EP0142595B1 - Method and apparatus for the treatment of pouring water during the pouring by enrichment with co2 and h2co3 - Google Patents

Method and apparatus for the treatment of pouring water during the pouring by enrichment with co2 and h2co3 Download PDF

Info

Publication number
EP0142595B1
EP0142595B1 EP84101155A EP84101155A EP0142595B1 EP 0142595 B1 EP0142595 B1 EP 0142595B1 EP 84101155 A EP84101155 A EP 84101155A EP 84101155 A EP84101155 A EP 84101155A EP 0142595 B1 EP0142595 B1 EP 0142595B1
Authority
EP
European Patent Office
Prior art keywords
pressure
flow
water
watering
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84101155A
Other languages
German (de)
French (fr)
Other versions
EP0142595A3 (en
EP0142595A2 (en
Inventor
Alexander Kückens
Horst Köhl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technica Entwicklungs GmbH and Co KG
Original Assignee
Technica Entwicklungs GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technica Entwicklungs GmbH and Co KG filed Critical Technica Entwicklungs GmbH and Co KG
Priority to AT84101155T priority Critical patent/ATE46278T1/en
Publication of EP0142595A2 publication Critical patent/EP0142595A2/en
Publication of EP0142595A3 publication Critical patent/EP0142595A3/en
Application granted granted Critical
Publication of EP0142595B1 publication Critical patent/EP0142595B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2323Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits
    • B01F23/23231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits being at least partially immersed in the liquid, e.g. in a closed circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/45Mixing liquids with liquids; Emulsifying using flow mixing
    • B01F23/454Mixing liquids with liquids; Emulsifying using flow mixing by injecting a mixture of liquid and gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/21Jet mixers, i.e. mixers using high-speed fluid streams with submerged injectors, e.g. nozzles, for injecting high-pressure jets into a large volume or into mixing chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • B01F25/3142Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • B01F25/3142Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction
    • B01F25/31425Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction with a plurality of perforations in the axial and circumferential direction covering the whole surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids

