JPS647813B2 - - Google Patents
Info
- Publication number
- JPS647813B2 JPS647813B2 JP59167960A JP16796084A JPS647813B2 JP S647813 B2 JPS647813 B2 JP S647813B2 JP 59167960 A JP59167960 A JP 59167960A JP 16796084 A JP16796084 A JP 16796084A JP S647813 B2 JPS647813 B2 JP S647813B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- gas
- pressure
- water
- injection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000007788 liquid Substances 0.000 claims abstract description 97
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 58
- 238000000034 method Methods 0.000 claims abstract description 25
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 56
- 238000002347 injection Methods 0.000 claims description 41
- 239000007924 injection Substances 0.000 claims description 41
- 239000003337 fertilizer Substances 0.000 claims description 38
- 238000010521 absorption reaction Methods 0.000 claims description 27
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 27
- 239000001569 carbon dioxide Substances 0.000 claims description 26
- 238000003860 storage Methods 0.000 claims description 21
- 239000003621 irrigation water Substances 0.000 claims description 8
- 238000010413 gardening Methods 0.000 claims description 7
- 238000004891 communication Methods 0.000 claims description 6
- 230000007423 decrease Effects 0.000 claims description 6
- 239000012530 fluid Substances 0.000 claims description 6
- 238000003973 irrigation Methods 0.000 claims description 5
- 230000002262 irrigation Effects 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 5
- 230000009471 action Effects 0.000 claims description 4
- 230000004720 fertilization Effects 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- 230000007704 transition Effects 0.000 claims 2
- 230000008569 process Effects 0.000 abstract description 3
- 230000008859 change Effects 0.000 abstract description 2
- 238000002360 preparation method Methods 0.000 abstract description 2
- 230000009467 reduction Effects 0.000 abstract description 2
- 238000005470 impregnation Methods 0.000 abstract 2
- 239000007789 gas Substances 0.000 description 69
- 238000010992 reflux Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 208000035240 Disease Resistance Diseases 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000008635 plant growth Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000025508 response to water Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/23—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
- B01F23/232—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
- B01F23/2323—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits
- B01F23/23231—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits being at least partially immersed in the liquid, e.g. in a closed circuit
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/40—Mixing liquids with liquids; Emulsifying
- B01F23/45—Mixing liquids with liquids; Emulsifying using flow mixing
- B01F23/454—Mixing liquids with liquids; Emulsifying using flow mixing by injecting a mixture of liquid and gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/20—Jet mixers, i.e. mixers using high-speed fluid streams
- B01F25/21—Jet mixers, i.e. mixers using high-speed fluid streams with submerged injectors, e.g. nozzles, for injecting high-pressure jets into a large volume or into mixing chambers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/30—Injector mixers
- B01F25/31—Injector mixers in conduits or tubes through which the main component flows
- B01F25/314—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
- B01F25/3142—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/30—Injector mixers
- B01F25/31—Injector mixers in conduits or tubes through which the main component flows
- B01F25/314—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
- B01F25/3142—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction
- B01F25/31425—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction with a plurality of perforations in the axial and circumferential direction covering the whole surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/23—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pipeline Systems (AREA)
- Water Treatment By Sorption (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Physical Water Treatments (AREA)
- Cultivation Of Plants (AREA)
- Nozzles (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
- Treatment Of Fiber Materials (AREA)
Abstract
Description
【発明の詳細な説明】
発明の分野
本発明は、注入もしくは噴射作用によつて液体
に気体を吸収させる方法及び装置に関し、特に業
としての園芸,家庭園芸,趣味園芸などで用いら
れる潅水を調製するために、水にCO2を吸収させ
る方法及び装置に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method and apparatus for absorbing gas into a liquid by injection or jetting action, particularly for preparing irrigation water for use in professional gardening, home gardening, hobby gardening, etc. The present invention relates to a method and apparatus for absorbing CO 2 into water.
先行技術
水に炭酸ガスを混入し、液体に気体を吸収させ
るための様々な方法及び装置が知られている(例
えば、ドイツ公告公報1192598、米国特許明細書
2241018、英国特許明細書1371466参照)。更に、
気体と液体とを混合ノズルで混合することも知ら
れている((英国特許明細書1274363参照)。PRIOR ART Various methods and devices are known for carbonating water and for absorbing the gas into the liquid (e.g. German Publication No. 1192598, U.S. Pat.
2241018, see UK Patent Specification 1371466). Furthermore,
It is also known to mix gas and liquid in a mixing nozzle (see British Patent Specification 1274363).
これらの公知方法は、吸収度が比較的低かつた
り、気体が比較的大きな気泡として液体中を通過
してしまつたり(これらの気泡が非常に小さいと
思われても、極めて良好な吸収を達成しようとす
る場合には依然として大きすぎる)、気体を吸収
させるために冷却や非常に高い圧力をかけること
が必要となるなどの欠点があつた。吸収された液
体中に存在する気泡が比較的大きい場合には、気
液分離が生じ易く、分配装置(dosing devices)
もしくは撒布装置の確実な機能を損ない、滴下潅
水システムの細管の疎通を阻害し易い。吸収度が
充分に高くない場合には、液体排出口での圧力低
下によつて、比較的大量の気体がとんでしまう。 These known methods either have relatively low absorption or the gas passes through the liquid as relatively large bubbles (even though these bubbles appear to be very small, they do not provide very good absorption). (still too large for this purpose) and required cooling and very high pressure to absorb gases. If the gas bubbles present in the absorbed liquid are relatively large, gas-liquid separation is likely to occur and dosing devices
Otherwise, it may impair the reliable functioning of the spraying device and easily obstruct the communication of the thin tubes of the drip irrigation system. If the absorption is not high enough, a relatively large amount of gas will be blown off due to the pressure drop at the liquid outlet.
炭酸ガス(CO2)を大量に含み、従つてまた大
量の炭酸(H2CO3)を含む液体を植物に潅水し、
また耕地自体にこれらの物質を多量に含む液体を
潅水したとき、植物の健全な生育,耐疫性が、相
当に改善されることが知られている。この目的の
ために、農園,露地栽培,再植林地域用に適する
装置が開発されて来た(ドイツ国の雑誌“Der
Spiegel”1982年No.47、第99〜101頁参照)。 irrigating the plants with a liquid containing a large amount of carbon dioxide gas (CO 2 ) and therefore also containing a large amount of carbonic acid (H 2 CO 3 );
It is also known that when cultivated land itself is irrigated with a liquid containing a large amount of these substances, the healthy growth and disease resistance of plants are significantly improved. For this purpose, equipment suitable for plantations, open fields and reforested areas has been developed (German magazine "Der"
Spiegel” 1982, No. 47, pp. 99-101).
更に、長時間にわたつて潅水と肥料とを必要な
程度に植物または畑に供給することができる家庭
用,趣味園芸用としての潅水及び施肥システムが
知られている。 Furthermore, irrigation and fertilization systems for home use and hobby gardening are known which are capable of supplying plants or fields with irrigation water and fertilizer to the required extent over a long period of time.
