FR2911392A1 - Cryogenic argon producing unit for air separation apparatus, has unit for connecting head of argon mixture columns with denitrogenation column, and other unit for connecting tank of denitrogenation column with mixture columns - Google Patents

Cryogenic argon producing unit for air separation apparatus, has unit for connecting head of argon mixture columns with denitrogenation column, and other unit for connecting tank of denitrogenation column with mixture columns Download PDF

Info

Publication number
FR2911392A1
FR2911392A1 FR0752687A FR0752687A FR2911392A1 FR 2911392 A1 FR2911392 A1 FR 2911392A1 FR 0752687 A FR0752687 A FR 0752687A FR 0752687 A FR0752687 A FR 0752687A FR 2911392 A1 FR2911392 A1 FR 2911392A1
Authority
FR
France
Prior art keywords
column
mixture
argon
denitrogenation
low pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
FR0752687A
Other languages
French (fr)
Inventor
Romuald Marcus
Jean Francois Rauch
Thierry Roba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Priority to FR0752687A priority Critical patent/FR2911392A1/en
Publication of FR2911392A1 publication Critical patent/FR2911392A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04793Rectification, e.g. columns; Reboiler-condenser
    • F25J3/048Argon recovery
    • F25J3/04806High purity argon purification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04703Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser being arranged in more than one vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04727Producing pure argon, e.g. recovered from a crude argon column using an auxiliary pure argon column for nitrogen rejection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04818Start-up of the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/58Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being argon or crude argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/58Processes or apparatus involving steps for recycling of process streams the recycled stream being argon or crude argon

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

The unit has an argon mixture column formed by primary and secondary argon mixture columns (K10-1, K10-2), and a denitrogenation column (K11), where a head of the primary argon mixture column is connected to a base of the secondary argon mixture column. A connection unit connects a head of the argon mixture columns with the denitrogenation column. Another connection unit connects a base of the denitrogenation column with the argon mixture columns. An independent claim is also included for a method for producing cryogenic argon by cryogenic distillation in an air separation apparatus.

Description

La présente invention est relative à un procédé et appareil de productionThe present invention relates to a method and apparatus for producing

d'argon par distillation cryogénique. Le domaine d'application de la présente invention est délimité pour les unités de séparation d'air équipé d'une production d'argon cryogénique, c'est-à-dire d'une colonne d'argon impur (qui permet la séparation de l'argon et de l'oxygène) et d'une colonne d'argon pur (aussi appelée colonne de déazotation qui permet d'éliminer l'azote et ainsi d'obtenir de l'argon pur). Le procédé de distillation de l'air ne sera pas présenté en détail, on considère qu'il s'agit d'un principe suffisamment expliqué dans la littérature.  of argon by cryogenic distillation. The scope of the present invention is delimited for air separation units equipped with a cryogenic argon production, i.e. an impure argon column (which allows separation of argon and oxygen) and a pure argon column (also called denitrogenation column which allows the elimination of nitrogen and thus obtain pure argon). The process of air distillation will not be presented in detail, it is considered to be a principle sufficiently explained in the literature.

En quelques mots, ce procédé est utilisé pour produire de l'oxygène, azote et argon (plus rarement du krypton et du xénon) en comprimant puis refroidissant (liquéfiant) et distillant de l'air ambiant. Dans un système classique, l'air est comprimé et puis séparé en utilisant des colonnes haute et basse pression (qui sont de plus en plus souvent "superposées" et communiquant thermiquement par un échangeur oxygène/azote appelé vaporiseur-condenseur). Dans la colonne haute pression, l'azote est séparé de l'air en créant du liquide riche en oxygène au fond de la colonne et du liquide et de la vapeur riche en azote en haut de la colonne. Ces produits sont extraits et quelques-uns sont alimentés séparément à la colonne basse pression. A cause des différences de volatilité relative entre l'argon, l'azote et l'oxygène, de l'azote pratiquement pur est formé en haut de la colonne, de l'oxygène pratiquement pur est formé en bas de la colonne et du gaz riche en argon au milieu de la colonne. La fraction centrale, riche en argon, souvent appelée de l'argon brut, est soutirée de la colonne basse pression et alimente une colonne auxiliaire (colonne argon) dans le but de produire in fine de l'argon. L'argon brut est rectifié en un reflux riche en oxygène (qui est par la suite envoyé à la colonne basse pression) et en un flux très riche en argon (souvent appelé mixture argon ) qui ne contient pratiquement plus d'oxygène (la teneur en oxygène dans la mixture argon est classiquement inférieure à 3 ppm d'oxygène). Cette mixture argon est envoyée dans une colonne de déazotation afin d'éliminer l'azote par rebouillage. En pied de colonne de déazotation de l'argon pur est soutiré sous forme liquide et est envoyé dans un stockage d'Argon liquide.  In a nutshell, this process is used to produce oxygen, nitrogen and argon (more rarely krypton and xenon) by compressing and then cooling (liquefying) and distilling ambient air. In a conventional system, the air is compressed and then separated using high and low pressure columns (which are more and more often "superimposed" and thermally communicating by an oxygen / nitrogen exchanger called vaporizer-condenser). In the high pressure column, the nitrogen is separated from the air by creating oxygen-rich liquid at the bottom of the column and liquid and nitrogen-rich vapor at the top of the column. These products are extracted and some are fed separately to the low pressure column. Because of differences in relative volatility between argon, nitrogen and oxygen, substantially pure nitrogen is formed at the top of the column, substantially pure oxygen is formed at the bottom of the column and gas rich in argon in the middle of the column. The central fraction, rich in argon, often called crude argon, is withdrawn from the low pressure column and feeds an auxiliary column (argon column) in order to ultimately produce argon. The raw argon is rectified into a rich oxygen reflux (which is subsequently sent to the low pressure column) and a very rich argon flow (often called argon mixture) which contains practically no oxygen (the content oxygen in the argon mixture is typically less than 3 ppm oxygen). This argon mixture is sent to a denitrogenation column to eliminate nitrogen by reboiling. At the bottom of the denitrogenation column pure argon is withdrawn in liquid form and is sent to a liquid Argon storage.