Definitions

  • the invention relates to a process for the treatment of irrigation water by enrichment with C0 2 and H 2 C0 3 , in which in the through a line with the pressure and temperature approximately equal to those flowing in a conventional water supply line continuously pressurized CO 2 gas is introduced, as well as an arrangement for carrying out the method, which has an elongated, straight flow channel section which is connected at one end to a pressure source for irrigation water and at the other end to a pouring system or a collecting container and which connects to an impregnation zone with a circumferential connection has a C0 2 pressure gas source.
  • DE-PS 866 341 describes an arrangement for introducing C0 2 into the pressurized water supply line of an irrigation system.
  • An injector is mentioned as a means of introducing C0 2 without this being described in detail.
  • Such an injector system is shown in FR-PS-1 171 059.
  • This has a straight flow section through which one of the two media to be mixed flows.
  • several short pipe sections are arranged consecutively with increasing diameter, the ends of which are overlapped to form an annular gap.
  • the pipe section of the largest diameter is designed with respect to the straight channel so that this also forms an annular gap with the channel.
  • the flow in the channel is thus continuously divided into several partial flows.
  • a device for supplying the second of the media to be mixed is provided centrally on the inlet side of the tube section of smallest diameter, which device introduces this second medium into the flow in a finely distributed manner, e.g. B. sprayed.
  • This is a system in which turbulence that promotes the mixture is generated in a straight flow channel of constant cross-section by a flow control system of several differently dimensioned pipe sections, into which the second medium is injected or sprayed on the inlet side.
  • DE-OS-3 117 797 a device for enriching aquarium water with carbon dioxide is shown and described, in which a C0 2 gas zone is provided in a device through which the aquarium water is passed in a swirled form.
  • the water feed line z. B. a washing machine a metering device to add an additive, for. B. automatically initiate a water softener.
  • the flow velocity of the water is changed by the formation of a nozzle or a gradual change in the flow cross section.
  • a line for the additive opens into a mixing chamber area.
  • several holes are provided which are open to the atmosphere and through which small amounts of air can be drawn in. These vents have the purpose when the water supply to the household machine, e.g. B. washing machine, is switched off to prevent a vacuum in the supply line for the water, through which with the additive, for. B. the softener mixed water from the mixing chamber area is sucked back into the water supply.
  • the line section in front of the mixing chamber area should therefore be ventilated by the air sucked in through the bores, and the vacuum that may be present there should be eliminated.
  • the invention relates to a method for treating irrigation water by enrichment with C0 2 and H 2 C0 3 .
  • irrigation water is often required in large quantities in glasshouses and garden centers as well as in agriculture, which also requires corresponding amounts of CO 2 if impregnation is desired.
  • the impregnated irrigation water is applied to the plant crops, the water, which is usually applied under pressure, is released to atmospheric pressure.
  • C0 2 impregnated water amounts of CO 2 gas, the lost.
  • considerable proportions of the gas in the water are present in relatively large bubbles.
  • the invention has for its object the method specified at the outset and the arrangement used to carry out the method to further develop in such a way that a much more precise metering of the amounts of C0 2 gas and H 2 C0 3 supplied to the plants and the soil with the water is possible and the liquid is so impregnated with C0 2 that disturbances from larger bubbles in the liquid are not to be feared and C0 2 losses when applying the irrigation water are largely avoided, so that the treatment of cultures with C0 2 - impregnated liquid even on a large scale, eg. B. nurseries or farms can be used in an economical manner.
  • the water is impregnated with C0 2
  • the liquid is impregnated very fine, ie free of larger bubbles.
  • the CO 2 gas in the liquid is so small and so finely divided that the expansion of the liquid during the application, e.g. B. when spraying or raining, gas losses occurring are very low. So that the impregnated with C0 2 gas liquid even in large quantities, for. B. economically in horticultural companies or in agriculture.
  • the proportion of CO 2 gas and H 2 CO 3 supplied to the plants or the soil can also be determined much more precisely, since there is no significant risk of impairments due to uncontrollable gas losses during the application.
  • the liquid impregnated in this way is largely free of disruptive bubbles, so that it can be applied reliably and without interference even by capillary delivery systems.
  • Normal CO 2 absorption capacity is understood to mean the absorption capacity of normal, ie not chemically pure, water.
  • the new process enables irrigation water to be treated in a way that approximates the conditions that occur in a particularly optimal form in nature in the areas of the earth close to the roots.
  • the required negative pressure is generated by the root system as such and the C0 2 is partially emitted by the root system itself or made available as soil-based C0 2 , the C0 2 in gaseous form at approximately atmospheric pressure and atmosphere Temperature is present.
  • a further measure, which substantially supports the fine impregnation and promotes the homogeneous mixing of the liquid, is that the gas impregnation zones are followed by further flow channel sections with shoulder-like extensions and underlying bores, which are used for the back-mixing of already completely impregnated liquid with the liquid flowing through the flow channel.
  • the new arrangement can be used to feed the impregnated liquid directly to a tapping point or consumer point so that the impregnated liquid can be dispensed directly.
  • a supply pressure container in which a supply of finely impregnated liquid is kept ready, the inflow of the liquid taking place through the arrangement according to the invention and the outflow from the liquid supply on the other hand, it is shielded or offset so that any relatively large bubbles present have sufficient time to rise upwards into the gas space in the liquid supply.
  • the pressure vessel 1 consists of a pressure jacket 2 and cover 3 and bottom 4.
  • a liquid quantity 8 between the minimum fluid level 26 and the maximum fluid level 27 is maintained in the pressure vessel by the sensors shown.
  • a head space 7 remains above the liquid, which through line 5 with the carbon dioxide gas, under a predetermined pressure of z. B. is kept filled up to 6 bar.
  • the gas is supplied, for. B. via a pressure sensor. a pressure reducer.
  • a drain 6 for the impregnated liquid from the liquid supply 8 is provided in the bottom of the container 4.
  • An impregnation system 9, which is built into the cover 3, is arranged offset in the horizontal direction with respect to the outlet 6.
  • the system 9 has a central throughflow channel, which is connected on the inlet side to a source of pressurized water via a connector 10.
  • the system 9 can e.g. B. sealed by means of flange 11 in the cover 3.
  • the impregnation system 9 has impregnation zones 12a, 12b, 12c lying one behind the other in the flow direction. Before each impregnation zone, the clear width of the liquid flow channel is widened in steps, as shown at 13a, 13b, 13c. As a result, the flow velocity of the liquid changes suddenly as it enters an impregnation zone.
  • the impregnation system 9 is followed by a further channel section 15 axially.
  • this has two backmixing zones 16a, 16b.
  • the clear width of the liquid flow channel is changed abruptly before entering a backmixing area to promote mixing.
  • These backmixing areas 16a, 16b serve to promote mixing and homogenization and to reduce the proportion of larger bubbles.
  • the system 15 has an outer jacket 18, closed off from the gas space 7, the lower open edge of which ends below the lowest liquid level 26 in the amount of liquid 8.
  • the lateral displacement of the outlet 25 of the system 15 relative to the outlet 6 of the liquid supply ensures that any larger bubbles in the liquid have enough time to rise through the liquid supply 8 into the head space 7, so that they do not pass through the liquid withdrawal and thus through the line 6 can be carried away.
  • the liquid takes up gas from the head space 7 in the manner described.
  • the liquid keitador 26 rises due to the liquid supplied.
  • the head space 7 is reduced in volume. If this reduction in volume is greater than the gas absorption of the liquid, the pressure in the head space 7 increases at the same time, so that the gas supply via the supply line 5 is switched off. If the gas absorption by the liquid is greater, gas continues to be fed into the head space 7 during the impregnation, so that the pressure is maintained in this space.
  • the pressure in the gas space can, for example, on the line pressure of the irrigation network, z. B. at a pressure up to 6 bar or above.
  • the pressure vessel 1 is omitted.
  • the impregnation system 9 is surrounded by a jacket, the annular space of which is connected to the pressurized gas source, while the jacket 18 of the backmixing system 15 at the lower end, as indicated at 22, remains closed. In this case, the flow channel for the liquid continues, as indicated at 6a, to the point of withdrawal.
  • the difference between the smallest and the largest liquid level 26 or 27 is such that when liquid is removed individually from the pressure vessel 1, the supply of liquid through the systems 9 and 15 is not too frequent, so that a pump supplying the liquid to the inlet 10 is not constantly on - and needs to be switched off.
  • the flow cross-section for systems 9 and 15 is significantly increased.
  • a displacement body 30 in the systems 9 and 15, which displaces the liquid in an annular flow through the system.
  • the displacement body 30 could be gradually or stepwise enlarged in diameter or could also be designed as a smooth cylinder body in the direction of flow.
  • the cross-sectional shape and cross-sectional change of the body 30 depends on the volume to be enforced and must ensure that the desired abrupt change in speed of the liquid is achieved from the impregnation zone to the impregnation zone.
  • the arrangement described works reliably both for direct dispensing and for the depicted indirect dispensing of impregnated liquid, namely in a pressure range of approximately 1 bar upwards.
  • the arrangement is therefore particularly suitable for use in horticultural businesses, agriculture and forestry since it can be used for all pressure conditions which occur there, since any compression of the gas in water which is disadvantageous in practice is avoided because of the reduced impregnation pressure.
  • the C0 2 gas pressure is the same as the output pressure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cultivation Of Plants (AREA)
  • Nozzles (AREA)
  • Water Treatment By Sorption (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Physical Water Treatments (AREA)
  • Pipeline Systems (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