発明の要約
従つて、本発明の目的は、前述の欠点がなく、
あらい気泡分を含むことなく、液体に確実にかつ
良好に気体を吸収させて、好適な状態で炭酸ガス
を豊富に含んだ液体を得る方法及び装置を提供す
ることである。本発明の他の目的は、好適な態様
で炭酸ガス及び炭酸を混入した、そしてまた必要
ならば肥料を混入した任意量の潅水を通常の給水
設備から放出させることができ、しかも主婦や趣
味的な園芸愛好者にも簡単かつ経済的に取扱うこ
との出来る装置及び方法を提供することである。SUMMARY OF THE INVENTION It is therefore an object of the present invention to avoid the above-mentioned disadvantages and to provide a
To provide a method and an apparatus for obtaining a liquid rich in carbon dioxide gas in a suitable state by making the liquid reliably and well absorb gas without containing coarse air bubbles. Another object of the invention is that any amount of irrigation water mixed with carbon dioxide gas and carbonic acid, and also with fertilizers if necessary, can be discharged from a normal water supply system in a preferred manner, and is suitable for housewives and hobbyists. It is an object of the present invention to provide an apparatus and method that can be easily and economically handled even by gardening enthusiasts.
この課題は、特許請求の範囲第1項及び第7項
の特徴を有する方法および特許請求の範囲第9項
及び第16項の特徴を有する装置によつてそれぞ
れ解決される。 This object is solved by a method having the features of claims 1 and 7 and a device having the features of claims 9 and 16, respectively.
これによつて、液体を冷却することも、また高
圧を加えることも必要なく、しかも随時必要量の
良好に炭酸ガスを吸収した液体を調製できる利点
を持つた極めてすぐれた良好な吸収が達成でき
る。液体の流速を反復して急激に減少させること
によつて、接触域で受け取られた炭酸ガス量は迅
速に且つ激しく流れの断面に分散され、静圧と流
速との瞬間的な減少によつて均一化され、引続い
て配置された注入段に於ける液体の気体吸収性が
改善されている。気体注入段に引続いて更に注入
段を設け、そこで既に吸収されられた液体を流体
流に還流させてやれば、良好な吸収と均一な混合
が改善される。 This makes it possible to achieve excellent absorption without the need to cool the liquid or apply high pressure, and which has the advantage of being able to prepare the required amount of liquid with good carbon dioxide absorption at any time. . By repeatedly and sharply decreasing the liquid flow rate, the amount of carbon dioxide received in the contact zone is rapidly and violently distributed across the flow cross-section, and by the instantaneous reduction in static pressure and flow rate. The gas absorption of the liquid in the subsequent injection stages is homogenized and improved. Good absorption and homogeneous mixing are improved if the gas injection stage is followed by a further injection stage in which the already absorbed liquid is recycled into the fluid stream.
これらの新規な特徴は、とりわけ潅水と施肥の
ために、水にCO2を良好に吸収させ、分散させる
のに役立つ。 These novel features help to better absorb and disperse CO2 in water, especially for irrigation and fertilization.
気体を吸収した液体は直接に排出口から供給す
ることができる。しかし、気体吸収液を貯蔵した
いときは、加圧貯槽を設けることが出来る。 The liquid that has absorbed gas can be supplied directly from the outlet. However, if it is desired to store the gas absorption liquid, a pressurized storage tank can be provided.
特許請求の範囲第7項による新規な方法と、本
方法を実施する装置によれば、公共給水設備にそ
の装置を接続することも出来、公共給水設備の蛇
口を開閉するだけでその装置を作動させたり休止
させたりすることが出来る。上記装置の更に他の
内部機能が、給水設備に於ける圧力によつて自動
的にもたらされ、これは装置の機能と信頼度を損
なうことなく、大幅に変化させ得る。このような
組合わせの装置は特に趣味的な園芸愛好家や家庭
用として特に適している。何故ならば該装置は簡
単,確実であり、操作が極めて容易であるからで
ある。該装置の設備もまた非常に簡単である。所
望ならば、該装置は必要な任意量の肥料を潅水に
対して任意の割合で添加することもでき、使用者
は特別な注意を払うことなしに水に対して同時に
良好に吸収させることができる。 According to the novel method according to claim 7 and the device implementing the method, the device can be connected to a public water supply facility, and the device can be activated simply by opening and closing the faucet of the public water supply facility. You can turn it on or pause it. Yet another internal function of the device is automatically effected by the pressure in the water supply, which can be varied significantly without compromising the functionality and reliability of the device. Such a combination device is particularly suitable for hobby gardeners and for home use. This is because the device is simple, reliable and extremely easy to operate. The installation of the device is also very simple. If desired, the device can also add any required amount of fertilizer to the irrigation water in any proportion, ensuring good absorption at the same time to the water without the user taking special precautions. can.
このようにして得られる潅水は、草花の生育,
開花促進,収量及び病害虫に対する植物の耐性を
改善する。 The irrigation water obtained in this way supports the growth of plants and flowers.
It promotes flowering, improves yield and plant resistance to pests and diseases.
直接的かつ自動的な圧力制御により、供給設備
内の水圧は大幅に変えることができる(例えば1
バール〜7バールの間で)。何故ならば気体を供
給するのに必要な圧力は、給水設備の圧力によつ
て自動的に調節されるからである。肥料の供給の
制御も同様に行なわれる。 With direct and automatic pressure control, the water pressure in the supply installation can be varied significantly (e.g.
between bar and 7 bar). This is because the pressure required to supply the gas is automatically regulated by the pressure of the water supply equipment. Control of fertilizer supply is also carried out in a similar manner.
操作の容易性を維持しながら、肥料と潅水の調
製が正確,確実かつ自動的に行なうことができ
る。 Preparation of fertilizer and irrigation water can be performed accurately, reliably and automatically while maintaining ease of operation.
以下に添付図面を参照して、本発明の若干の実
施例を通じて本発明を詳述する。 The present invention will be described in detail below through some embodiments of the invention with reference to the accompanying drawings.
先づ、本発明の基本的な装置と基本的な方法と
について第3図を参照して説明する。 First, the basic apparatus and basic method of the present invention will be explained with reference to FIG.
第3図に示された装置101は耐圧側筒10
2,上蓋103及び底蓋104を有し、これらは
圧力タンクを構成する。液体108は、図示され
ていない検出器によつて最低レベル126と最高
レベル127との間に維持されている。液体上に
残された気体室107は、管105を介して気体
源,好ましくは炭酸ガス源と接続されており、そ
のガスは予じめ定められた圧力、例えば5バール
迄の圧力以下に維持されている。気体の供給は、
例えば圧力変換器によつて制御されている。気体
吸収液用の排出口106は、底蓋104に設けら
れている。上記排出口と反対側に、横方向にずら
せて、注入ノズル装置109がフランジ111に
よつて上蓋103に気密に結合されている。ノズ
ル装置109は中央通路を持つており、その入口
は枝管110を介して加圧流体源に接続されてい
る。三つの注入段112a〜112cが流れの方
向に順次配列されている。各注入段の直前に、各
点113a〜113cで階段状に通路のすき間が
拡張して設けられている。液体が拡張部分を流過
するとき、流速と液圧とが突然に変化する、気体
取入れ口114a〜114cは頂部気体室107
に開口しており、拡張部の肩部の後方に位置づけ
られている。作動時に、気体は気体取入れ口11
4から液体流内に取り込まれる。このような構成
により、最初は液体の外層に主に存在していた気
体は、流れ断面の全ての層の混合によつて液体中
に迅速に添加され、流れの中に均一に分散され、
従つて順次の吸収段で気体の取り込みが行なえる
利点がある。良好な吸収を達成するには、少なく
とも二つの注入段が必要である。気液混合物を更
に安定にし、大きな気泡の存在を排除するため
に、ノズル装置109は附加的な装置115が軸
方向に設けられている。図示された実施例では、
その装置115は二つの段116a,116bを
持つており、それらの段で液体流の幅が急激に変
化する。これらの段は気体を吸収した液体の還流
と吸収液の均一化に役立つ。この目的のために、
側筒118が設けられており、その側筒は気体室
107に対しては閉鎖され、またその下方開放端
は、最低液面レベル126の下方で終端してい
る。吸収液は、開放端121と、それとほヾ同じ
高さレベルにある通路の出口120とを介して、
段116a,116bの吸引作用によつて吸引さ
れ、液体流中に戻されて、それに添加される。装
置115の出口125もまた最低液面レベル12
6より下方に位置している。出口125と排出口
106とが横方向にずらせてあるので、大きい気
泡は貯留された液体108を通つて気体室107
内に逃げることが出来る。 The device 101 shown in FIG.
