JPS648272B2 - - Google Patents
Info
- Publication number
- JPS648272B2 JPS648272B2 JP13611080A JP13611080A JPS648272B2 JP S648272 B2 JPS648272 B2 JP S648272B2 JP 13611080 A JP13611080 A JP 13611080A JP 13611080 A JP13611080 A JP 13611080A JP S648272 B2 JPS648272 B2 JP S648272B2
- Authority
- JP
- Japan
- Prior art keywords
- argon
- column
- crude
- pipe
- separated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 185
- 229910052786 argon Inorganic materials 0.000 claims description 93
- 239000001257 hydrogen Substances 0.000 claims description 22
- 229910052739 hydrogen Inorganic materials 0.000 claims description 22
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 18
- 239000007788 liquid Substances 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 8
- 150000002431 hydrogen Chemical class 0.000 claims description 3
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 29
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 15
- 239000001301 oxygen Substances 0.000 description 15
- 229910052760 oxygen Inorganic materials 0.000 description 15
- 229910052757 nitrogen Inorganic materials 0.000 description 14
- 239000007789 gas Substances 0.000 description 11
- 239000003054 catalyst Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 150000001485 argon Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000006392 deoxygenation reaction Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04642—Recovering noble gases from air
- F25J3/04648—Recovering noble gases from air argon
- F25J3/04654—Producing crude argon in a crude argon column
- F25J3/04666—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
- F25J3/04672—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
- F25J3/04678—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04642—Recovering noble gases from air
- F25J3/04648—Recovering noble gases from air argon
- F25J3/04654—Producing crude argon in a crude argon column
- F25J3/04709—Producing crude argon in a crude argon column as an auxiliary column system in at least a dual pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04642—Recovering noble gases from air
- F25J3/04648—Recovering noble gases from air argon
- F25J3/04721—Producing pure argon, e.g. recovered from a crude argon column
- F25J3/04733—Producing pure argon, e.g. recovered from a crude argon column using a hybrid system, e.g. using adsorption, permeation or catalytic reaction
- F25J3/04739—Producing pure argon, e.g. recovered from a crude argon column using a hybrid system, e.g. using adsorption, permeation or catalytic reaction in combination with an auxiliary pure argon column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/90—Details relating to column internals, e.g. structured packing, gas or liquid distribution
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/02—Recycle of a stream in general, e.g. a by-pass stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/58—Processes or apparatus involving steps for recycling of process streams the recycled stream being argon or crude argon
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Separation By Low-Temperature Treatments (AREA)
Description
【発明の詳細な説明】
この発明は空気の液化精留法によりアルゴンを
製造する方法に関するもので、詳しくは、アルゴ
ンの収率の向上と脱酸素のために用いられる水素
の有効利用を図つたものである。[Detailed Description of the Invention] The present invention relates to a method for producing argon by an air liquefaction rectification method, and specifically, a method for producing argon by improving the yield of argon and effectively utilizing hydrogen used for deoxidation. It is something.
従来、空気液化分離精留法によつてアルゴンを
採取するには、第1図に示すように主精留塔(図
示せず)よりアルゴン5〜15%と微量の窒素を含
む酸素が管1より粗アルゴン塔2の下部に吸引さ
れる。この吸引ガスは、主精留塔より管3、弁4
を経て粗アルゴン塔2の上部に設けられた凝縮器
5に供給される液体空気によつて冷却され精留に
よつて、管6より粗アルゴンガス(アルゴン95〜
98vol%、酸素1〜2vol%、窒素1〜2vol%)が
導出されると共に、塔底の管7より液体酸素が導
出され、これは主精留塔に返送される。また、凝
縮器5に供給された液体空気は気化した後、管8
を介して主精留塔へ返送される。 Conventionally, in order to collect argon using the air liquefaction separation rectification method, as shown in Figure 1, oxygen containing 5 to 15% argon and a trace amount of nitrogen is passed through a tube 1 from a main rectification column (not shown). The cruder argon is sucked into the lower part of column 2. This suction gas is transferred from the main rectification column to pipe 3 and valve 4.
The crude argon gas (argon 95~
98 vol%, oxygen 1 to 2 vol%, and nitrogen 1 to 2 vol%) are discharged, and liquid oxygen is also discharged from the tube 7 at the bottom of the column, which is returned to the main rectification column. Further, after the liquid air supplied to the condenser 5 is vaporized, the pipe 8
is sent back to the main rectification column.