1. Process for the preparation of watering water by means of enrichment with CO2 and H2 CO3 , in which CO2 gas which is constantly under pressure is introduced into the water which is flowing through a pipe which has a pressure and temperature approximately identical to those in a normal water supply pipe, characterized in that the watering water is led through a straight flow-channel section forming an impregnation zone and in the process the pressure of the watering water is, at least two partial areas which are at a distance in the flow direction and in each case at the circumference of the flow, momentarily reduced to below the pressure of the CO2 gas by means of an abrupt change in the flow speed, the external liquid layers of the watering-water flow in the impregnation zone being led in each case, at the areas of abrupt pressure reduction, over thin, shoulder-like, cross-sectional widenings of the flow channel section, and in that the watering-water flow is, in each case in the areas of momentarily reduced pressure, ultra-finely impregnated with the CO2 gas, these liquid layers being in each case maintained, immediately after each shoulder viewed in the direction of flow, in a free flow connection with the CO2 gas supply chamber via a plurality of bores corresponding to the shoulder width.

Description

Die Erfindung betrifft ein Verfahren zum Aufbereiten von Gießwasser durch Anreicherung mit C02 und H2C03, bei dem in das durch eine Leitung mit dem Druck und der Temperatur etwa gleich denen in einer üblichen Wasserversorgungsleitung strömende Wasser fortlaufend unter Druck stehendes CO2-Gas eingebracht wird, sowie eine Anordnung zum Ausführen des Verfahrens, die einen langgestreckten, geraden Strömungskanalabschnitt aufweist, der an einem Ende an eine Druckquelle für Gießwasser angeschlossen und an seinem anderen Ende mit einem Gießsystem oder einem Sammelbehälter verbunden ist und der eine Imprägnierungszone mit umfänglichem Anschluß an eine C02-Druckgasquelle aufweist.The invention relates to a process for the treatment of irrigation water by enrichment with C0 2 and H 2 C0 3 , in which in the through a line with the pressure and temperature approximately equal to those flowing in a conventional water supply line continuously pressurized CO 2 gas is introduced, as well as an arrangement for carrying out the method, which has an elongated, straight flow channel section which is connected at one end to a pressure source for irrigation water and at the other end to a pouring system or a collecting container and which connects to an impregnation zone with a circumferential connection has a C0 2 pressure gas source.

Es sind zahlreiche Verfahren und Anordnungen zum Mischen von unterschiedlichen Stoffen bekannt.Numerous methods and arrangements for mixing different substances are known.

So beschreibt die DE-PS 866 341 eine Anordnung zur Einbringung von C02 in die Druckwasserzuführleitung einer Beregnungsanlage. Als Mittel zum Einbringen von C02 wird ein Injektor erwähnt, ohne daß dieser näher beschrieben wird. Ein solches Injektorsystem zeigt jedoch die FR-PS-1 171 059. Diese weist einen geraden Strömungsabschnitt auf, durch den das eine der beiden zu mischenden Medien strömt. In diesem Strömungskanal sind gleichachsig mehrere kurze Rohrabschnitte aufeinanderfolgend mit zunehmendem Durchmesser angeordnet, deren Enden jeweils unter Bildung eines Ringspaltes überlappt sind. Der Rohrabschnitt von größtem Durchmesser ist gegenüber dem geraden Kanal so ausgebildet, daß auch dieser mit dem Kanal noch einen Ringspalt bildet. Die Strömung in dem Kanal wird somit in mehrere Teilströmungen fortlaufend aufgeteilt. Auf der Eintrittsseite des Rohrabschnittes von kleinstem Durchmesser ist zentral eine Einrichtung zur Zuführung des zweiten der zu mischenden Medien vorgesehen, welches dieses zweite Medium in die Strömung fein verteilt einbringt, z. B. einsprüht. Hierbei handelt es sich also um ein System, in dem in einem geraden Strömungskanal von gleichbleibendem Querschnitt durch ein Strömungsleitsystem von mehreren unterschiedlich bemessenen Rohrabschnitten die Mischung fördernde Turbulenzen erzeugt werden, in die eintrittsseitig das zweite Medium eingespritzt oder eingesprüht wird.DE-PS 866 341 describes an arrangement for introducing C0 2 into the pressurized water supply line of an irrigation system. An injector is mentioned as a means of introducing C0 2 without this being described in detail. Such an injector system, however, is shown in FR-PS-1 171 059. This has a straight flow section through which one of the two media to be mixed flows. In this flow channel, several short pipe sections are arranged consecutively with increasing diameter, the ends of which are overlapped to form an annular gap. The pipe section of the largest diameter is designed with respect to the straight channel so that this also forms an annular gap with the channel. The flow in the channel is thus continuously divided into several partial flows. A device for supplying the second of the media to be mixed is provided centrally on the inlet side of the tube section of smallest diameter, which device introduces this second medium into the flow in a finely distributed manner, e.g. B. sprayed. This is a system in which turbulence that promotes the mixture is generated in a straight flow channel of constant cross-section by a flow control system of several differently dimensioned pipe sections, into which the second medium is injected or sprayed on the inlet side.

