気異方性定数K1
は負であり、Y2Co17型のままでは、一軸異方性
を利用した磁石は作れない。よつてK1が正で大
きいSm2Co17型化合物と4πIsの大きいY2Co17型化
合物を複合させて、磁石にすることは、飽和磁化
が大きくてしかもある程度高い保磁力を有する磁
石を得るために有効な方法である。このためには
Sm1-xYx(Co1-xCuxzの組成において、x<0.5が
実用材料としては望ましい。それ以上xの値が大
きいと、iHcが足らなくなる。 鋳造時の、マクロ組織でインゴツトの性能が改
良されることは、前述したが、この事実を最も良
く利用することのできる磁石製造法は、微粉末結
合型磁石である。何故なら、該磁石を製造するに
は第1図で示すような工程を取るので、熱処理は
全てインゴツトのまま行い磁気硬化させた後で、
粉砕してバインダーで結合する。それ故、インゴ
ツトの状態で、磁石化することもでき、この点で
は鋳造磁石と少しも変わらない。バインダーで結
合するのは結晶を揃えるためと、実際の製品を作
るときの成形性を上げ、コストを低くするために
あり、磁性の本質は、鋳造磁石を同じである。こ
のため焼結法では、鋳造のインゴツトの金属組織
に磁石の性能は左右されないが、微粉末結合磁石
では、大いに影響される。逆に言うと、これを利
用して、微粉末結合型磁石の性能は高められるの
である。 以下、実施例に従い本発明を詳細に説明してゆ
く。 実施例 1 高周波溶解炉を用い、アルゴンガス雰囲気中で
第1表に示される組成の合金を溶解した。鋳造時
の金型は、第2図に示される円筒の鉄製のものを
使用した。
The present invention relates to a precipitation-type rare earth permanent magnet whose main components are rare earth elements and transition metals. A method for manufacturing a rare earth permanent magnet according to the present invention is shown in FIG. It has long been known that the magnetic performance of this magnet is influenced by alloy composition, heat treatment, powder particle size and shape, binder type, molding method, etc. We found that the performance changed significantly. Magnets using Sm-Y-Co-Cu alloys fall into the category of precipitation hardening type or two-phase separation type magnets.
This is because a different phase is precipitated in the matrix and magnetically hardened. This system of magnets was initially
It is an Sm-Co-Cu ternary alloy that has been widely developed since it was first made into a magnet with a composition mainly using Sm 2 Co 17 type crystals. When a part of Sm is replaced with yttrium (Y), Y 2 Co 17 is formed rather than Sm 2 Co 17 type.
Since the saturation magnetization 4πIs of this type is higher, it is possible to obtain a magnet with a high energy product. Also, from the perspective of securing rare earth metal resources, Sm and Y
It is convenient because you can use both. However, when a part of Sm is replaced by Y, 4πIs increases, but the value of the anisotropic magnetic field Ha decreases. If Ha decreases, coercive force iHc will also inevitably decrease. Therefore, one object of the present invention is to
The purpose is to prevent the decrease in iHc due to the addition of Y by forming the ingot into columnar crystals. Generally, when molten metal is poured from a crucible into a mold, solidification begins at the casting walls. This is explained by the fact that the energy barrier to stable nucleation of embryos (crystal buds) that have come into contact with a solid foreign material is smaller than that of embryos that are floating in a solution without contact. Crystals formed on the casting wall grow into the molten metal while competing with neighboring crystals. The competitive growth region of crystals in the outermost layer of the ingot, as shown in FIG. 3, is called the chill crystal zone. Since crystals have anisotropy in growth rate, crystals whose direction of maximum growth rate is parallel to the direction of heat flow preferentially grow by suppressing the growth of adjacent crystals. The closer the crystals are to the heat flow, the longer they survive, and the other crystals are weeded out.The number of crystals decreases as you move into the ingot, forming columnar crystal zones. When the conditions are right, the columnar crystal bands collide and solidification is completed, but as shown in FIG. 3, equiaxed crystals are usually formed inside the columnar crystals. The origin of equiaxed crystals was not well known in the past, but now crystals formed on the casting wall or the cooled surface of the liquid are liberated and become free crystals, and these free crystals form equiaxed crystals. (A. Ohno, T. Motegi, and H.