2. It has a top lid 103 and a bottom lid 104, which constitute a pressure tank. Liquid 108 is maintained between a minimum level 126 and a maximum level 127 by a detector, not shown. The gas chamber 107 left above the liquid is connected via a pipe 105 to a source of gas, preferably a source of carbon dioxide, which gas is maintained below a predetermined pressure, for example up to 5 bar. has been done. The gas supply is
For example, it is controlled by a pressure transducer. A gas absorption liquid outlet 106 is provided in the bottom cover 104. Opposite the outlet and laterally offset, an injection nozzle arrangement 109 is connected in a gas-tight manner to the top cover 103 by a flange 111 . The nozzle device 109 has a central passage whose inlet is connected via a branch 110 to a source of pressurized fluid. Three injection stages 112a-112c are arranged sequentially in the direction of flow. Immediately before each injection stage, gaps in the passage are provided to expand stepwise at each point 113a to 113c. Gas intakes 114a-114c are located in the top gas chamber 107, where the flow rate and fluid pressure change abruptly as the liquid flows past the extension.
It opens to the front and is located behind the shoulder of the extension. During operation, the gas flows through the gas intake 11
4 into the liquid stream. With such a configuration, the gas, which was initially present mainly in the outer layer of the liquid, is quickly added into the liquid by mixing all layers of the flow cross section and is evenly distributed in the flow;
Therefore, there is an advantage that gas can be taken in in successive absorption stages. At least two injection stages are required to achieve good absorption. In order to further stabilize the gas-liquid mixture and to exclude the presence of large air bubbles, the nozzle device 109 is axially provided with an additional device 115. In the illustrated embodiment,
The device 115 has two stages 116a, 116b in which the width of the liquid flow changes rapidly. These stages serve to reflux the gas-absorbed liquid and to homogenize the absorbed liquid. For this purpose,
A side tube 118 is provided which is closed to the gas chamber 107 and whose lower open end terminates below the minimum liquid level 126. The absorption liquid flows through the open end 121 and the outlet 120 of the passageway, which is approximately at the same height level as the open end 121.
The suction action of stages 116a, 116b draws it back into the liquid stream and adds it thereto. The outlet 125 of the device 115 is also connected to the minimum liquid level 12.
It is located below 6. Since the outlet 125 and the outlet 106 are offset laterally, large air bubbles can pass through the stored liquid 108 to the gas chamber 107.
You can escape inside.
液体,特に水が取入口110に供給されると、
液面が上昇し、気体室107は容積が減少する。
この状態に従つて、供給管105は、気体室10
7内の圧力が上昇したときオフに転ずるか、気体
室から充分な量の気体が引き出されたとき、気体
が気体室に供給される。気体室107内の圧力は
水圧に相当する値,例えば5バールに維持され
る。 When a liquid, in particular water, is supplied to the inlet 110,
The liquid level rises and the volume of the gas chamber 107 decreases.
According to this state, the supply pipe 105 is connected to the gas chamber 10
Gas is supplied to the gas chamber when it is turned off when the pressure within 7 increases or when a sufficient amount of gas is withdrawn from the gas chamber. The pressure in the gas chamber 107 is maintained at a value corresponding to water pressure, for example 5 bar.
注入装置109,115は、液体を直接に分配
するためにも用いることができる。この場合、加
圧貯槽は不要であり、装置109は、側筒によつ
て囲繞されて加圧気体源に接続された気体室を形
成し、ノズル装置115の側筒118を122の
部分で閉鎖し、延長線106aで示したように出
口125を越えて通路を使用末端部まで延長す
る。 Injection devices 109, 115 can also be used to dispense liquid directly. In this case, a pressurized reservoir is not required, and the device 109 forms a gas chamber surrounded by a side tube and connected to a source of pressurized gas, closing the side tube 118 of the nozzle device 115 at 122. and extends the passageway beyond outlet 125 to the use end, as indicated by extension line 106a.
該システムに大量の液体を流過させる場合には
流れ断面積を相対的に大きくする必要がある。こ
の場合には、直径が次第に大きくなつているか段
階的に大きくなつている移動部材130を通路内
に設ければ良い。 If a large amount of liquid is to flow through the system, a relatively large flow cross section is required. In this case, a moving member 130 whose diameter is gradually increasing or gradually increasing in diameter may be provided within the passage.
以上に説明した装置の動作は、吸収液体が直接
に取り出される場合及び前に述べたように間接的
に取り出される場合の両方とも1〜6バールの
間、或るいはそれ以上の圧力で安定である。従つ
て、本装置は園芸業用として水に炭酸ガスを吸収
させるのに特に適している。何故ならば、該装置
はこの分野で用いられる圧力条件で用いられ得る
からである。 The operation of the device described above is stable at pressures between 1 and 6 bar, or even higher, both when the absorbent liquid is withdrawn directly and, as previously mentioned, indirectly. be. The device is therefore particularly suitable for carbon dioxide absorption in water for horticultural applications. This is because the device can be used at the pressure conditions used in this field.
第1図及び第2図に示した装置は、肥料及び潅
水を簡単に,気軽に,そして経済的に供給するの
に特に適しており、従つて家庭用,趣味的な園芸
家用に適している。第1図に示された実施例で
は、装置ブロツク1は公共水道の蛇口に取りつけ
る接続部2を持つている。接続部2と連通してい
る制御室3が装置ブロツク1に設けられている。
水の流入圧は水道システムに於ける圧力に相当し
て大幅に変化し、例えば1〜7バールの間で変化
し得る。水の温度もまた同様に変化する。制御室
3内の水圧がダイアフラム4に作用し、それはプ
ランジヤ8を介して加圧炭酸ガス貯室の減圧バル
ブの可動部材7と係合している。加圧炭酸ガス貯
室としては、この場合、在来の加圧炭酸ガスボン
ベを用いることができる。バルブを持つた貯槽6
は、装置ブロツク1に設けた標準的な接続口上に
気密にねじ込まれている。バルブは、可動部材7
上に外部制御圧が作用していない限り自動的に閉
まる。 The apparatus shown in Figures 1 and 2 is particularly suitable for the simple, convenient and economical application of fertilizers and irrigation, and is therefore suitable for home use and for hobbyist gardeners. . In the embodiment shown in FIG. 1, the device block 1 has a connection 2 for attachment to a public water tap. A control room 3 is provided in the device block 1, which communicates with the connection 2.