Aus der DE-OS-3 117 797 ist eine Vorrichtung zum Anreichern von Aquariumswasser mit Kohlensäure dargestellt und beschrieben, bei dem in einem Gerät eine C02-Gaszone vorgesehen ist, durch die das Aquariumwasser in verwirbelter Form geleitet wird.From DE-OS-3 117 797 a device for enriching aquarium water with carbon dioxide is shown and described, in which a C0 2 gas zone is provided in a device through which the aquarium water is passed in a swirled form.

Schließlich ist aus der US-PS-2 899 971 der Wasserspeiseleitung z. B. einer Waschmaschine eine Dosiereinrichtung zugeordnet, um in die Wasserströmung einen Zusatzstoff, z. B. ein Wasserenthärtungsmittel, automatisch einzuleiten. Zu diesem Zweck wird die Strömungsgeschwindigkeit des Wassers durch düsenförmige Ausbildung oder stufenweise Änderung des Strömungsquerschnittes verändert. Am Ende dieses Abschnittes, in dem die Geschwindigkeitsänderung stattfindet, mündet in einen Mischkammerbereich eine Leitung für das Zusatzmittel. Im Abstand vor dem Mischkammerbereich sind mehrere zur Atmosphäre hin offene Bohrungen vorgesehen, durch die geringe Mengen an Luft angesaugt werden können. Diese Belüftungsöffnungen haben den Zweck dann, wenn die Wasserzufuhr zu der Haushaltsmaschine, z. B. Waschmaschine, abgeschaltet wird, zu verhindern, daß in der Zuführungsleitung für das Wasser ein Vakuum entsteht, durch das mit dem Zusatzstoff, z. B. dem Enthärtungsmittel vermischte Wasser aus dem Mischkammerbereich in die Wasserzuleitung zurückgesaugt wird. Durch die durch die Bohrungen angesaugte Luft soll also der Leitungsabschnitt vor dem Mischkammerbereich gelüftet und so das dort evtl. herrschende Vakuum beseitigt werden.Finally, from the US-PS-2 899 971 the water feed line z. B. a washing machine a metering device to add an additive, for. B. automatically initiate a water softener. For this purpose, the flow velocity of the water is changed by the formation of a nozzle or a gradual change in the flow cross section. At the end of this section, in which the speed change takes place, a line for the additive opens into a mixing chamber area. At a distance from the mixing chamber area, several holes are provided which are open to the atmosphere and through which small amounts of air can be drawn in. These vents have the purpose when the water supply to the household machine, e.g. B. washing machine, is switched off to prevent a vacuum in the supply line for the water, through which with the additive, for. B. the softener mixed water from the mixing chamber area is sucked back into the water supply. The line section in front of the mixing chamber area should therefore be ventilated by the air sucked in through the bores, and the vacuum that may be present there should be eliminated.

Demgegenüber bezieht sich die Erfindung auf ein Verfahren zum Aufbereiten von Gießwasser durch Anreicherung mit C02 und H2C03. Anders als bei Wasser für Aquarium oder für Haushaltsmaschinen wird Gießwasser in Glashäusern und Gärtnereien ebenso wie in der Landwirtschaft häufig in großen Mengen benötigt, was auch entsprechende Mengen an C02 erfordert, wenn eine Imprägnierung erwünscht ist. Dabei ist zu beachten, daß beim Ausbringen des imprägnierten Gießwassers in den Pflanzkulturen das zumeist unter Druck ausgebrachte Wasser auf Atmosphärendruck entspannt wird. Dabei werden bei in herkömmlicher Weise mit C02 imprägniertem Wasser große Mengen von CO2-Gas freigesetzt, die verlorengehen. Hinzu kommt, daß bei allen bekannten Verfahren und Anordnungen zum Imprägnieren von Wasser mit C02-Gas erhebliche Anteile des Gases in dem Wasser in relativ großen Bläschen vorliegen. Diese können in den Leitungs- und Ausbringungssystemen für das Gießwasser erhebliche nachteilige Folgen . hervorrufen. Diese Bläschen verstopfen kapillarartige Strömungswege, wie sie z. B. bei der Tröpfchengießmethode oder beim Versprühen von mit Düngemitteln angereichertem Wasser verwendet werden. Durch die Bläschen wird die Strömung behindert.In contrast, the invention relates to a method for treating irrigation water by enrichment with C0 2 and H 2 C0 3 . In contrast to water for aquariums or household machines, irrigation water is often required in large quantities in glasshouses and garden centers as well as in agriculture, which also requires corresponding amounts of CO 2 if impregnation is desired. It should be noted that when the impregnated irrigation water is applied to the plant crops, the water, which is usually applied under pressure, is released to atmospheric pressure. Here are released in large in a conventional manner with C0 2 impregnated water amounts of CO 2 gas, the lost. In addition, in all known methods and arrangements for impregnating water with CO 2 gas, considerable proportions of the gas in the water are present in relatively large bubbles. These can have considerable disadvantageous consequences in the piping and application systems for the irrigation water. cause. These vesicles clog capillary-like flow paths, such as z. B. be used in the droplet pouring method or in the spraying of water enriched with fertilizers. The flow is impeded by the bubbles.