Soda: Trans.ISIJ.11 (1971) 18). In this alloy, as mentioned above, it has become clear that among the chill crystal zone, columnar crystal zone, and equiaxed crystal zone, the columnar crystal zone is the most suitable for making into a magnet. Regarding chill crystals, between equiaxed chill crystals and columnar chill crystals, columnar chill crystals are superior. An example will now be explained using a resin bonded rare earth cobalt magnet. This magnet is made from a magnetic alloy by the method shown in FIG. If we make magnets using equiaxed crystal alloys, columnar crystal alloys, and chilled crystal alloys using exactly the same manufacturing method, we find that the columnar crystal alloys have the same characteristics as the saturation magnetization 4πIs, the coercive forces iHc, bHc, and the squareness of the hysteresis loop. It was found that the performance was excellent across the board. On the contrary, equiaxed crystal alloys and equiaxed chill crystal alloys have the poorest performance. Columnar chill crystal alloys produce magnets with values intermediate between these. This is thought to be because the columnar crystal structure acts effectively when the alloy is heat treated (solution treatment and aging treatment). That is, it is thought that the columnar crystals promote uniform distribution of different phase precipitates precipitated in the matrix, thereby improving the squareness of the hysteresis. At the same time, it is thought that the crystal structure and morphology of precipitates also act to increase iHc, and therefore
iHc also improves. In manufacturing this alloy, it is important to produce a good magnet by using columnar chill crystals in the chill crystal zone near the casting wall and columnar crystals in other parts. Since the amount of chill crystal bands is small in the overall alloy, the most important thing in manufacturing is to prevent equiaxed crystal bands and increase the ratio of columnar crystal bands. In addition, in terms of composition, the most effective effect of columnar crystallization is expected when the composition using the atomic ratio is Sm 1-x Y x (Co 1-u Cu u ) z (0<x <0.5 0<u<0.2 6.5≦z<9.0). The reason for limiting the components and composition range will be explained below. In this alloy system and its composition range, Sm-
Co type is the basic type. Among them, Sm 2 Co 17 type crystals are the main type. Cu is added to obtain the coercive force of the Sm 2 Co 17 type alloy, and adding Cu improves iHc, but lowers 4πIs. Therefore, as a practical magnetic material, the value of u in the composition formula is
<0.2 is desirable. When the value of z is between 5z8.5, the Sm-Co alloy is similar to the SmCo type 5 compound.
Separates into Sm 2 Co 17 type compounds. The value of 4πIs is
Sm 2 Co 17 type is more expensive. Therefore, in order to realize a high 4πIs, it is desirable that z be 6.5 or more. Also z
If it becomes 9.0 or more, the Co phase increases and the squareness of the hysteresis loop deteriorates, which is not preferable.
In addition, the Y 2 Co 17 type compound has a larger value of 4πIs than the Sm 2 Co 17 type compound, but the crystal magnetic anisotropy constant K 1
is negative, and if the Y 2 Co 17 type is used as is, a magnet using uniaxial anisotropy cannot be made. Therefore, by combining a Sm 2 Co 17 type compound with a large positive K 1 and a Y 2 Co 17 type compound with a large 4πIs to make a magnet, a magnet with a large saturation magnetization and a somewhat high coercive force can be obtained. This is an effective method for For this purpose
In the composition of Sm 1-x Y x (Co 1-x Cu x ) z , x<0.5 is desirable for a practical material. If the value of x is larger than that, iHc becomes insufficient. As mentioned above, the performance of the ingot is improved by the macrostructure during casting, and the magnet manufacturing method that can best utilize this fact is the fine powder bonded magnet. This is because manufacturing the magnet requires the steps shown in Figure 1, so all heat treatment is done as an ingot, and after magnetic hardening,
Grind and bind with binder. Therefore, it can be made into a magnet in the ingot state, and in this respect it is no different from a cast magnet. The purpose of binding with a binder is to align the crystals, improve moldability and reduce costs when making the actual product, and the essence of magnetism is the same as that of cast magnets. For this reason, in the sintering method, the performance of the magnet is not affected by the metal structure of the cast ingot, but in the case of a fine powder bonded magnet, it is greatly affected. In other words, this can be used to improve the performance of fine powder bonded magnets. Hereinafter, the present invention will be explained in detail according to examples. Example 1 An alloy having the composition shown in Table 1 was melted in an argon gas atmosphere using a high frequency melting furnace. The cylindrical iron mold shown in FIG. 2 was used for casting.