La colonne de mixture argon peut être en deux parties afin de réduire la taille de la boîte froide. Ci dessous un exemple de fonctionnement normal de la partie argon. Un maximum d'argon est soutiré en haut de la colonne de mixture argon, celle-ci étant en deux parties. L'azote est ensuite éliminé dans la colonne de déazotation. Lorsque le stockage Argon est plein, on peut : • soit arrêter la colonne de déazotation, et aussi la colonne d'argon impur, ce qui prend du temps et a un impact sur la colonne basse pression. De plus le rendement d'extraction oxygène est affecté. L'argon entrant dans la boîte froide ressort en partie avec l'oxygène liquide soutiré en bas de la colonne basse pression et dans le résiduaire ; • soit continuer à extraire de l'argon, et le purger. Cette purge liquide est une perte de liquide, l'argon entrant dans la boîte froide ressort essentiellement sous forme de purge, le reste ressort avec l'oxygène liquide soutiré en bas de la colonne basse pression et dans le résiduaire. Selon un aspect de l'invention, il est prévu une unité de production d'argon par distillation cryogénique adaptée à être reliée à une double colonne de séparation d'air comprenant une colonne de mixture constituée par une colonne de mixture (ou une première et une deuxième colonnes de mixture) et une colonne de déazotation, des moyens pour relier la tête de la colonne de mixture ou la tête de la deuxième colonne à la colonne de déazotation et des moyens pour relier la cuve de la colonne de déazotation à la colonne de mixture ou une des première et deuxième colonnes de mixture ou à la double colonne.  The argon mixture column can be in two parts to reduce the size of the cold box. Below is an example of normal operation of the argon part. A maximum of argon is withdrawn at the top of the argon mixture column, which is in two parts. The nitrogen is then removed in the denitrogenation column. When the Argon storage is full, one can: • either stop the denitrogenation column, and also the unclean argon column, which takes time and has an impact on the low pressure column. In addition, the oxygen extraction yield is affected. The argon entering the cold box comes out partially with the liquid oxygen withdrawn at the bottom of the low pressure column and in the waste; • continue to extract argon, and purge it. This liquid purge is a loss of liquid, the argon entering the cold box spring essentially in purge form, the rest spring with the liquid oxygen withdrawn at the bottom of the low pressure column and in the waste. According to one aspect of the invention, there is provided a unit for producing argon by cryogenic distillation adapted to be connected to a double air separation column comprising a mixture column constituted by a mixture column (or a first and a second column of mixture) and a denitrogenation column, means for connecting the head of the mixture column or the head of the second column to the denitrogenation column and means for connecting the vessel of the denitrogenation column to the column of mixture or one of the first and second columns of mixture or double column.