Ferner führt das Freisetzen von unkontrollierbaren Mengen an C02 dazu, daß eine genauere Dosierung des CO2-Anteils in dem Wasser, das den Pflanzen oder dem Boden zugeführt wird, unmöglich wird. Das, was für CO2-Gas gesagt ist, gilt entsprechend auch für H2C03, da zwischen dem im Wasser physikalisch gelösten Anteil an C02 und dem als Kohlensäure im Wasser chemisch gebundenen Anteil ein durch Naturgesetz festgegebenes Verhältnis von etwa 1000 : besteht.Furthermore, the release of uncontrollable amounts of CO 2 leads to a more precise metering of the CO 2 proportion in the water that is supplied to the plants or the soil becoming impossible. What is said for CO 2 gas also applies to H 2 C0 3 , since between the physically dissolved portion of C0 2 in the water and the portion chemically bound as carbonic acid in the water there is a ratio of about 1000: .

Der Erfindung liegt die Aufgabe zugrunde, das eingangs angegebene Verfahren und die zum Ausführen des Verfahrens dienende Anordnung so weiterzubilden, daß auf wesentlich vereinfachte Weise eine wesentlich genauere Dosierung der mit dem Wasser den Pflanzen und dem Boden zugeführten Mengen an C02-Gas und H2C03 möglich ist und die Flüssigkeit mit C02 so feinimprägniert wird, daß Störungen durch größere Bläschen in der Flüssigkeit nicht zu befürchten sind und C02-Verluste beim Ausbringen des Gießwassers weitgehend vermieden werden, so daß die Behandlung von Kulturen mit C02- imprägnierter Flüssigkeit auch im großen Maßstabe, z. B. Gärtnereien oder landwirtschaftlichen Betrieben in wirtschaftlicher Weise eingesetzt werden kann.The invention has for its object the method specified at the outset and the arrangement used to carry out the method to further develop in such a way that a much more precise metering of the amounts of C0 2 gas and H 2 C0 3 supplied to the plants and the soil with the water is possible and the liquid is so impregnated with C0 2 that disturbances from larger bubbles in the liquid are not to be feared and C0 2 losses when applying the irrigation water are largely avoided, so that the treatment of cultures with C0 2 - impregnated liquid even on a large scale, eg. B. nurseries or farms can be used in an economical manner.

Diese Aufgabe wird verfahrensgemäß durch die Merkmale des Anspruchs 1 und bezüglich der zum Ausführen des Verfahrens dienenden Anordnung durch die Merkmale des Anspruchs 7 gelöst. Bei Betrieb wird der gerade Strömungskanalabschnitt von der Flüssigkeit unter vollständiger Ausfüllung durchströmt. Die ringförmigen Schultern an den Querschnittserweiterungsstellen erstrecken sich radial und sind im Vergleich zum Strömungsquerschnitt sehr schmal. Das gleiche gilt für die Bohrungen, die jeweils kranzförmig unmittelbar hinter jeder Schulter in der Wandung des Strömungskanals angeordnet sind. Diese Bohrungen stellen freie Strömungsverbindungen zwischen dem Strömungskanal und einer den Kanal umgebenden äußeren Gasverteilungskammer dar, in der das CO2-Gas unter einem vorbestimmten Druck gehalten ist. Dieser Druck ist gleich oder kleiner als der mittlere statische Druck in der Wasserströmung des Strömungskanals. Aus praktischen Gründen kann es zweckmäßig sein, den C02-Gasdruck gleich dem Förderdruck in dem zur Verteilung des imprägnierten Gießwassers dienenden Verteilungssystem einzustellen.This object is achieved according to the method by the features of claim 1 and with respect to the arrangement used to carry out the method by the features of claim 7. During operation the liquid flows through the straight flow channel section with complete filling. The annular shoulders at the cross-sectional widening points extend radially and are very narrow compared to the flow cross-section. The same applies to the bores, which are each arranged in a ring shape directly behind each shoulder in the wall of the flow channel. These holes represent free flow connections between the flow channel and an outer gas distribution chamber surrounding the channel, in which the CO 2 gas is kept under a predetermined pressure. This pressure is equal to or less than the mean static pressure in the water flow of the flow channel. For practical reasons, it may be appropriate to set the C0 2 gas pressure equal to the delivery pressure in the distribution system used to distribute the impregnated irrigation water.