The water inlet pressure can vary widely, corresponding to the pressure in the water system, and can vary, for example, between 1 and 7 bar. The temperature of the water changes as well. The water pressure in the control chamber 3 acts on the diaphragm 4, which engages via a plunger 8 with the movable member 7 of the pressure reducing valve of the pressurized carbon dioxide storage chamber. In this case, a conventional pressurized carbon dioxide cylinder can be used as the pressurized carbon dioxide storage chamber. Storage tank 6 with a valve
is screwed in a hermetically sealed manner onto a standard connection provided in the device block 1. The valve is a movable member 7
Automatically closes unless external control pressure is applied above.
ダイアフラム4はその下にあるガス分配室5を
密閉し、そのガス分配室はスロツトル11を介し
て気体室10と連通している。更に装置ブロツク
には液体通路13が設けられており、その入口側
14は、制御室3と自由に連通している。液体通
路13は真直で長くするのが好ましく、下端の出
口28で終端しており、その出口は、散水器等へ
の注水口として用いても良く、或るいは散水ホー
ス等への接続口として用いても良い。 The diaphragm 4 seals off a gas distribution chamber 5 below it, which communicates with a gas chamber 10 via a throttle 11. Furthermore, the device block is provided with a liquid channel 13, the inlet side 14 of which communicates freely with the control chamber 3. The liquid passage 13 is preferably straight and long and terminates in an outlet 28 at the lower end, which may be used as a water inlet for a water sprinkler or the like, or as a connection to a water hose or the like. May be used.
第3図の基本装置と同様に、液体通路13は、
急激にもしくは段階的に幅が拡大している複数の
部分15a〜15cを持つている。急激に拡大し
ている部分の肩部の直ぐ背後に分配通路12に通
ずる開口17が設けられており、その分配通路1
2は気体室10と連通している。気体吸収部15
a〜15cの直後に再注入部分もしくは還流部分
16a,16bが設けられており、これらの部分
もまた急激に直径が拡大していて、口18を介し
て連通路19と再注入のために自由に連通してい
る。従つて連通路19の下端は口20を介して液
体通路13と連通している。 Similar to the basic device of FIG. 3, the liquid passage 13 is
It has a plurality of portions 15a to 15c whose width increases rapidly or stepwise. Immediately behind the shoulder of the sharply widening section, an opening 17 is provided leading into the distribution channel 12;
2 communicates with the gas chamber 10. Gas absorption section 15
Immediately after a to 15c there are reinjection or reflux sections 16a, 16b, which also have a rapidly increasing diameter and are free to communicate with the communication channel 19 via the port 18 for reinjection. is connected to. Therefore, the lower end of the communication passage 19 communicates with the liquid passage 13 via the port 20.
液体通路13内に半径方向に離隔して供給管2
5が上方から挿入されており、その供給管は計量
バルブ26を介して液体肥料用の貯槽と連通して
おり、気体吸収部分15a〜15cの拡張部の内
の一つで終端している。 Supply tubes 2 radially spaced within the liquid passageway 13
5 is inserted from above, the supply pipe of which communicates with the reservoir for liquid fertilizer via a metering valve 26 and terminates in one of the extensions of the gas absorption parts 15a to 15c.
潅水の際には水道の蛇口を開く。水が制御室3
内に注入され、その水圧はダイアフラム4上に作
用する。ダイアフラム4は、圧力が1バールにな
つたとき、加圧貯槽6の減圧バルブ7が開かれる
ように設計され、寸法づけられており、それによ
つて圧力が低下したとき水圧に従つて炭酸ガスが
気体室5内に流入できるようにする。スロツトル
手段11は、液体通路13が制御室3からの水で
充満されてしまうので流出する気体が液体通路1
3に到達させないようにする。第3図の装置に関
して詳述したように、液体通路13内で水は良好
にもしくは微細化された状態で気体を吸収する。
吸収プロセスの後に、肥料の投与量が液体通路1
3内の水に添加されて、水流と混合される。再注
入段16a及び16bは、良好な吸収と均一な混
合を与える。肥料の注入断面積は、バルブ26で
調整され得る。肥料が供給される圧力は、制御室
3に於ける圧力によつて直接に又は間接に決定さ
れ得る。このような制御の代りに、制御室3によ
つて制御されるガス分配室5内の圧力を、肥料を
入れた可撓性容器に作用させて肥料を押し出すよ
うにすることもできる。蛇口をまわすと、液肥の
圧力が上昇する。また蛇口が閉じられると、圧力
が低下する。これらの制御のために、ガス圧に代
えて水圧を直接に利用することも出来る。 Open the water faucet when watering. Water control room 3
The water pressure acts on the diaphragm 4. The diaphragm 4 is designed and dimensioned in such a way that when the pressure reaches 1 bar, the pressure reducing valve 7 of the pressurized reservoir 6 is opened, so that when the pressure decreases, carbon dioxide is released according to the water pressure. This allows the gas to flow into the gas chamber 5. Since the liquid passage 13 is filled with water from the control chamber 3, the throttle means 11 prevents the gas flowing out from the liquid passage 13 from being filled with water from the control chamber 3.
Don't let it reach 3. As described in detail with respect to the device of FIG. 3, the water in the liquid channel 13 absorbs gas in a well or finely divided state.
After the absorption process, the fertilizer dose is transferred to the liquid channel 1
3 and mixed with the water stream. Reinjection stages 16a and 16b provide good absorption and uniform mixing. The fertilizer injection cross section can be adjusted with a valve 26. The pressure at which fertilizer is supplied can be determined directly or indirectly by the pressure in the control chamber 3. As an alternative to such control, the pressure in the gas distribution chamber 5 controlled by the control chamber 3 can also be applied to a flexible container containing fertilizer to force the fertilizer out. When you turn on the faucet, the pressure of the liquid fertilizer increases. Also, when the faucet is closed, the pressure decreases. For these controls, water pressure can also be used directly instead of gas pressure.
第2図は、液体通路に於ける個々の段の減圧が
肥料の取入れに用い得ることを示している。注入
段33の一つは、肥料貯槽38の吸上げ管39と
吸引管36を介して接続されている。吸上げ管3
9は、装置ブロツクと接続部37で接続されてい
る。気体の取入れは、気体室32と分配通路34
とを介して行なわれる。この場合にも吸収手段3
3の後に再注入段35が設けられる。 FIG. 2 shows that individual stage vacuums in the liquid path can be used for fertilizer uptake. One of the injection stages 33 is connected to a suction pipe 39 of a fertilizer storage tank 38 via a suction pipe 36 . Suction pipe 3
9 is connected to the device block through a connecting portion 37. Gas is taken in through the gas chamber 32 and the distribution passage 34.
This is done through the In this case as well, the absorption means 3
After 3, a reinjection stage 35 is provided.
液肥の取入れ専用の附加的な注入段を設けても
良い。第2図に関して説明した取り込み作用が、
肥料貯槽の圧力応答性と組合わせて用いても良
い。水に迅速に溶解する固形肥料もまた用い得
る。この場合、装置ブロツクは、第1図による通
路13を流過する水が肥料にそそがれて適当量の
肥料を溶解させる。 An additional injection stage dedicated to the introduction of liquid fertilizer may be provided. The uptake action explained in connection with FIG.