Eventuellement la colonne de mixture est constituée par une première et une deuxième colonne, la tête de la première colonne étant relié à la cuve de la deuxième colonne. Selon un autre aspect de l'invention, il est prévu un appareil de séparation d'air par distillation cryogénique comprenant une double colonne de séparation d'air constituée par une colonne haute pression et une colonne basse pression reliées thermiquement entre elles, une unité de production d'argon comme décrit ci-dessus, des moyens pour envoyer de l'air gazeux comprimé et épuré à la colonne haute pression, des moyens pour envoyer des fluides enrichis en oxygène et en azote de la colonne haute pression à la colonne basse pression. Selon un autre aspect de l'invention, il est prévu un procédé de production d'argon par distillation cryogénique dans un appareil de distillation cryogénique comprenant une double colonne de séparation d'air constituée par une colonne haute pression et une colonne basse pression reliées thermiquement entre elles et une unité de production d'argon comprenant une colonne de mixture constituée par une colonne de mixture (ou une première et une deuxième colonnes de mixture) et une colonne de déazotation, dans lequel selon une première mode de fonctionnement, on envoie de l'air à la colonne haute pression où il se sépare, on envoie des débits enrichis en azote et en oxygène de la colonne haute pression à la colonne basse pression, on soutire un débit enrichi en argon de la colonne basse pression et on l'envoie à la colonne de mixture (la première colonne de mixture), on soutire un débit riche en argon de la colonne de mixture (de la deuxième colonne de mixture) et on l'envoie à la colonne de déazotation et selon une deuxième mode de fonctionnement on envoie du liquide de cuve de la colonne de déazotation à la colonne de mixture, (à la deuxième colonne de mixture) et/ou à la colonne basse pression.  Optionally the mixture column is constituted by a first and a second column, the head of the first column being connected to the vessel of the second column. According to another aspect of the invention, there is provided an apparatus for separating air by cryogenic distillation comprising a double air separation column constituted by a high pressure column and a low pressure column connected thermally to each other, a unit of argon production as described above, means for supplying compressed and purified gaseous air to the high pressure column, means for supplying oxygen and nitrogen enriched fluids from the high pressure column to the low pressure column . According to another aspect of the invention, there is provided a method for producing argon by cryogenic distillation in a cryogenic distillation apparatus comprising a double air separation column constituted by a high pressure column and a low pressure column connected thermally. between them and an argon production unit comprising a mixture column constituted by a mixture column (or a first and a second mixture column) and a denitrogenation column, in which according to a first mode of operation, one sends the air at the high pressure column where it separates, nitrogen and oxygen enriched flow rates are sent from the high pressure column to the low pressure column, a flow enriched in argon from the low pressure column is withdrawn and sends to the mixture column (the first column of mixture), a rich argon flow is withdrawn from the mixture column (from the second column of mixture) and o It is sent to the denitrogenation column and according to a second mode of operation, the vessel liquid is sent from the denitrogenation column to the mixture column (to the second mixture column) and / or to the low pressure column.

Selon la deuxième mode de fonctionnement on peut envoyer du liquide de cuve de la colonne de déazotation à un niveau intermédiaire de la colonne de mixture, (à la deuxième colonne de mixture) et selon la deuxième mode de fonctionnement ou une troisième mode de fonctionnement on peut envoyer du liquide d'un point intermédiaire de la colonne de mixture (de la cuve de la deuxième colonne de mixture) à la colonne basse pression. La deuxième mode de fonctionnement peut correspondre au démarrage de la colonne de déazotation. La deuxième mode de fonctionnement peut correspondre à une période où on ne produit plus de produit argon en cuve de la colonne de déazotation.  According to the second mode of operation it is possible to send tank liquid from the denitrogenation column to an intermediate level of the mixture column, (to the second mixture column) and according to the second mode of operation or a third mode of operation. can send liquid from an intermediate point of the mixture column (from the vessel of the second column of mixture) to the low pressure column. The second mode of operation may correspond to the start of the denitrogenation column. The second mode of operation may correspond to a period when no argon product is produced in the tank of the denitrogenation column.

L'invention sera maintenant décrite en plus détail en se référant aux figures qui montrent des dessins schématiques de procédés de séparation d'air selon l'invention. Dans la Figure 1, de l'air comprimé 1 est envoyé à la colonne haute pression K1 d'une double colonne comprenant des colonnes haute et basse pression K1, K2 superposées et communiquant thermiquement par un échangeur oxygène/azote R1 appelé vaporiseur-condenseur. Dans la colonne haute pression, l'azote est séparé de l'air en créant du liquide riche en oxygène au fond de la colonne et du liquide et de la vapeur riche en azote en haut de la colonne. Ces produits sont extraits et quelques-uns sont alimentés séparément à la colonne basse pression K2. De l'azote pratiquement pur est formé en haut de la colonne basse pression K2, de l'oxygène pratiquement pur est formé en bas de la colonne K2 et du gaz riche en argon au milieu de la colonne K2. La fraction centrale 9, riche en argon, souvent appelée de l'argon brut, est soutirée de la colonne basse pression K2 et alimente une première colonne de mixture K10-1 dans le but de produire in fine de l'argon. La première colonne de mixture K10-1 ne comprend ni condenseur de tête ni rebouilleur de cuve. L'argon brut est rectifié en un reflux riche en oxygène 11 (qui est par la suite envoyé à la colonne basse pression K2) et en un gaz enrichi en argon 13.  The invention will now be described in more detail with reference to the figures which show schematic drawings of air separation methods according to the invention. In FIG. 1, compressed air 1 is sent to the high pressure column K1 of a double column comprising high and low pressure columns K1, K2 superimposed and thermally communicating by an oxygen / nitrogen exchanger R1 called vaporizer-condenser. In the high pressure column, the nitrogen is separated from the air by creating oxygen-rich liquid at the bottom of the column and liquid and nitrogen-rich vapor at the top of the column. These products are extracted and some are fed separately to the low pressure column K2. Substantially pure nitrogen is formed at the top of the low pressure column K2, substantially pure oxygen is formed at the bottom of column K2 and argon rich gas in the middle of column K2. The central fraction 9, rich in argon, often called crude argon, is withdrawn from the low pressure column K2 and feeds a first column of K10-1 mixture in order to ultimately produce argon. The first K10-1 mixture column does not include a head condenser or a bottom reboiler. The crude argon is rectified into a rich oxygen reflux 11 (which is subsequently sent to the low pressure column K2) and an argon enriched gas 13.