In der Ebene jeder Erweiterungsschulter wird der Gesamtströmungsquerschnitt größer und damit die Strömungsgeschwindigkeit der Flüssigkeitsströmung in dem Strömungskanal kleiner. Die der Innenwandung des Strömungskanals nahen Strömungsschichten werden jedoch im Bereich der Ebene der Querschnittserweiterung gezwungen, einen größeren Weg als die übrigen Flüssigkeitsschichten zurückzulegen, da sie über die Schulter strömen müssen. Die Geschwindigkeit dieser außenliegenden Flüssigkeitsschichten wird daher beim Überströmen einer solchen Ringschulter momentan größer, so daß sich im Bereich unmittelbar unter den Schultern auch der Druck momentan erniedrigt. Diese Druckabsenkung ist eng begrenzt auf die Bereiche unterhalb der Schultern. Dieser momentane Druckabfall wirkt im Bereich der unmittelbar hinter der Schulter angeordneten Bohrungen so, daß durch die Bohrungen CO2-Gas in den Strömungskanal zwangsweise überführt wird und sich dort zunächst vornehmlich mit den außenliegenden Flüssigkeitsschichten vermischt. Durch die unmittelbar anschließenden und mit zunehmendem Abstand von der Schulterebene fortschreitenden Ausgleichsvorgänge in der Gesamtströmung bezüglich Geschwindigkeit und Druck erfolgt in der Gesamtströmung eine rasche Homogenisierung des C02-Gehaltes.In the plane of each extension shoulder, the total flow cross section becomes larger and thus the flow velocity of the liquid flow in the flow channel becomes smaller. However, the flow layers near the inner wall of the flow channel are forced in the area of the cross-sectional expansion level to travel a larger distance than the other liquid layers, since they have to flow over the shoulder. The speed of these external layers of liquid is therefore currently greater when such an annular shoulder flows over them, so that the pressure in the area immediately below the shoulders also drops momentarily. This drop in pressure is narrowly limited to the areas below the shoulders. This instantaneous pressure drop acts in the area of the bores arranged directly behind the shoulder in such a way that CO 2 gas is forcibly transferred into the flow channel through the bores and initially mixes there primarily with the external liquid layers. Due to the immediately following and progressing with increasing distance from the shoulder plane in the overall flow with regard to speed and pressure, the C0 2 content is rapidly homogenized in the overall flow.

Da hierbei die Imprägnierung des Wassers mit C02 im Gegensatz zu den bekannten Verfahren durch eine momentane Erzeugung eines Unterdruckes in partiellen Bereichen der Wasserströmung erfolgt ergibt sich eine sehr feine, d.h. von größeren Bläschen freie Imprägnierung der Flüssigkeit. Bei dieser ist das C02-Gas in der Flüssigkeit in so kleinen Teilchen und so feinstverteilt, daß die bei der Entspannung der Flüssigkeit während des Ausbringens, z. B. beim Versprühen oder Verregnen, auftretenden Gasverluste sehr gering sind. Damit läßt sich die mit C02-Gas imprägnierte Flüssigkeit auch in großen Mengen, z. B. in Gartenbaubetrieben oder in der Landwirtschaft wirtschaftlich einsetzen. Auch läßt sich der den Pflanzen oder dem Boden zugeführte Anteil an CO2-Gas und H2C03 wesentlich genauer vorherbestimmen, da Beeinträchtigungen durch unkontrollierbare Gasverluste während des Ausbringens nicht im nennenswerten Maße zu befürchten sind.Since the water is impregnated with C0 2, in contrast to the known methods, by momentarily generating a negative pressure in partial areas of the water flow, the liquid is impregnated very fine, ie free of larger bubbles. In this, the CO 2 gas in the liquid is so small and so finely divided that the expansion of the liquid during the application, e.g. B. when spraying or raining, gas losses occurring are very low. So that the impregnated with C0 2 gas liquid even in large quantities, for. B. economically in horticultural companies or in agriculture. The proportion of CO 2 gas and H 2 CO 3 supplied to the plants or the soil can also be determined much more precisely, since there is no significant risk of impairments due to uncontrollable gas losses during the application.

Die auf diese Weise imprägnierte Flüssigkeit ist weitgehend frei von störenden Bläschen, so daß sie auch durch kapillare Ausbringungssysteme zuverlässig und störungsfrei ausgebracht werden kann.The liquid impregnated in this way is largely free of disruptive bubbles, so that it can be applied reliably and without interference even by capillary delivery systems.

Auch wenn mehrere, in Strömungsrichtung hintereinanderliegende schulterartige Erweiterungen vorgesehen sind, ist somit die Gesamterweiterung des Querschnittes in der Imprägnierungszone klein, so daß sich die Geschwindigkeit und der Druck in der Strömung vor der Imprägnierungszone und hinter der Imprägnierungszone nur relativ geringfügig unterscheiden.Even if several shoulder-like extensions in the flow direction are provided, the overall expansion of the cross section in the impregnation zone is small, so that the speed and the pressure in the flow in front of the impregnation zone and behind the impregnation zone differ only slightly.

Die Unteransprüche geben vorteilhafte Weiterbildungen des neuen Verfahrens und der neuen Anordnung wieder.The subclaims represent advantageous developments of the new method and the new arrangement.

Unter "Gießwasser" wird hier normales Wasser oder mit Düngesalzen oder dgl., z. B. Pestiziden, angereichertes Wasser verstanden. Unter "normalem" CO2-Aufnahmevermögen wird das Aufnahmevermögen von normalem, also nicht chemisch reinem Wasser verstanden.Under "irrigation water" is normal water or with fertilizer salts or the like, z. B. understood pesticides, enriched water. “Normal” CO 2 absorption capacity is understood to mean the absorption capacity of normal, ie not chemically pure, water.