It may also be used in combination with the pressure responsiveness of a fertilizer storage tank. Solid fertilizers that dissolve quickly in water may also be used. In this case, the device block is such that the water flowing through the channel 13 according to FIG. 1 is poured onto the fertilizer, dissolving the appropriate amount of fertilizer.
バルブ7は、ダイアフラム4によつて制御させ
る簡単な閉止弁であつて、減圧弁の作用をする。
貯槽6の内圧は、例えば60バールにも達し、また
温度によつて変動する。バルブ7の密閉表面とダ
イアフラムの表面との面積比は約1:60になつて
いる。従つて気体貯槽6は、装置内圧が大気圧の
とき閉じられる。制御室3内が水圧になると、ダ
イアフラムによつて60倍の圧力として伝達され、
たとえ水圧が低くても、バルブ7は相応に開いて
相当した圧力で気体室5に気体を供給する。通常
の圧縮スプリング制御減圧バルブとは違つて気体
の排出は、水圧とその変動に正確に応答して本発
明装置によつて制御される。 The valve 7 is a simple shutoff valve controlled by the diaphragm 4 and acts as a pressure reducing valve.
The internal pressure of the storage tank 6 reaches, for example, 60 bar and varies depending on the temperature. The area ratio between the sealing surface of the valve 7 and the surface of the diaphragm is approximately 1:60. Therefore, the gas storage tank 6 is closed when the internal pressure of the device is atmospheric pressure. When the water pressure inside the control room 3 increases, it is transmitted as 60 times the pressure by the diaphragm,
Even if the water pressure is low, the valve 7 opens accordingly and supplies gas to the gas chamber 5 at the corresponding pressure. Unlike conventional compression spring controlled pressure reducing valves, gas discharge is controlled by the device in precise response to water pressure and its variations.
水流中で大きな気泡が押し流されて、利用され
ずに大気中に逃げるのを防止するために、装置ブ
ロツクにコイル状もしくは曲りくねつた装置を、
図示の装置に於て縦方向に配置された装置ブロツ
ク内に設け、その頂部を気体室内に開口させるこ
とが出来る。或るいは頂部に出口が設けられて、
軽い気体が気体室内に逃げるようにしても良い。 To prevent large air bubbles from being swept away in the water stream and escaping unused into the atmosphere, a coiled or serpentine device is installed on the device block.
In the illustrated apparatus, it can be provided within a vertically arranged apparatus block, the top of which opens into the gas chamber. Or an outlet is provided at the top,
Light gas may escape into the gas chamber.
従来の吸収方法では、大きい気泡のためばかり
ではなく、使用末端での減圧の間に気体の放散に
よつて気体の損失が生じていた。本発明の方法で
は、このような損失は排除される。たとえ気体圧
が低くても、流速が瞬間的に殆んどゼロに減少
し、流体圧力が部分的に低下する個所で水の強制
的な吸収が行なわれる。これら個所では比較的低
い気体圧は過剰圧として有効となる。減圧の時の
損失は非常に低下し、吸収状態の安定度は大き
い。従つて本発明方法及び装置は植物に適用でき
るばかりでなく、あらゆる産業分野に適用でき
る。 In conventional absorption methods, gas losses occur not only due to large air bubbles, but also due to gas evolution during depressurization at the end of use. With the method of the invention, such losses are eliminated. Even if the gas pressure is low, the flow velocity is momentarily reduced to almost zero, and forced absorption of water occurs where the fluid pressure is partially reduced. At these points, a relatively low gas pressure is effective as an overpressure. The loss during depressurization is extremely low, and the stability of the absorption state is high. Therefore, the method and device of the present invention can be applied not only to plants but also to all industrial fields.
第1図は、本発明による装置の第1実施例の垂
直断面図、第2図は、変形実施例の第1図と同様
の図であるが、その一部を詳細に示す図、第3図
は、本発明による液体に気体を吸収させる装置の
基本的な装置を示す図である。
符号の説明、1:装置のブロツク、2:接続
部、3:制御室、4:ダイアフラム、5:ガス分
配室、6:貯槽、7:可動部材、8:プランジ
ヤ:10:気体室、11:スロツトル、12:分
配通路、13:液体通路、14:入口、15a〜
15c:気体吸収部、16a,16c:還流部
分、17:開口、18:口、19:連通路、2
0::口、25:肥料供給管、26:計量バル
ブ、30:装置ブロツク、31:入口、32:気
体室、33:注入段、34:分配通路、35:再
注入段、36:吸引管、37:接続部、38:肥
料貯槽、39:吸上げ管、101:装置、10
2:側筒、103:上蓋、104:底蓋、10
5:管、106:排出口、107:気体室、10
8:液体、109:ノズル装置、110:枝管、
111:フランジ、112a〜112c:注入
段、113a〜113c:拡張部、114a〜1
14c:気体取入れ口、115:液体注入段、1
16a,116b:液体注入段、117a〜11
7b:拡張部、118:側筒、119:連通路、
120:出口、121:開放端、125:出口。
1 is a vertical sectional view of a first embodiment of the device according to the invention, FIG. 2 is a view similar to FIG. 1 of a modified embodiment, but showing a part thereof in detail; The figure is a diagram showing the basic device of the device for absorbing gas into a liquid according to the present invention. Explanation of symbols, 1: Device block, 2: Connection part, 3: Control room, 4: Diaphragm, 5: Gas distribution chamber, 6: Storage tank, 7: Movable member, 8: Plunger: 10: Gas chamber, 11: Throttle, 12: Distribution passage, 13: Liquid passage, 14: Inlet, 15a~
15c: Gas absorption part, 16a, 16c: Reflux part, 17: Opening, 18: Port, 19: Communication path, 2
0:: Port, 25: Fertilizer supply pipe, 26: Metering valve, 30: Device block, 31: Inlet, 32: Gas chamber, 33: Injection stage, 34: Distribution passage, 35: Re-injection stage, 36: Suction pipe , 37: Connection part, 38: Fertilizer storage tank, 39: Suction pipe, 101: Device, 10
2: Side tube, 103: Top lid, 104: Bottom lid, 10
5: Pipe, 106: Exhaust port, 107: Gas chamber, 10
8: liquid, 109: nozzle device, 110: branch pipe,
111: Flange, 112a-112c: Injection stage, 113a-113c: Expansion section, 114a-1
14c: Gas intake port, 115: Liquid injection stage, 1
16a, 116b: liquid injection stage, 117a-11
7b: Expansion part, 118: Side tube, 119: Communication path,
120: Exit, 121: Open end, 125: Exit.