Le gaz enrichi en argon est envoyé en cuve d'une deuxième colonne de mixture K10-2 comprenant un condenseur de tête R2. Là il se sépare en un flux très riche en argon 21 (souvent appelé mixture argon ) qui ne contient pratiquement plus d'oxygène (la teneur en oxygène dans la mixture argon est classiquement inférieure à 3 ppmO2). Cette mixture argon est envoyée dans une colonne de déazotation K11 sous forme liquide ou gazeuse afin d'éliminer l'azote par rebouillage. En pied de colonne de déazotation K11, de l'argon pur 23 est soutiré sous forme liquide et est envoyé dans un stockage d'argon liquide (non-illustré). La colonne de mixture argon est peut être constituée par deux colonnes, comme illustrée ici afin de réduire la taille de la boîte froide, ou peut être constituée par une colonne unique. Quand le stockage d'argon est plein, on envoie de l'argon liquide 23 produit en bas de la colonne de déazotation K11 dans la cuve de la deuxième colonne de mixture K10-2 (en gravitaire, mais on pourrait utiliser une pompe).  The argon-enriched gas is sent to the bottom of a second column of K10-2 mixture comprising a head condenser R2. There it separates into a very rich stream of argon 21 (often called argon mixture) which contains practically no more oxygen (the oxygen content in the argon mixture is conventionally less than 3 ppmO2). This argon mixture is sent to a denitrogenation column K11 in liquid or gaseous form in order to eliminate the nitrogen by reboiling. At the bottom of the denitrogenation column K11, pure argon 23 is withdrawn in liquid form and is sent to a liquid argon storage (not shown). The argon mixture column may be constituted by two columns, as illustrated here to reduce the size of the cold box, or may be constituted by a single column. When the argon storage is full, liquid argon 23 is produced at the bottom of the denitrogenation column K11 in the tank of the second mixture column K10-2 (gravity, but a pump could be used).

Cet recycle d'argon retourne dans la colonne basse pression K2 via la pompe de remontée P10 en ouvrant la vanne V1. Le débit d'argon 21 qui entre dans la colonne K11 est approximativement égal au débit 19 qui retourne en colonne basse pression K2. L'argon liquide 19 arrive en haut de la colonne basse pression K2 (au niveau de la remontée de liquide pauvre, en bas du minaret) ; par flash, l'argon est extrait sous forme gazeuse dans l'azote résiduaire 6. Lors d'un démarrage de la partie argon, comprenant les deux colonnes de mixture et la colonne de déazotation, on commence par mettre à l'air l'azote afin de pouvoir amorcer le condenseur de mixture. Selon un procédé pratiqué, on remplit de liquide riche 7 le vaporiseur R2 en haut de la colonne de mixture K10-2, on démarre d'abord les colonne de mixture (en reflux quasi total afin de concentrer au maximum l'argon dans ces colonne). Ensuite on démarre la colonne de déazotation K11 lorsque les puretés en oxygène en haut de la colonne de mixture sont atteintes. La mise en teneur de la colonne de déazotation K11 nécessite quelques heures même en purgeant plusieurs fois le liquide 23 en fond de colonne pour accélérer la mise en teneur de l'argon liquide. Une application de l'invention consiste à envoyer la mixture argon à la colonne de déazotation bien que les teneurs en oxygène ne soient pas encore correctes. L'argon 23 soutiré en pied de colonne de déazotation est ensuite renvoyé en colonne K10-2 à travers la vanne ouverte V3. La conduite de courtcircuitage d'argon liquide 19 à la sortie de la pompe P10 reste fermée au moyen de la vanne V1 et le liquide 15 est envoyé entièrement en tête de la première colonne de mixture K10-1. Cela permet de garder l'argon (les molécules restent dans la colonne de mixture comme si la colonne de mixture fonctionnait en reflux total), afin d'atteindre les spécifications de teneur aussi vite que possible. En ne purgeant pas de liquide, on ne perd pas de frigories.  This argon recycle returns to the low pressure column K2 via the lift pump P10 by opening the valve V1. The flow of argon 21 which enters the column K11 is approximately equal to the flow rate 19 which returns to the low pressure column K2. The liquid argon 19 arrives at the top of the low pressure column K2 (at the level of the rise of poor liquid, at the bottom of the minaret); by flash, the argon is extracted in gaseous form into the residual nitrogen 6. During a start of the argon part, comprising the two mixture columns and the denitrogenation column, the air is first vented. nitrogen in order to prime the mixture condenser. According to a method practiced, the vaporizer R2 is filled with rich liquid 7 at the top of the K10-2 mixture column, the mixture columns are first started (at almost total reflux so as to concentrate the argon in these columns as much as possible). ). Then the denitrogenation column K11 is started when the oxygen purities at the top of the mixture column are reached. The setting of the denitrogenation column K11 requires a few hours even by purging the liquid 23 several times at the bottom of the column to accelerate the setting of the liquid argon content. One application of the invention consists in sending the argon mixture to the denitrogenation column although the oxygen contents are not yet correct. The argon 23 withdrawn at the bottom of the denitrogenation column is then returned to column K10-2 through the open valve V3. The short circuit liquid argon circuit 19 at the outlet of the pump P10 remains closed by means of the valve V1 and the liquid 15 is sent entirely to the top of the first column of mixture K10-1. This keeps the argon (the molecules stay in the mixture column as if the mixture column was working in total reflux), in order to reach the grade specifications as fast as possible. By not purging liquid, we do not lose frigories.