Während das neue Verfahren und die neue Anordnung in erster Linie im Zusammenhang mit der Aufbereitung von Gießflüssigkeit beschrieben sind, ist dem Fachmann ersichtlich, daß sie sich mit besonderem Vorteil auch bei der Behandlung anderer Flüssigkeiten mit anderen Gasen zu anderen Zwecken einsetzen lassen.While the new method and the new arrangement are primarily described in connection with the treatment of casting liquid, the person skilled in the art can see that they can also be used with particular advantage in the treatment of other liquids with other gases for other purposes.

Das neue Verfahren ermöglicht eine Aufbereitung von Gießwasser in einer Weise, die den Verhältnissen nahekommt, wie sie in besonders optimaler Form in der Natur in den wurzelnahen Bereichen des Erdbodens auftreten. Dort in der Natur wird der erforderliche Unterdruck durch das Wurzelwerk als solchem erzeugt und das C02 teilweise vom Wurzelwerk selbst abgegeben bzw. als bodenbürtiges C02 zur Verfügung gestellt, wobei das C02 in Gasform bei etwa Atmosphärendruck und atmosphärer Temperatur vorliegt.The new process enables irrigation water to be treated in a way that approximates the conditions that occur in a particularly optimal form in nature in the areas of the earth close to the roots. There in nature, the required negative pressure is generated by the root system as such and the C0 2 is partially emitted by the root system itself or made available as soil-based C0 2 , the C0 2 in gaseous form at approximately atmospheric pressure and atmosphere Temperature is present.

Bei großen Strömungsquerschnitten kann es sinnvoll sein, die Flüssigkeitsströmung als Ringströmung durch die Imprägnierungszone zu leiten, um so eine bessere Durchmischung der Flüssigkeit mit den aufgenommenen C02-Gasmengen zu gewährleisten.In the case of large flow cross-sections, it can be useful to direct the liquid flow as a ring flow through the impregnation zone in order to ensure better mixing of the liquid with the CO 2 gas quantities absorbed.

Eine weitere, die Feinstimprägnierung wesentlich unterstützende und die homogene Durchmischung der Flüssigkeit fördernde Maßnahme besteht darin, daß den Gasimprägnierungszonen weitere Strömungskanalabschnitte mit schulterartigen Erweiterungen und darunterliegenden Bohrungen nachgeschaltet sind, die zur Rückmischung von bereits vollständig imprägnierter Flüssigkeit mit der den Strömungskanal durchströmenden Flüssigkeit dienen.A further measure, which substantially supports the fine impregnation and promotes the homogeneous mixing of the liquid, is that the gas impregnation zones are followed by further flow channel sections with shoulder-like extensions and underlying bores, which are used for the back-mixing of already completely impregnated liquid with the liquid flowing through the flow channel.

Die neue Anordnung kann verwendet werden um die imprägnierte Flüssigkeit direkt einer Entnahmestelle oder Verbraucherstelle zuzuführen, so daß eine direkte Abgabe der imprägnierten Flüssigkeit erfolgen kann. Bei Verbraucherstellen mit unterschiedlichen Abnahmemengen ist es jedoch vorteilhaft, wenn man die neue Anordnung kombiniert mit einem Vorrats-Druckbehälter, in dem ein Vorrat an feinstimprägnierter Flüssigkeit bereitgehalten wird, wobei der Zulauf der Flüssigkeit durch die Anordnung gemäß der Erfindung erfolgt und der Ablauf aus dem Flüssigkeitsvorrat demgegenüber abgeschirmt oder versetzt so erfolgt, daß etwaig vorhandene relativ größere Bläschen ausreichend Zeit haben, in dem Flüssigkeitsvorrat nach oben in den Gasraum aufzusteigen.The new arrangement can be used to feed the impregnated liquid directly to a tapping point or consumer point so that the impregnated liquid can be dispensed directly. At consumer points with different purchase quantities, however, it is advantageous if the new arrangement is combined with a supply pressure container in which a supply of finely impregnated liquid is kept ready, the inflow of the liquid taking place through the arrangement according to the invention and the outflow from the liquid supply on the other hand, it is shielded or offset so that any relatively large bubbles present have sufficient time to rise upwards into the gas space in the liquid supply.

Die Erfindung wird nachfolgend anhand einer schematischen Zeichnung an einem Ausführungsbeispiel näher erläutert.The invention is explained below with reference to a schematic drawing of an embodiment.

In der einzigen Figur ist ein Druckbehälter mit der Anordnung gemäß der Erfindung im senkrechten Schnitt dargestellt.In the single figure, a pressure vessel with the arrangement according to the invention is shown in vertical section.