Claims (1)
ズル装置に液体を送り込み、流れ方向に順次に配
置された二つの注入段間の各遷移部分で流速が急
激に減少するよう液体の流速を段階的に変化させ
ることを特徴とする、液体に気体を注入作用によ
つて吸収させる方法。 2 流速が急速に減少する領域が炭酸ガスを含ん
でいる領域と直接に接触するようにしたことを特
徴とする特許請求の範囲第1項に記載された方
法。 3 少なくとも二つの気体注入段を通過させた後
に、液体を少なくとも更に一つの注入段に送り込
み、気体を吸収した液体に、既に気体を吸収した
液体を復帰させて混合することを特徴とする特許
請求の範囲第1項又は第2項に記載された方法。 4 上記液体を循環流として上記注入ノズル装置
を流過させることを特徴とする特許請求の範囲第
1項〜第3項の何れか1項に記載された方法。 5 上記液体流が、気体を吸収した液体の出口に
直接に供給されることを特徴とする特許請求の範
囲第1項〜第4項の何れか1項に記載された方
法。 6 液体流が、気体を吸収した液体の貯留液の液
面下に供給され、その貯留された吸収液体が一つ
以上の出口に供給されることを特徴とする特許請
求の範囲第1項〜第4項の何れか1項に記載され
た方法。 7 公共水道の水温と水圧下で水を導入し、上記
導入された水は、その水圧に応じて加圧炭酸ガス
源から、導入された水との接触領域の少なくとも
一つに炭酸ガスを供給するのを制御するために用
いられ、しかる後上記水が上記接触領域に流れと
して供給されて、上記接触領域を流過する流れの
少なくとも2位置で、水道から導入された水の水
圧に関して低い圧力に急激に減圧され、それと同
時に水と炭酸ガスとが接触されることを特徴とす
る、潅水に炭酸ガスを吸収させることによつて家
庭用趣味園芸用の肥料及び用水設備に供給する液
体を調整する方法。 8 上記接触領域に液肥が同時に供給され、単位
時間当りの供給量が水の導入圧に応じて制御され
ることを特徴とする特許請求の範囲第7項に記載
された方法。 9 少なくとも二つの気体注入段を有する注入ノ
ズル装置に液体を送り込み、流れ方向に順次に配
置された二つの注入段間の各遷移部分で流速が急
激に減少するよう液体の流速を段階的に変化させ
て、液体に気体を注入作用によつて吸収させる方
法を実施する装置であつて、 少なくとも二つの注入段112a〜112cを
有する注入ノズル装置109を設け、上記注入段
は同軸関係に順次に配置されており、上記注入段
は軸方向に液体供給枝管110と接続されてお
り、上記注入段の幅は流れ方向に段階状に拡大し
ており113a〜113c、各段の肩部の直後の
各領域が加圧気体源と直接に接触していることを
特徴とする上記装置。 10 上記各段112a〜112cの直後の領域
が炭酸ガスを含む室と直接に連通していることを
特徴とする特許請求の範囲第9項に記載された装
置。 11 上記ノズル装置109に少なくとも一つの
液体注入段115を引続いて配置し、上記液体注
入段115の取入れ口122a〜122bは下流
側に位置する気体吸収液の出口120と連通して
いることを特徴とする特許請求の範囲第9項に記
載された装置。 12 最後の注入段の出口が貯留された気体吸収
液体108の液面126,127の下で開放して
おり、上記貯留液体は気体室107を有する圧力
タンク101内に貯留されており、上記気体室は
上記ノズル装置109に対する加圧気体源として
形成されていることを特徴とする特許請求の範囲
第11項に記載された装置。 13 上記気体室107に対して閉鎖された側筒
118が上記液体注入段116a,116bと離
隔してそれを囲繞しており、上記側筒の下流側に
位置して上記側筒内に開口している気体吸収液体
用の出口120を有する液体流路を形成してお
り、その下端は上記貯留液体108の液面下に開
放していることを特徴とする特許請求の範囲第1
1項又は第12項に記載された装置。 14 上記タンク101の排出口106がノズル
装置109,115の出口125から遮蔽されて
いるか又はそれから横方向にずらせて配置されて
おり、大きい気泡が気体室107に妨害されずに
上昇し得るようになつていることを特徴とする特
許請求の範囲第12項又は第13項に記載された
装置。 15 上記ノズル装置109,115における液
体の通路が中央移動部材130によつて環状の通
路として形成されており、上記中央移動部材13
0の直径は急激にもしくは段階的に好ましくは流
れの方向に沿つて拡大していることを特徴とする
特許請求の範囲第9項に記載された装置。 16 公共水道もしくは地域水道に接続(2に於
て)されて、その接続が導通されたとき、水道の
水の温度及び1〜7バールの間の圧力が生ずる制
御室3と、常態的には閉止している出口バルブ7
を有する加圧炭酸ガス貯槽6と、上記出口と減圧
バルブ7を制御する圧力応答制御手段4とを有
し、上記バルブは圧力に応答して開き、上記制御
手段4は上記制御室3に接続されており、上記制
御室に入口が接続されている流体通路13を有
し、上記流体通路には流れの方向に順次配列され
た少なくとも二つの通路部分15a〜15cが設
けられており、それらの各部分の流れ断面積が階
段状に拡張されており、上記各拡張部分は上記出
口と減圧バルブ7を介して炭酸ガスを供給される
ようになつている炭酸ガス室10,12と連通し
ていることを特徴とする炭酸ガス吸収手段を有
し、家庭用または趣味園芸用の施肥及び潅水用液
の処理装置。 17 上記液体通路13と連通25,26する液
肥貯槽が設けられており、上記液肥貯槽は上記拡
張通路部分15a〜15cに於ける吸引力及び/
又は上記制御室3内の圧力に対応する供給圧によ
つて作用を受けて液肥を供給することを特徴とす
る特許請求の範囲第16項に記載された装置。 18 制御及び混合ブロツク1を有し、上記ブロ
ツクは水道と接続されるようになつており、上記
ブロツクに上記制御室3、上記圧力応答制御手段
4、注入ノズル15a〜15cを形成する上記通
路部分、上記加圧炭酸ガス貯槽6に対する接続
部、上記肥料貯槽25,26及び上記出口もしく
は放出用接続28が設けられている特許請求の範
囲第16項又は第17項記載の装置。 19 上記制御室3を仕切つているダイヤフラム
4が設けられて出口減圧バルブ7を直接作動する
ことを特徴とする特許請求の範囲第16項に記載
された装置。 20 上記肥料貯槽が上記貯留タンクの気体室を
介して上記炭酸ガス室10,12に於ける圧力に
よつて直接に作用を受けるか、或るいは上記肥料
を貯留する可撓性容器を介して間接的に作用を受
けて肥料を供給することを特徴とする特許請求の
範囲第17項〜第19項の何れか1項に記載され
た装置。 21 液肥用の供給パイプ25が上記液体通路1
3内に固定されてその中心に配置されており、上
記供給パイプは少なくとも一つの注入ノズル15
a〜15cの背後の領域で終端し、上記供給パイ
プは肥料貯槽に対する接続部を有することを特徴
とする特許請求の範囲第17項〜第20項の何れ
か1項に記載された装置。 22 上記肥料貯槽38に接続されるようになつ
ている吸上げパイプ36が上記注入ノズル33の
一つから延長している特許請求の範囲第17項〜
第20項の何れか1項に記載された装置。 23 上記炭酸ガス室10,12と上記出口減圧
バルブ7との間の流路にスロツトル手段11が設
けられていることを特徴とする特許請求の範囲第
16項に記載された装置。 24 上記液体通路13内に更に少なくとも一つ
の注入ノズル16a,16bが引続いて配置され
ており、炭酸ガスを良好に吸収しており肥料を混
合された潅水を還流することを特徴とする特許請
求の範囲第16項に記載された装置。 25 肥料が固形肥料であり、上記液体通路を流
過する水が上記固形肥料貯室に注がれるようにな
つていることを特徴とする特許請求の範囲第24
項に記載された装置。[Scope of Claims] 1. A liquid is fed into an injection nozzle device having at least two gas injection stages, and the liquid is fed in such a way that the flow rate decreases sharply at each transition between two injection stages arranged sequentially in the flow direction. A method for absorbing gas into a liquid by injection, which is characterized by changing the flow rate in stages. 2. The method according to claim 1, characterized in that the region where the flow rate rapidly decreases is in direct contact with a region containing carbon dioxide gas. 3. A patent claim characterized in that after passing through at least two gas injection stages, the liquid is sent to at least one further injection stage, and the liquid that has already absorbed gas is returned and mixed with the liquid that has absorbed gas. The method described in item 1 or 2 of the scope. 4. A method as claimed in any one of claims 1 to 3, characterized in that the liquid is passed through the injection nozzle device as a circulating flow. 5. A method as claimed in any one of claims 1 to 4, characterized in that the liquid stream is fed directly to the outlet of the gas-absorbed liquid. 6. Claims 1 to 6, characterized in that the liquid stream is provided below the surface of a reservoir of gas-absorbed liquid, and the stored absorption liquid is supplied to one or more outlets. The method described in any one of Section 4. 7. Water is introduced at the temperature and pressure of the public water supply, and the introduced water supplies carbon dioxide from a pressurized carbon dioxide gas source to at least one of the areas in contact with the introduced water according to the water pressure. the water is then supplied as a stream to the contact area such that at least two locations in the flow passing through the contact area are at a low pressure with respect to the water pressure of the water introduced from the mains. A method of adjusting the liquid supplied to fertilizer and water equipment for home hobby gardening by making the irrigation water absorb carbon dioxide gas, which is characterized by rapidly reducing the pressure and simultaneously bringing the water and carbon dioxide gas into contact. how to. 8. The method according to claim 7, wherein liquid fertilizer is simultaneously supplied to the contact area, and the supply amount per unit time is controlled according to the water introduction pressure. 