Cela permet de mettre en service les deux colonnes (colonne de mixture et colonne de déazotation) simultanément. La teneur en oxygène en haut de la colonne de mixture et la teneur en oxygène en pied de la colonne de déazotation descendent quasi simultanément, pour atteindre la spécification (3 ppm).  This allows the two columns (mixture column and denitration column) to be put into operation simultaneously. The oxygen content at the top of the mixing column and the oxygen content at the bottom of the denitrogenation column go down almost simultaneously, to reach the specification (3 ppm).

L'application de l'invention permet de gagner de précieuses heures de démarrage de la partie argon. La production s'en trouve augmentée. Pour le cas où la colonne de mixture est constituée par une seule colonne K10, l'appareil est représenté par la Figure 2.  The application of the invention makes it possible to gain valuable start-up hours of the argon part. Production is increased. For the case where the column of mixture is constituted by a single column K10, the apparatus is represented by FIG.

De l'air comprimé 1 est envoyé à la colonne haute pression K1 d'une double colonne comprenant des colonnes haute et basse pression K1, K2 superposées et communiquant thermiquement par un échangeur oxygène/azote R1 appelé vaporiseur-condenseur. Dans la colonne haute pression, l'azote est séparé de l'air en créant du liquide riche en oxygène au fond de la colonne et du liquide et de la vapeur riche en azote en haut de la colonne. Ces produits sont extraits et quelques-uns sont alimentés séparément à la colonne basse pression K2. De l'azote pratiquement pur est formé en haut de la colonne basse pression K2, de l'oxygène pratiquement pur est formé en bas de la colonne K2 et du gaz riche en argon au milieu de la colonne K2. La fraction centrale 9, riche en argon, souvent appelée de l'argon brut, est soutirée de la colonne basse pression K2 et alimente la colonne de mixture K10 dans le but de produire in fine de l'argon. La colonne de mixture K10-ne comprend a un condenseur de tête R2 mais pas de rebouilleur de cuve. L'argon brut est rectifié en un reflux riche en oxygène 11 (qui est par la suite envoyé à la colonne basse pression K2) et en un gaz très riche en argon 21.qui ne contient pratiquement plus d'oxygène (la teneur en oxygène dans la mixture argon est classiquement inférieure à 3 ppmO2). Cette mixture argon 21 est envoyée dans une colonne de déazotation K11 sous forme liquide ou gazeuse afin d'éliminer l'azote par rebouillage. En pied de colonne de déazotation K11, de l'argon pur 23 est soutiré sous forme liquide et est envoyé dans un stockage d'argon liquide (non-illustré). Quand le stockage d'argon est plein, on envoie de l'argon liquide 23 produit en bas de la colonne de déazotation K11 à un niveau intermédiaire de la colonne de mixture K10 (en gravitaire, mais on pourrait utiliser une pompe). Cet recycle d'argon retourne dans la colonne basse pression K2 en soutirant un liquide 19 à un niveau intermédiaire via la pompe de remontée P10 en ouvrant la vanne V1. Le débit d'argon 21 qui entre dans la colonne K11 est approximativement égal au débit 19 qui retourne en colonne basse pression K2.  Compressed air 1 is sent to the high pressure column K1 of a double column comprising high and low pressure columns K1, K2 superimposed and thermally communicating by an oxygen / nitrogen exchanger R1 called vaporizer-condenser. In the high pressure column, the nitrogen is separated from the air by creating oxygen-rich liquid at the bottom of the column and liquid and nitrogen-rich vapor at the top of the column. These products are extracted and some are fed separately to the low pressure column K2. Substantially pure nitrogen is formed at the top of the low pressure column K2, substantially pure oxygen is formed at the bottom of column K2 and argon rich gas in the middle of column K2. The central fraction 9, rich in argon, often called crude argon, is withdrawn from the low pressure column K2 and feeds the K10 mixture column in order to ultimately produce argon. The K10-mixture column does not include a R2 head condenser but no tank reboiler. The crude argon is rectified into an oxygen-rich reflux 11 (which is subsequently sent to the low-pressure column K2) and to a gas rich in argon, which contains practically no oxygen (the oxygen content in the argon mixture is conventionally less than 3 ppmO2). This argon mixture 21 is sent to a denitrogenation column K11 in liquid or gaseous form in order to eliminate the nitrogen by reboiling. At the bottom of the denitrogenation column K11, pure argon 23 is withdrawn in liquid form and is sent to a liquid argon storage (not shown). When the argon storage is full, liquid argon 23 is produced at the bottom of the denitrogenation column K11 at an intermediate level of the mixture column K10 (gravity, but a pump could be used). This argon recycle returns to the low pressure column K2 by withdrawing a liquid 19 at an intermediate level via the lift pump P10 by opening the valve V1. The flow of argon 21 which enters the column K11 is approximately equal to the flow rate 19 which returns to the low pressure column K2.