【表】 鋳造インゴツトのマクロ組織は、第3図のよう
になつていた。A,BそしてCは、それぞれチル
晶帯、柱状晶帯そして等軸晶帯を示している。B
とCの部分を各インゴツトから切り出し、第1図
に示す樹脂結合型磁石の製造工程に従い、磁石を
作製した。ただし、溶体化処理は1100〜1200℃の
間の各組成に合つた温度で24時間行い、時効は
800℃で24時間行つた。磁石の成形法は、製法1
に従つた。この結果を第4図に示す。Yの含有量
が高くなると、4πIsは増しiHcは低下してゆく。
しかし、いずれの組成でも柱状晶帯の方が等軸晶
帯よりも磁気性能ががよいことが分かる。 実施例 2 実施例1と同じ方法で、第2表に示される合金
を鋳造した。
[Table] The macrostructure of the cast ingot was as shown in Figure 3. A, B and C indicate the chill zone, columnar zone and equiaxed zone, respectively. B
The portions C and C were cut out from each ingot, and magnets were manufactured according to the manufacturing process for resin-bonded magnets shown in FIG. However, solution treatment is performed at a temperature between 1100 and 1200℃ for 24 hours, and aging is
The temperature was 800℃ for 24 hours. The magnet molding method is Manufacturing Method 1
I followed. The results are shown in FIG. As the Y content increases, 4πIs increases and iHc decreases.
However, it can be seen that for any composition, the columnar crystal zone has better magnetic performance than the equiaxed crystal zone. Example 2 In the same manner as in Example 1, the alloys shown in Table 2 were cast.