管6より導出された粗アルゴンは熱交換器9に
導入され、該器9において戻りガスと熱交換して
常温まで加温され、次いでブロワ10で1〜2
Kg/cm2Gに加圧された後、水素供給源11より粗
アルゴン中に含まれる酸素を酸素―水素反応によ
つて除去するに必要な量よりも約1.5〜2倍の水
素を添加されて触媒筒12に送られる。触媒筒1
2に導入された粗アルゴンガス中の酸素は添加水
素と反応して水を生成し、この水は水分離器13
で分離され、更に乾燥器14にて除去される。こ
のように酸素分を除去された粗アルゴンガスは前
記熱交換器9に送られ、粗アルゴン塔2よりの導
出ガスと熱交換して冷却された後、管15より高
純アルゴン塔16に導入される。 The crude argon led out from the pipe 6 is introduced into the heat exchanger 9, where it is heated to room temperature by exchanging heat with the return gas, and then heated to room temperature by the blower 10.
After being pressurized to Kg/cm 2 G, approximately 1.5 to 2 times more hydrogen is added from the hydrogen supply source 11 than the amount required to remove the oxygen contained in the crude argon through an oxygen-hydrogen reaction. and sent to the catalyst cylinder 12. Catalyst tube 1
The oxygen in the crude argon gas introduced into the water separator 13 reacts with the added hydrogen to produce water.
and further removed in a dryer 14. The crude argon gas from which the oxygen content has been removed is sent to the heat exchanger 9, where it is cooled by exchanging heat with the gas discharged from the crude argon column 2, and then introduced into the high-purity argon column 16 through the pipe 15. be done.
高純アルゴン塔16は上部に凝縮器17、下部
に蒸化器18がそれぞれ設けられ、凝縮器17に
は蒸化器18で液化し管19を介して送られる液
体窒素ならびに主精留塔より管20を介して送ら
れる液体窒素が冷却源として供給される。また、
蒸化器18には主精留塔より管21を介して送ら
れる窒素ガスが加熱源として供給される。前記高
純アルゴン塔16に導入された粗アルゴンガスは
凝縮器17で液化されて塔内を流下し、蒸化器1
8で気化して精留される。この結果、管22より
高純度アルゴンが採取されるとともに、窒素分お
よび前記酸素除去のために添加された過剰の水素
が排ガスとして管23より大気中に排出される。 The high-purity argon column 16 is equipped with a condenser 17 at the top and an evaporator 18 at the bottom. Liquid nitrogen delivered via tube 20 is provided as a cooling source. Also,
The evaporator 18 is supplied with nitrogen gas sent from the main rectification column through a pipe 21 as a heating source. The crude argon gas introduced into the high purity argon column 16 is liquefied in the condenser 17 and flows down the column to the evaporator 1.
It is vaporized and rectified at step 8. As a result, high-purity argon is collected through the pipe 22, and the nitrogen content and the excess hydrogen added to remove the oxygen are discharged into the atmosphere through the pipe 23 as exhaust gas.
空気液化精留法による空気分離装置よりアルゴ
ンを採取するには、一般に上述のように行われて
いる。ところが、管22より排出される排ガス中
には、窒素および酸素除去のために添加された未
反応の水素に加えて40〜60vol%のアルゴンが含
まれており、このアルゴンが大気中に排出されて
いるので大きな損失となつていた。また、未反応
の水素も除去すべき酸素の反応当量の約1.5〜2
倍量を加えているので過剰の水素の損失もかなり
大きい。 Argon is generally collected from an air separation device using the air liquefaction rectification method as described above. However, the exhaust gas discharged from the pipe 22 contains 40 to 60 vol% of argon in addition to unreacted hydrogen added to remove nitrogen and oxygen, and this argon is discharged into the atmosphere. This resulted in a huge loss. In addition, unreacted hydrogen is also removed by about 1.5 to 2 reaction equivalents of oxygen.
Since double the amount is added, the loss of excess hydrogen is also quite large.