L'argon liquide 19 arrive en haut de la colonne basse pression K2 (au niveau de la remontée de liquide pauvre, en bas du minaret) ; par flash, l'argon est extrait sous forme gazeuse dans l'azote résiduaire 6.  The liquid argon 19 arrives at the top of the low pressure column K2 (at the level of the rise of poor liquid, at the bottom of the minaret); by flash, the argon is extracted in gaseous form in the residual nitrogen 6.

Lors d'un démarrage de la partie argon, comprenant les deux colonnes de mixture et la colonne de déazotation, on commence par mettre à l'air l'azote afin de pouvoir amorcer le condenseur de mixture. Selon un procédé pratiqué, on remplit de liquide riche 7 le vaporiseur R2 en haut de la colonne de mixture K10-2, on démarre d'abord les colonne de mixture (en reflux quasi total afin de concentrer au maximum l'argon dans ces colonne). Ensuite on démarre la colonne de déazotation K11 lorsque les puretés en oxygène en haut de la colonne de mixture sont atteintes. La mise en teneur de la colonne de déazotation K11 nécessite quelques heures même en purgeant plusieurs fois le liquide 23 en fond de colonne pour accélérer la mise en teneur de l'argon liquide. Une application de l'invention consiste à envoyer la mixture argon à la colonne de déazotation bien que les teneurs en oxygène ne soient pas encore correctes.  When starting the argon portion, comprising the two mixture columns and the denitrogenation column, it is first put in the air nitrogen to be able to prime the mixture condenser. According to a method practiced, the vaporizer R2 is filled with rich liquid 7 at the top of the K10-2 mixture column, the mixture columns are first started (at almost total reflux so as to concentrate the argon in these columns as much as possible). ). Then the denitrogenation column K11 is started when the oxygen purities at the top of the mixture column are reached. The setting of the denitrogenation column K11 requires a few hours even by purging the liquid 23 several times at the bottom of the column to accelerate the setting of the liquid argon content. One application of the invention consists in sending the argon mixture to the denitrogenation column although the oxygen contents are not yet correct.

L'argon 23 soutiré en pied de colonne de déazotation est ensuite renvoyé en colonne K10 à travers la vanne ouverte V3. La conduite de courtcircuitage d'argon liquide 19 à la sortie de la pompe P10 reste fermée au moyen de la vanne V1 et le liquide 15 reste dans la colonne de mixture K10. Cela permet de garder l'argon (les molécules restent dans la colonne de mixture comme si la colonne de mixture fonctionnait en reflux total), afin d'atteindre les spécifications de teneur aussi vite que possible. En ne purgeant pas de liquide, on ne perd pas de frigories. Cela permet de mettre en service les deux colonnes (colonne de mixture et colonne de déazotation) simultanément. La teneur en oxygène en haut de la colonne de mixture et la teneur en oxygène en pied de la colonne de déazotation descendent quasi simultanément, pour atteindre la spécification (3 ppm). Dans les cas de la Figure 1 et 2, le procédé peut être simplifié en envoyant l'argon liquide directement à la colonne basse pression K2 sans passer par une colonne de mixture.  The argon 23 withdrawn at the bottom of the denitrogenation column is then returned to column K10 through the open valve V3. The short circuit liquid argon circuit 19 at the outlet of the pump P10 remains closed by means of the valve V1 and the liquid 15 remains in the mixture column K10. This keeps the argon (the molecules stay in the mixture column as if the mixture column was working in total reflux), in order to reach the grade specifications as fast as possible. By not purging liquid, we do not lose frigories. This allows the two columns (mixture column and denitration column) to be put into operation simultaneously. The oxygen content at the top of the mixing column and the oxygen content at the bottom of the denitrogenation column go down almost simultaneously, to reach the specification (3 ppm). In the cases of Figure 1 and 2, the process can be simplified by sending the liquid argon directly to the low pressure column K2 without passing through a column of mixture.

Claims (7)