9. Feeding a liquid into an injection nozzle arrangement having at least two gas injection stages and varying the flow rate of the liquid in steps such that the flow rate decreases sharply at each transition between two injection stages arranged sequentially in the flow direction. The apparatus implements a method of absorbing gas into a liquid by injection action, and includes an injection nozzle device 109 having at least two injection stages 112a to 112c, the injection stages being arranged one after the other in a coaxial relationship. The injection stage is connected to the liquid supply branch pipe 110 in the axial direction, and the width of the injection stage increases stepwise in the flow direction. A device as described above, characterized in that each region is in direct contact with a source of pressurized gas. 10. The apparatus according to claim 9, wherein the region immediately after each of the stages 112a to 112c is in direct communication with a chamber containing carbon dioxide gas. 11. At least one liquid injection stage 115 is subsequently arranged in the nozzle device 109, and the intake ports 122a-122b of the liquid injection stage 115 communicate with the gas absorption liquid outlet 120 located downstream. Apparatus as claimed in claim 9. 12 The outlet of the last injection stage is open below the liquid level 126, 127 of the stored gas absorption liquid 108, and the stored liquid is stored in the pressure tank 101 having the gas chamber 107, and the gas 12. Device according to claim 11, characterized in that the chamber is configured as a source of pressurized gas for the nozzle device (109). 13 A side tube 118 closed to the gas chamber 107 is spaced apart from and surrounds the liquid injection stage 116a, 116b, and is located downstream of the side tube and opens into the side tube. A liquid flow path is formed having an outlet 120 for the gas-absorbing liquid, the lower end of which is open below the surface of the stored liquid 108.
Apparatus according to paragraph 1 or paragraph 12. 14. The outlet 106 of the tank 101 is shielded from the outlet 125 of the nozzle device 109, 115 or is laterally offset therefrom, so that large air bubbles can rise unhindered into the gas chamber 107. 14. A device as claimed in claim 12 or claim 13, characterized in that the device has the following characteristics: 15 The liquid passage in the nozzle devices 109 and 115 is formed as an annular passage by the central moving member 130.
10. Device according to claim 9, characterized in that the diameter of 0 widens abruptly or stepwise, preferably along the flow direction. 16 a control room 3 connected (at 2) to the public or regional water supply and in which, when the connection is activated, a temperature of the water of the mains and a pressure of between 1 and 7 bar; Closed outlet valve 7
a pressurized carbon dioxide storage tank 6 having a pressurized carbon dioxide gas storage tank 6; and a pressure responsive control means 4 for controlling the outlet and the pressure reducing valve 7, the valve opening in response to pressure, and the control means 4 being connected to the control chamber 3. and has a fluid passage 13 whose inlet is connected to the control chamber, and the fluid passage is provided with at least two passage portions 15a to 15c arranged sequentially in the flow direction. The flow cross-sectional area of each section is expanded stepwise, and each expanded section communicates with carbon dioxide gas chambers 10, 12 to which carbon dioxide gas is supplied via the outlet and the pressure reducing valve 7. A device for treating fertilization and irrigation liquid for home use or hobby gardening, which has a carbon dioxide absorption means characterized by: 17 Liquid fertilizer storage tanks 25 and 26 communicating with the liquid passage 13 are provided, and the liquid fertilizer storage tank has a suction force and/or
The apparatus according to claim 16, characterized in that the liquid fertilizer is supplied under the influence of a supply pressure corresponding to the pressure in the control chamber (3). 18 comprising a control and mixing block 1, said block being adapted to be connected to the water supply, said passage section forming said control chamber 3, said pressure response control means 4 and injection nozzles 15a-15c in said block; 18. A device according to claim 16 or 17, further comprising a connection to the pressurized carbon dioxide storage tank 6, the fertilizer storage tank 25, 26 and the outlet or discharge connection 28. 19. Device according to claim 16, characterized in that a diaphragm 4 separating the control chamber 3 is provided to actuate the outlet pressure reducing valve 7 directly. 20 The fertilizer storage tank is directly affected by the pressure in the carbon dioxide gas chambers 10 and 12 through the gas chamber of the storage tank, or the fertilizer is stored in a flexible container. 20. A device according to any one of claims 17 to 19, characterized in that it supplies fertilizer by being indirectly acted upon. 21 The supply pipe 25 for liquid fertilizer is connected to the liquid passage 1
3, said supply pipe is connected to at least one injection nozzle 15.
21. A device according to any of claims 17 to 20, characterized in that the supply pipe terminates in the area behind a to 15c and has a connection to a fertilizer storage tank. 22 A suction pipe 36 adapted to be connected to the fertilizer storage tank 38 extends from one of the injection nozzles 33
Apparatus according to any one of clauses 20. 23. The device according to claim 16, characterized in that a throttle means 11 is provided in the flow path between the carbon dioxide gas chambers 10, 12 and the outlet pressure reducing valve 7. 24. A patent claim characterized in that at least one injection nozzle 16a, 16b is further arranged successively in the liquid channel 13, which absorbs carbon dioxide gas well and returns the irrigation water mixed with fertilizer. Apparatus according to scope 16. 25. Claim 24, characterized in that the fertilizer is a solid fertilizer, and the water flowing through the liquid passage is poured into the solid fertilizer storage chamber.