この発明は上記事情に鑑みてなされたものでア
ルゴンの収率の向上と脱酸素のために加えられる
水素の有効利用を可能にしたアルゴンの製造方法
を提供することを目的とし、粗アルゴン塔の後段
に加圧筒を介して第2アルゴン塔を設け、粗アル
ゴン塔で分離液化された粗アルゴンを加圧して第
2アルゴン塔に送り込み、第2アルゴン塔で窒素
を精留し、窒素+アルゴンを主精留塔に戻すと共
に、酸素+アルゴンを脱酸工程に導いて酸素を除
去し、ついでアルゴン液化器で脱酸工程で添加さ
れた末反応の水素を分離して液体高純アルゴンを
得、アルゴン液化器で分離された水素を循環再利
用することを特徴とするものである。 This invention was made in view of the above circumstances, and aims to provide a method for producing argon that makes it possible to improve the yield of argon and effectively utilize hydrogen added for deoxidation. A second argon column is provided in the latter stage via a pressurizing cylinder, and the crude argon separated and liquefied in the crude argon column is pressurized and sent to the second argon column. Nitrogen is rectified in the second argon column, and nitrogen + argon is is returned to the main rectification column, and the oxygen + argon is led to a deoxidation process to remove oxygen, and then an argon liquefier separates the end-reacted hydrogen added in the deoxidation process to obtain liquid high-purity argon. , which is characterized by recycling and reusing hydrogen separated in an argon liquefier.
以下、この発明を図面を参照して詳しく説明す
る。第2図はこの発明のアルゴンの製造装置の一
例を示すフローチヤートであるが、第1図に示す
部分と同一構成部分について同一符号を付してそ
の説明を省略する。 Hereinafter, the present invention will be explained in detail with reference to the drawings. FIG. 2 is a flowchart showing an example of the argon production apparatus of the present invention, and the same components as those shown in FIG. 1 are given the same reference numerals and their explanations are omitted.
粗アルゴン塔2によつて精留されたアルゴン濃
度約97vol%の液体粗アルゴンは粗アルゴン塔2
上部より管6により導出されて加圧筒24に導入
され、該塔24内の液体粗アルゴンの自重による
圧力(液頭圧)を利用して1〜2Kg/cm2Gに加圧
された後、第2アルゴン塔25に供給される。第
2アルゴン塔25には主精留塔より管26を介し
て凝縮器27に液体酸素が、又管28を介して窒
素が供給されて精留操作が行われ、頂部より窒素
が、分離される。分離された窒素にはアルゴンが
かなり隋伴しているのでこれは調整弁29、管3
0を通つて主精留塔に返送される。なお、操業開
始時などのように液体粗アルゴン中の酸素濃度が
高い場合には、調整弁31、管32により酸素濃
度の高い液体粗アルゴンを第2アルゴン塔25よ
り粗アルゴン塔2へ返送し、第2アルゴン塔25
より取出すアルゴン中の酸素濃度を低下させる。
なお、前記分離窒素の主精留塔への返送および高
酸素濃度アルゴンの粗アルゴン塔2への返送は加
圧塔24によつて加圧されているので、返送のた
めの動力を必要としない。 The liquid crude argon with an argon concentration of about 97 vol% that has been rectified by the crude argon column 2 is transferred to the crude argon column 2.
It is led out from the upper part through a pipe 6 and introduced into a pressurizing cylinder 24, and is pressurized to 1 to 2 kg/cm 2 G using the pressure (liquid head pressure) due to the weight of the liquid crude argon in the column 24. , is supplied to the second argon column 25. To the second argon column 25, liquid oxygen is supplied from the main rectification column to a condenser 27 via a pipe 26, and nitrogen is supplied via a pipe 28 to perform a rectification operation, and nitrogen is separated from the top. Ru. Since the separated nitrogen is accompanied by a considerable amount of argon, this is caused by the regulating valve 29 and the pipe 3.
0 and is returned to the main rectification column. Note that when the oxygen concentration in the liquid crude argon is high, such as at the start of operation, the liquid crude argon with a high oxygen concentration is returned to the crude argon column 2 from the second argon column 25 using the regulating valve 31 and the pipe 32. , second argon column 25
This lowers the oxygen concentration in the argon extracted.
Note that the return of the separated nitrogen to the main rectification column and the return of high oxygen concentration argon to the crude argon column 2 are pressurized by the pressure column 24, so no power is required for the return. .