REVENDICATIONS 1. Unité de production d'argon par distillation cryogénique adaptée à être reliée à une double colonne de séparation d'air comprenant une colonne de mixture constituée par une colonne de mixture (K10) (ou une première et une deuxième colonnes de mixture (K10-1, K10-2) et une colonne de déazotation (K11), des moyens pour relier la tête de la colonne de mixture (ou la tête de la deuxième colonne de mixture) à la colonne de déazotation et des moyens pour relier la cuve de la colonne de déazotation à la colonne de mixture (ou une des première et deuxième colonnes de mixture) et/ ou à la double colonne.  A unit for producing argon by cryogenic distillation adapted to be connected to a double air separation column comprising a mixture column constituted by a mixture column (K10) (or a first and a second mixture column (K10 -1, K10-2) and a denitrogenation column (K11), means for connecting the head of the mixture column (or the head of the second mixture column) to the denitrogenation column and means for connecting the vessel from the denitrogenation column to the mixture column (or one of the first and second mixture columns) and / or to the double column. 2. Unité selon la revendication 1 dans laquelle la colonne de mixture est constituée par une première et une deuxième colonne (K10-1, K10-2), la tête de la première colonne étant relié à la cuve de la deuxième colonne.  2. Unit according to claim 1 wherein the mixture column is constituted by a first and a second column (K10-1, K10-2), the head of the first column being connected to the vessel of the second column. 3. Appareil de séparation d'air par distillation cryogénique comprenant une double colonne de séparation d'air constituée par une colonne haute pression et une colonne basse pression (K1,K2) reliées thermiquement entre elles, une unité de production d'argon selon l'une des revendications précédentes, des moyens pour envoyer de l'air gazeux comprimé et épuré à la colonne haute pression, des moyens pour envoyer des fluides enrichis en oxygène et en azote de la colonne haute pression à la colonne basse pression.  3. Cryogenic distillation air separation apparatus comprising a double air separation column constituted by a high pressure column and a low pressure column (K1, K2) thermally connected to each other, an argon production unit according to the invention. One of the preceding claims means for supplying compressed and purified gaseous air to the high pressure column, means for supplying oxygen and nitrogen enriched fluids from the high pressure column to the low pressure column. 4. Procédé de production d'argon par distillation cryogénique dans un appareil de distillation cryogénique comprenant une double colonne de séparation d'air constituée par une colonne haute pression et une colonne basse pression (K1,K2) reliées thermiquement entre elles et une unité de production d'argon comprenant une colonne de mixture constituée par une colonne de mixture (K10) (ou une première et une deuxième colonnes de mixture K10-1, K10-2) et une colonne de déazotation (K11), dans lequel selon une première mode de fonctionnement, on envoie de l'air à la colonne haute pression où il se sépare, on envoie des débits enrichis en azote et en oxygène de la colonne haute pression à la colonne basse pression, on soutire un débitenrichi en argon de la colonne basse pression et on l'envoie à la colonne de mixture (la première colonne de mixture), on soutire un débit riche en argon de la colonne de mixture (de la deuxième colonne de mixture K10-2) ,on l'envoie à la colonne de déazotation et on soutire un débit d'argon en cuve de la colonne de déazotation comme produit et selon une deuxième mode de fonctionnement on envoie du liquide de cuve de la colonne de déazotation à la colonne de mixture, (à la deuxième colonne de mixture) et/ou à la colonne basse pression.  4. Process for the production of argon by cryogenic distillation in a cryogenic distillation apparatus comprising a double air separation column constituted by a high pressure column and a low pressure column (K1, K2) thermally connected to one another and argon production comprising a mixture column constituted by a mixture column (K10) (or a first and a second mixture column K10-1, K10-2) and a denitrogenation column (K11), wherein according to a first mode of operation, air is sent to the high pressure column where it separates, sends nitrogen and oxygen enriched flow rates of the high pressure column to the low pressure column, withdrawn argon enriched flow of the column low pressure and sent to the mixture column (the first column of mixture), a rich argon flow is withdrawn from the mixture column (from the second column of mixture K10-2), it is sent to the denitrogenation column and withdrawn an argon flow in the tank of the denitrogenation column as product and according to a second operating mode is sent liquid tank from the denitrogenation column to the mixture column, (in the second column of mixture) and / or the low pressure column. 5. Procédé selon la revendication 4 dans lequel selon la deuxième mode de fonctionnement on envoie du liquide de cuve de la colonne de déazotation à un niveau intermédiaire de la colonne de mixture K10 (à la deuxième colonne de mixture K10-2) et selon la deuxième mode de fonctionnement ou une troisième mode de fonctionnement on envoie du liquide d'un point intermédiaire de la colonne de mixture K10, (de la cuve de la deuxième colonne de mixture K10-2) à la colonne basse pression.  5. The method according to claim 4, wherein according to the second mode of operation, vessel liquor is sent from the denitrogenation column to an intermediate level of the mixture column K10 (at the second mixture column K10-2) and according to the method. second mode of operation or a third mode of operation is sent liquid from an intermediate point of the mixture column K10 (of the tank of the second column of mixture K10-2) to the low pressure column. 6. Procédé selon la revendication 4 ou 5 dans lequel la deuxième mode de fonctionnement correspond au démarrage de la colonne de déazotation.  6. The method of claim 4 or 5 wherein the second mode of operation corresponds to the start of the denitrogenation column. 7. Procédé selon la revendication 4 ou 5 dans lequel la deuxième mode de fonctionnement correspond à une période où on ne produit plus de produit argon en cuve de la colonne de déazotation.  7. The method of claim 4 or 5 wherein the second mode of operation corresponds to a period when no longer produces argon product in the tank of the denitrogenation column.
FR0752687A 2007-01-16 2007-01-16 Cryogenic argon producing unit for air separation apparatus, has unit for connecting head of argon mixture columns with denitrogenation column, and other unit for connecting tank of denitrogenation column with mixture columns Withdrawn FR2911392A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR0752687A FR2911392A1 (en) 2007-01-16 2007-01-16 Cryogenic argon producing unit for air separation apparatus, has unit for connecting head of argon mixture columns with denitrogenation column, and other unit for connecting tank of denitrogenation column with mixture columns