【表】【table】

【表】 柱状晶部分と等軸晶部分を切り出し、実施例1
で行つた方法と同様にして、樹脂結合型磁石を作
製した。その結果を第3表に示す。
[Table] Cut out the columnar crystal part and the equiaxed crystal part, Example 1
A resin-bonded magnet was fabricated using the same method as in . The results are shown in Table 3.

【表】 柱状晶のものに比べ、等軸晶のものは、4πIs、
Br、iHcが低いばかりでなく、角形比Br/4πIsも
低くなる。従つて、柱状晶によつて、Sm−Y−
Co−Cu合金の磁性は大きく改善されることが分
かつた。 このようにSm−Co−Cu合金にYを入れて飽和
磁化を高め、さらに柱状晶化により保磁力と角形
性を向上させた合金を使用した微粉末結合型磁石
は磁気性能、成形性、加工性、コスト面において
すぐれ、精密業界のみならず各業界に与える効用
は大きい。
[Table] Compared to columnar crystals, equiaxed crystals have 4πIs,
Not only are Br and iHc low, but the squareness ratio Br/4πIs is also low. Therefore, due to the columnar crystals, Sm-Y-
It was found that the magnetism of the Co-Cu alloy was greatly improved. In this way, fine powder bonded magnets using an alloy that increases saturation magnetization by adding Y to the Sm-Co-Cu alloy and improves coercive force and squareness by columnar crystallization have excellent magnetic performance, formability, and processability. It is superior in terms of performance and cost, and has great utility not only in the precision industry but in other industries as well.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は樹脂結合型磁石の製造工程を示す。第
2図は、丸型の鉄製鋳型を示す。寸法の単位はmm
である。第3図は、第2図で示される鋳型に鋳込
まれたときのインゴツトのマクロ組織を示す。A
はチル晶帯、Bは柱状晶等、Cは等軸晶帯、Dは
鋳型の側面の断面である。第4図は、SmxY1-x
(Co0.9CU0.18.3においてxを変化させた時の樹脂
結合型磁石の磁気特性を示す。
FIG. 1 shows the manufacturing process of a resin-bonded magnet. Figure 2 shows a round iron mold. Dimensions are in mm
It is. FIG. 3 shows the macrostructure of the ingot when it is cast into the mold shown in FIG. A
is a chill crystal zone, B is a columnar crystal etc., C is an equiaxed crystal zone, and D is a cross section of the side surface of the mold. Figure 4 shows Sm x Y 1-x
(Co 0.9 CU 0.1 ) 8.3 shows the magnetic properties of the resin-bonded magnet when x is changed.

Claims (1)

【特許請求の範囲】 1 Sm2Co17型結晶を主体とする合金の粉末にバ
インダーを混合して成形してなる希土類永久磁石
において、前記合金として原子比を用いた組成
が、 Sm1-xYx(Co1-uCuuz (但し、0<x<0.5 0<u<0.2 6.5≦z<9.0) で表わされ、かつマクロ組織が主に柱状晶組織で
ある合金を使用したことを特徴とする希土類永久
磁石。
[Claims] 1. A rare earth permanent magnet formed by mixing a binder with powder of an alloy mainly composed of Sm 2 Co 17 type crystals and molding the mixture, wherein the alloy has a composition using an atomic ratio of Sm 1-x Y _ _ _ A rare earth permanent magnet characterized by:
JP55178436A 1980-12-17 1980-12-17 Rare earth cobalt permanent magnet Granted JPS57102001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55178436A JPS57102001A (en) 1980-12-17 1980-12-17 Rare earth cobalt permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55178436A JPS57102001A (en) 1980-12-17 1980-12-17 Rare earth cobalt permanent magnet

Publications (2)

Publication Number Publication Date
JPS57102001A JPS57102001A (en) 1982-06-24
JPS648449B2 true JPS648449B2 (en) 1989-02-14

Family

ID=16048477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55178436A Granted JPS57102001A (en) 1980-12-17 1980-12-17 Rare earth cobalt permanent magnet

Country Status (1)

Country Link
JP (1) JPS57102001A (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216444A (en) * 1975-07-30 1977-02-07 Matsushita Refrigeration Automatic spot welding process
JPS6043900B2 (en) * 1978-08-03 1985-10-01 セイコーエプソン株式会社 permanent magnet material

Also Published As

Publication number Publication date
JPS57102001A (en) 1982-06-24

Similar Documents

Publication Publication Date Title
US4536233A (en) Columnar crystal permanent magnet and method of preparation
US2578407A (en) Method of making cast alnico magnets
JPS648449B2 (en)
JPS648448B2 (en)
JPS648454B2 (en)
JPS648453B2 (en)
JPS648458B2 (en)
JPH0125819B2 (en)
JPS648452B2 (en)
JPS648447B2 (en)
JPH031802B2 (en)
JPS648455B2 (en)
JPS648456B2 (en)
JPS6111304B2 (en)
JPS6111303B2 (en)
JPS648450B2 (en)
JPS648459B2 (en)
JPH0230369B2 (en)
JPS6111447B2 (en)
JPS648457B2 (en)
JPH0147543B2 (en)
JPH0135056B2 (en)
JP3380575B2 (en) RB-Fe cast magnet
JPH0147542B2 (en)
JPS648445B2 (en)