第2アルゴン塔25で窒素を分離した粗アルゴ
ンは管33、弁34を経て熱交換器9に導入さ
れ、もどりガスと熱交換して常温まで昇温され、
ブロワ10にて加圧された後、水素供給源11よ
り脱酸素のための水素の供給をうけて触媒塔12
で脱酸され、水分離器13、乾燥器14を通り、
熱交換器9で前記管33より導入された粗アルゴ
ンと熱交換して冷却され、管15を経て、アルゴ
ン液化器35に導入される。アルゴン液化器35
に導入された精製アルゴンは、管36を経て主精
留塔より凝縮器37に供給される液体窒素によつ
て冷却されて液化し、管38、弁39より貯槽4
0に貯液される。脱酸のため過剰に添加された水
素の未反応分はアルゴン液化器35で分離され、
管41により第2アルゴン塔25より管33を介
して取り出された粗アルゴンに混合されて循環再
使用される。なお管42は貯槽40で気化したア
ルゴンをアルゴン液化器35に返送するものであ
る。 The crude argon from which nitrogen has been separated in the second argon column 25 is introduced into the heat exchanger 9 through a pipe 33 and a valve 34, where it is heated to room temperature by exchanging heat with the return gas.
After being pressurized by the blower 10, hydrogen is supplied from the hydrogen supply source 11 for deoxygenation to the catalyst column 12.
is deoxidized, passes through a water separator 13 and a dryer 14,
The heat exchanger 9 exchanges heat with the crude argon introduced from the pipe 33 to cool the argon, and the argon is introduced into the argon liquefier 35 via the pipe 15. Argon liquefier 35
The purified argon introduced into the tank is cooled and liquefied by liquid nitrogen supplied from the main rectification column to the condenser 37 via the pipe 36, and is then sent to the storage tank 4 through the pipe 38 and valve 39.
The liquid is stored at 0. Unreacted hydrogen added in excess for deoxidation is separated in an argon liquefier 35,
It is mixed with the crude argon taken out from the second argon column 25 through the pipe 33 through the pipe 41 and recycled for reuse. Note that the pipe 42 is for returning the argon vaporized in the storage tank 40 to the argon liquefier 35.
以上説明したように、この発明のアルゴンの製
造方法は、粗アルゴン塔の後段に第2アルゴン塔
を設け、粗アルゴン塔で分離液化された粗アルゴ
ンを加圧して第2アルゴン塔に送り込み、第2ア
ルゴン塔で窒素を精留分離し、ついで熱交換器、
触媒筒、水分離器、乾燥器等の脱酸工程を通して
酸素を除去し熱交換器の後段に設けられたアルゴ
ン液化器で脱酸工程で添加した未反応の水素を分
離して液体高純アルゴンを得、アルゴン液化器で
分離された水素を循環再利用するように構成して
なるものであるので、従来法では大気中に捨てら
れていたアルゴンがすべて有効に回収して製品と
することができアルゴンの収率が大巾に向上す
る。また、脱酸のために添加される水素の未反応
分が循環再使用できるので、脱酸反応に必要な水
素量が大巾に減少できる。なお、上記説明では、
粗アルゴンの加圧を加圧筒24で行つているが、
これはポンプで行うこともでき、任意であるが、
加圧筒を利用することにより動力を要せずに第2
アルゴン塔からのガス返送ができる。 As explained above, in the method for producing argon of the present invention, a second argon column is provided after the crude argon column, and the crude argon separated and liquefied in the crude argon column is pressurized and sent to the second argon column. 2.Nitrogen is separated by rectification in an argon column, then a heat exchanger,
Oxygen is removed through a deoxidation process using catalyst cylinders, water separators, dryers, etc., and unreacted hydrogen added during the deoxidation process is separated in an argon liquefier installed after the heat exchanger to produce liquid high-purity argon. The system is configured to recycle and reuse the hydrogen separated in the argon liquefier, so all the argon that was thrown away into the atmosphere in conventional methods can be effectively recovered and used as a product. The yield of argon is greatly improved. Furthermore, since the unreacted portion of hydrogen added for deoxidation can be recycled and reused, the amount of hydrogen required for deoxidation can be significantly reduced. In addition, in the above explanation,
Crude argon is pressurized in the pressurizing cylinder 24,
This can also be done with a pump, but is optional.
By using a pressurized cylinder, the second
Gas can be returned from the argon tower.