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0752687A FR2911392A1 (en) 2007-01-16 2007-01-16 Cryogenic argon producing unit for air separation apparatus, has unit for connecting head of argon mixture columns with denitrogenation column, and other unit for connecting tank of denitrogenation column with mixture columns

Publications (1)

Publication Number Publication Date
FR2911392A1 true FR2911392A1 (en) 2008-07-18

Family

ID=38564452

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0752687A Withdrawn FR2911392A1 (en) 2007-01-16 2007-01-16 Cryogenic argon producing unit for air separation apparatus, has unit for connecting head of argon mixture columns with denitrogenation column, and other unit for connecting tank of denitrogenation column with mixture columns

Country Status (1)

Country Link
FR (1) FR2911392A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3889530A1 (en) 2020-04-02 2021-10-06 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for starting an argon separation column of an air separation device by cryogenic distillation and unit for implementing said method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760165A (en) * 1980-09-30 1982-04-10 Nippon Oxygen Co Ltd Argon producing apparatus
JPH07127971A (en) * 1993-11-02 1995-05-19 Nippon Sanso Kk Argon separator
DE19734482A1 (en) * 1997-08-08 1998-03-05 Linde Ag Argon=producing air rectification plant servicing process
US6269659B1 (en) * 1998-04-21 2001-08-07 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and installation for air distillation with production of argon

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760165A (en) * 1980-09-30 1982-04-10 Nippon Oxygen Co Ltd Argon producing apparatus
JPH07127971A (en) * 1993-11-02 1995-05-19 Nippon Sanso Kk Argon separator
DE19734482A1 (en) * 1997-08-08 1998-03-05 Linde Ag Argon=producing air rectification plant servicing process
US6269659B1 (en) * 1998-04-21 2001-08-07 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and installation for air distillation with production of argon

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3889530A1 (en) 2020-04-02 2021-10-06 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for starting an argon separation column of an air separation device by cryogenic distillation and unit for implementing said method
FR3108970A1 (en) 2020-04-02 2021-10-08 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for starting an argon separation column of an air separation apparatus by cryogenic distillation and unit for carrying out the process

Similar Documents

Publication Publication Date Title
EP0379435B1 (en) Process and apparatus for the separation of air and the production of highly pure oxygen
EP1552230A1 (en) Method and installation for production of noble gases and oxygen by means of cryogenic air distillation
FR2701313A1 (en) Process and plant for producing ultra-pure nitrogen by air distillation
FR2942869A1 (en) Cryogenic separation method for mixture of carbon monoxide, hydrogen and nitrogen, involves constituting nitrogenless flow with final product at range or pressure higher than range set during pressurization in pump or compressor
EP3069091B1 (en) Process and apparatus for separating air by cryogenic distillation
EP1189003B1 (en) Process and apparatus for air separation by cryogenic distillation
EP2140216B1 (en) Method and device for separating a mixture containing at least hydrogen, nitrogen and carbon monoxide by cryogenic distillation
EP2279385B1 (en) Apparatus and method for separating air by cryogenic distillation
WO2013135993A2 (en) Method and device for separating a mixture containing carbon dioxide by means of distillation
FR2911392A1 (en) Cryogenic argon producing unit for air separation apparatus, has unit for connecting head of argon mixture columns with denitrogenation column, and other unit for connecting tank of denitrogenation column with mixture columns
WO2017046462A1 (en) Method and apparatus for producing a mixture of carbon monoxide and hydrogen
EP3252408B1 (en) Method for purifying natural gas and for liquefying carbon dioxide
EP3322949B1 (en) Production of helium from a stream of natural gas
EP1175587B1 (en) Method and installation for producing argon by means of cryogenic distillation
FR2943773A1 (en) Air separation installation for use during argon production, has mixing unit mixing part of vaporized liquid flow with part of enriched nitrogen flow, and argon separation column whose racking point is arranged above heat exchanger
EP1063485B1 (en) Device and process for air separation by cryogenic distillation
FR2928446A1 (en) METHOD FOR MODIFYING AN AIR SEPARATION APPARATUS BY CRYOGENIC DISTILLATION
AU2006212459B2 (en) Method for separating trace components from a stream that is rich in nitrogen
EP1431691A2 (en) Process and device for the production of a Krypton/Xenon-mixture from air
EP3913310A1 (en) Method and device for air separation by cryogenic distilling
FR2819046A1 (en) Cryogenic distillation air separation plant uses compressor to compress nitrogen-rich flow with inlet temperature below that of heat exchanger
FR3057056A1 (en) METHOD AND APPARATUS FOR RECOVERING ARGON IN A AMMONIA SYNTHESIS PURGE GAS SEPARATION UNIT
FR3020867A1 (en) METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION FOR THE PRODUCTION OF A MIXTURE OF KRYPTON AND XENON
EP0982554A1 (en) Process and plant for producing impure oxygen by distillation
FR2739438A1 (en) Producing pure argon@

Legal Events

Date Code Title Description
ST Notification of lapse

Effective date: 20091030