Equipment described in Section.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3330375.4 | 1983-08-23 | ||
DE19833330375 DE3330375A1 (en) | 1983-08-23 | 1983-08-23 | METHOD AND ARRANGEMENT FOR IMPREGNATING A LIQUID WITH A GAS BY INJECTOR, IN PART. FOR IMPREGNATING WATER WATER WITH CO (DOWN ARROW) 2 (DOWN ARROW) FOR GARDENING COMPANIES |
DE3410621.9 | 1984-03-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6128427A JPS6128427A (en) | 1986-02-08 |
JPS647813B2 true JPS647813B2 (en) | 1989-02-10 |
Family
ID=6207225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16796084A Granted JPS6128427A (en) | 1983-08-23 | 1984-08-13 | Method and device for absorbing gas into liquid, particularly, method and device for absorbing carbonic acid gas into sprinkling water for gardener and gardener for pleasure |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP0142595B1 (en) |
JP (1) | JPS6128427A (en) |
AT (1) | ATE46278T1 (en) |
DE (2) | DE3330375A1 (en) |
IN (1) | IN160730B (en) |
ZA (1) | ZA846545B (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3417546A1 (en) * | 1984-05-11 | 1985-11-14 | Technica Entwicklungsgesellschaft mbH & Co KG, 2418 Ratzeburg | Process and arrangement for reducing the proportion of carbon dioxide in exhaust gases |
DE3424974A1 (en) * | 1984-05-21 | 1985-11-21 | Technica Entwicklungsgesellschaft mbH & Co KG, 2418 Ratzeburg | Process for improving the efficiency in the purification of flue gas, for example by the "scrubber principle" |
DE3432440A1 (en) * | 1984-09-04 | 1986-03-13 | Technica Entwicklungsgesellschaft mbH & Co KG, 2418 Ratzeburg | Arrangement for treating irrigation water enriched with CO2 and H2CO3 |
DE3436660A1 (en) * | 1984-10-05 | 1986-04-10 | Technica Entwicklungsgesellschaft mbH & Co KG, 2418 Ratzeburg | METHOD AND DEVICE FOR THE FURTHER TREATMENT OF WATER INTENDED FOR DRINKING AND USE |
DE3720621C1 (en) * | 1987-06-23 | 1988-11-24 | Technica Entwicklungsgmbh & Co | Process for root fertilization of crops |
DE9205523U1 (en) * | 1992-04-23 | 1992-08-20 | Sonnenrein, Uwe, 4795 Delbrück | Device for treating liquids of different densities or gases and liquids |
AT501976B1 (en) * | 2005-05-25 | 2007-03-15 | Andritz Ag Maschf | DEVICE FOR FLOTING A LIQUID |
US7671294B2 (en) * | 2006-11-28 | 2010-03-02 | Vladimir Belashchenko | Plasma apparatus and system |
JP5792533B2 (en) * | 2011-07-11 | 2015-10-14 | 岩井機械工業株式会社 | Gas dissolving apparatus and gas dissolving method |
JP5945974B2 (en) * | 2013-12-02 | 2016-07-05 | Jfeエンジニアリング株式会社 | Condensation and mixing apparatus and evaporative gas reliquefaction apparatus having the same |
JP5884995B2 (en) * | 2013-12-02 | 2016-03-15 | Jfeエンジニアリング株式会社 | Condensation and mixing apparatus and evaporative gas reliquefaction apparatus having the same |
WO2016194056A1 (en) * | 2015-05-29 | 2016-12-08 | Jfeエンジニアリング株式会社 | Condensing and mixing device and evaporated gas re-liquefaction device having same |
JP6090616B2 (en) * | 2016-05-30 | 2017-03-08 | Jfeエンジニアリング株式会社 | Condensation and mixing apparatus and evaporative gas reliquefaction apparatus having the same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2899971A (en) * | 1959-08-18 | Feeding devices | ||
DE866341C (en) * | 1950-03-04 | 1953-02-09 | Rohrbau Mannesmann G M B H | Process for fertilizing crops with carbonic acid |
FR1171059A (en) * | 1957-04-10 | 1959-01-22 | Soc Fr Regulateurs Arca | Apparatus for mixing fluids by injecting one of the fluids into a pipe through which another fluid passes |
DE3117797A1 (en) * | 1981-05-06 | 1982-11-25 | Roland 4630 Bochum Hagemann | Apparatus for carbon dioxide enrichment of aquarium water |
-
1983
- 1983-08-23 DE DE19833330375 patent/DE3330375A1/en not_active Withdrawn
-
1984
- 1984-02-06 EP EP84101155A patent/EP0142595B1/en not_active Expired
- 1984-02-06 AT AT84101155T patent/ATE46278T1/en active
- 1984-02-06 DE DE8484101155T patent/DE3479710D1/en not_active Expired
- 1984-07-17 IN IN517/MAS/84A patent/IN160730B/en unknown
- 1984-08-13 JP JP16796084A patent/JPS6128427A/en active Granted
- 1984-08-22 ZA ZA846545A patent/ZA846545B/en unknown
Also Published As
Publication number | Publication date |
---|---|
DE3479710D1 (en) | 1989-10-19 |
EP0142595A2 (en) | 1985-05-29 |
ZA846545B (en) | 1985-04-24 |
EP0142595A3 (en) | 1987-07-15 |
ATE46278T1 (en) | 1989-09-15 |
IN160730B (en) | 1987-08-01 |
DE3330375A1 (en) | 1985-03-07 |
EP0142595B1 (en) | 1989-09-13 |
JPS6128427A (en) | 1986-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS647813B2 (en) | ||
US3940069A (en) | Spray apparatus | |
US4026673A (en) | Apparatus for dissolving and dispensing fertilizer to either of two water streams of different pressure | |
US4418869A (en) | Hose mounted fluid mixing sprayer | |
US4635848A (en) | Irrigation additive delivery system | |
US20090293357A1 (en) | Aeroponic atomizer for horticulture | |
US3188055A (en) | Mixing device | |
US3042314A (en) | Regulatable fluid mixing and spraying device | |
US4995418A (en) | Fertilizer sprinkler apparatus | |
US6890126B2 (en) | Subsurface water/air irrigation system with prevention of air lock | |
US2683622A (en) | Automatic fertilizer injector | |
US8210451B1 (en) | Sprinkler system liquid/solid chemical dispenser | |
US4675165A (en) | Apparatus for impregnating water with CO2 using a stepped channel with multiple gas inlets | |
JP3137978B2 (en) | Method and device for measuring and dispersing active ingredients | |
RU2017132173A (en) | DEVICE FOR INCREASING YIELD BY MEASURING CARBON DIOXIDE AND REGULATING ITS CONCENTRATION AND SYSTEM BASED ON ITS | |
CN114223521A (en) | Drip irrigation device based on root system spatial distribution | |
US2571870A (en) | Eductor nozzle | |
US2993651A (en) | Water spraying device providing a controlled proportion of a chemical in water | |
US1979541A (en) | Fertilizer distributor | |
US3756577A (en) | Vaporizer ventilating line | |
CN208080164U (en) | A kind of tea tree solution culture device | |
US2594476A (en) | Garden and insecticide sprayer | |
US4515310A (en) | Spraying apparatus and method | |
US5337930A (en) | Automatic watering and feeding mechanism for potted plants | |
US5044117A (en) | Method for root fertilization in cultivated plants |