第1図は従来のアルゴンの製造方法の一例を示
すフローチヤート、第2図はこの発明のアルゴン
の製造方法の一例を示すフローチヤートである。
2……粗アルゴン塔、6……管、9……熱交換
器、11……水素供給源、12……触媒筒、24
……加圧筒、25……第2アルゴン塔、32……
アルゴン液化器、36……管。
FIG. 1 is a flowchart showing an example of a conventional method for producing argon, and FIG. 2 is a flowchart showing an example of a method for producing argon according to the present invention. 2...crude argon column, 6...tube, 9...heat exchanger, 11...hydrogen supply source, 12...catalyst cylinder, 24
...Pressure cylinder, 25...Second argon column, 32...
Argon liquefier, 36...tube.
Claims (1)
方法において、粗アルゴン塔より導出される液体
粗アルゴンを加圧した後第2アルゴン塔に導入し
て精留し、分離されたアルゴンを含む窒素を主精
留塔に返送すると共に、分離粗アルゴンを熱交換
器において加温した上、水素を添加して脱酸処理
し、ついで前記熱交換器を介してアルゴン液化器
に導入して液化せしめ、かつ未反応の分離水素を
前記第2アルゴン塔より導出される粗アルゴンに
混合することを特徴とするアルゴンの製造方法。1. In a method for producing argon by air liquefaction rectification method, liquid crude argon derived from a crude argon column is pressurized and then introduced into a second argon column for rectification, and nitrogen containing separated argon is purified. While returning the separated crude argon to the main rectification column, the separated crude argon is heated in a heat exchanger and deoxidized by adding hydrogen, and then introduced into an argon liquefier via the heat exchanger to be liquefied. A method for producing argon, characterized in that unreacted separated hydrogen is mixed with crude argon derived from the second argon column.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13611080A JPS5760165A (en) | 1980-09-30 | 1980-09-30 | Argon producing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13611080A JPS5760165A (en) | 1980-09-30 | 1980-09-30 | Argon producing apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5760165A JPS5760165A (en) | 1982-04-10 |
JPS648272B2 true JPS648272B2 (en) | 1989-02-13 |
Family
ID=15167519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13611080A Granted JPS5760165A (en) | 1980-09-30 | 1980-09-30 | Argon producing apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5760165A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2911392A1 (en) * | 2007-01-16 | 2008-07-18 | Air Liquide | Cryogenic argon producing unit for air separation apparatus, has unit for connecting head of argon mixture columns with denitrogenation column, and other unit for connecting tank of denitrogenation column with mixture columns |
-
1980
- 1980-09-30 JP JP13611080A patent/JPS5760165A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5760165A (en) | 1982-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS59150286A (en) | Manufacture of argon | |
US2530602A (en) | Recovery of the constituents of gaseous mixtures | |
US4421536A (en) | Process for producing krypton and xenon | |
CN1170861A (en) | High purity nitrogen generator unit and method | |
JPS6333633B2 (en) | ||
CN101264862A (en) | Method for preparing heavy water and deuterium gas | |
JP2594604B2 (en) | Argon recovery method | |
JPH05187767A (en) | Method and apparatus for manufacturing ultrahigh purity nitrogen | |
JPS648272B2 (en) | ||
CN217247655U (en) | Single crystal growing furnace tail gas purification recovery system | |
JP3364724B2 (en) | Method and apparatus for separating high purity argon | |
JPH0511046B2 (en) | ||
JP3424101B2 (en) | High purity argon separation equipment | |
JP3237892B2 (en) | Pressurized air separation device | |
JPS6317873A (en) | Method for recovering ethylene oxide | |
JP3325805B2 (en) | Air separation method and air separation device | |
US3666807A (en) | Process for producing urea | |
JPS58208104A (en) | Method for purifying chlorine | |
JPH07127971A (en) | Argon separator | |
JP3297935B2 (en) | Method and apparatus for separating high purity argon | |
CN217504145U (en) | Helium extracting device without condensing gas for liquefied natural gas factory | |
JP2693220B2 (en) | Ultra high purity oxygen production method | |
JPH0545051A (en) | Apparatus for liquefaction-separation for air and method for collecting argon therein | |
JPS6333632B2 (en) | ||
JP3256811B2 (en) | Method for purifying krypton and xenon |