Im gezeigten Beispiel besteht der Druckbehälter 1 aus einem Druckmantel 2 und Deckel 3 und Boden 4. Durch die dargestellten Fühler wird in dem Druckbehälter eine Flüssigkeitsmenge 8 zwischen dem minimalen Flüssigkeitsstand 26 und dem maximalen Flüssigkeitsstand 27 aufrecht erhalten. Über der Flüssigkeit verbleibt in jedem Fall ein Kopfraum 7, der durch Leitung 5 mit dem Kohlendioxydgas, unter einem vorbestimmten Druck von z. B. bis zu 6 bar gefüllt gehalten wird. Die Zufuhr des Gases erfolgt z. B. über einen Druckfühler resp. einen Druckminderer. Im Boden des Behälters 4 ist ein Ablauf 6 für die imprägnierte Flüssigkeit aus dem Flüssigkeitsvorrat 8 vorgesehen. In horizontaler Richtung versetzt gegenüber dem Ablauf 6 ist ein Imprägnierungssystem 9 angeordnet, das in den Deckel 3 eingebaut ist. Das System 9 weist einen zentralen Durchströmkanal auf, der eingangsseitig über einen Stutzen 10 mit einer Druckwasserquelle verbunden ist. Das System 9 kann z. B. mittels Flansch 11 abgedichtet in den Deckel 3 eingebaut sein. Das Imprägnierungssystem 9 weist im dargestellten Beispiel 3 in Strömungsrichtung hintereinander liegende Imprägnierungszonen 12a, 12b, 12c auf. Vor jeder Imprägnierungszone ist die lichte Weite des Flüssigkeitströmungskanals stufenartig erweitert, wie bei 13a, 13b, 13c gezeigt ist. Dadurch ändert sich die Strömungsgeschwindigkeit der Flüssigkeit unmittelbar bei Eintritt in eine Imprägnierungszone schlagartig. Unmittelbar hinter der Durchmessererweiterung liegen brausartig verteilte Bohrungen 14a, 14b, 14c, die in den Gaskopfraum 7 münden. Bei Betrieb wird somit das Gas aus dem Gaskopfraum 7 über die Bohrungen 14 angesaugt, so daß sich Gas und Flüssigkeit mischen. Da das eintretende Gas vornehmlich im Bereich der außen liegenden Flüssigkeitsschichten verbleibt, sorgt die abrupte Durchmessererweiterung und die dadurch bedingten abrupten Änderungen der Strömungsverhältnisse bei Eintritt der Flüssigkeit in die nächste lmprägnierungszone für eine innige Homogenisierung aller Schichten der Flüssigkeitsströmung, wodurch sich auch eine Verbesserung der erneuten Gasaufnahme oder Nachimprägnierung in der nachfolgenden Stufe ergibt. Es sind mindestens zwei solche Imprägnierungszonen 12a, 12b notwendig, um die erforderliche Feinstimprägnierung zu erhalten.In the example shown, the pressure vessel 1 consists of a pressure jacket 2 and cover 3 and bottom 4. A liquid quantity 8 between the minimum fluid level 26 and the maximum fluid level 27 is maintained in the pressure vessel by the sensors shown. In any case, a head space 7 remains above the liquid, which through line 5 with the carbon dioxide gas, under a predetermined pressure of z. B. is kept filled up to 6 bar. The gas is supplied, for. B. via a pressure sensor. a pressure reducer. A drain 6 for the impregnated liquid from the liquid supply 8 is provided in the bottom of the container 4. An impregnation system 9, which is built into the cover 3, is arranged offset in the horizontal direction with respect to the outlet 6. The system 9 has a central throughflow channel, which is connected on the inlet side to a source of pressurized water via a connector 10. The system 9 can e.g. B. sealed by means of flange 11 in the cover 3. In the example 3 shown, the impregnation system 9 has impregnation zones 12a, 12b, 12c lying one behind the other in the flow direction. Before each impregnation zone, the clear width of the liquid flow channel is widened in steps, as shown at 13a, 13b, 13c. As a result, the flow velocity of the liquid changes suddenly as it enters an impregnation zone. Immediately behind the diameter widening are bores 14a, 14b, 14c which are distributed in a shower-like manner and which open into the gas head space 7. In operation, the gas is thus sucked out of the gas head space 7 through the bores 14, so that gas and liquid mix. Since the entering gas remains primarily in the area of the outer layers of liquid, the abrupt widening of the diameter and the resulting abrupt changes in the flow conditions as the liquid enters the next impregnation zone ensure an intimate homogenization of all layers of the liquid flow, which also improves the renewed gas absorption or subsequent impregnation in the subsequent stage. At least two such impregnation zones 12a, 12b are necessary in order to obtain the required fine impregnation.

Um weiterhin die Ausschaltung von relativ größeren Gasbläschen in der Flüssigkeit zu fördern, ist dem Imprägnierungssystem 9 ein weiteres Kanalabschnitt 15 achsial nachgeschaltet. Im dargestellten Beispiel weist dieser zwei Rückmischungszonen 16a, 16b auf. Auch hier wird zur Förderung der Durchmischung die lichte Weite des Flüssigkeitsströmungskanals vor Eintritt in einer Rückmischungsbereich abrupt verändert. Diese Rückmischungsbereiche 16a, 16b dienen zur Förderung der Durchmischung und Homogenisierung und zur Verringerung des Anteiles größerer Bläschen. Zu diesem Zweck weist das System 15 einen äußeren, zum Gasraum 7 abgeschlossenen Mantel 18 auf, dessen unterer offener Rand unterhalb des tiefstliegenden Flüssigkeitsspiegels 26 in der Flüssigkeitsmenge 8 endet. Durch das offene Ende 21 des Mantels und durch eine stromabwärts liegende Austrittsöffnung 20 des Flüssigkeitsströmungskanals kann unter der Saugwirkung der Bereiche 16a, 16b bereits fertig imprägnierte Flüssigkeit angesaugt und der Flüssigkeitsströmung in dem System 15 zugemischt werden. Der Austritt 25 des Systems liegt ebenfalls unterhalb des tiefsten Flüssigkeitsspiegels 26, so daß die austretende Flüssigkeit keinerlei Gas in größeren Blasen aus dem Kopfraum 7 mitreißen kann.In order to further promote the elimination of relatively larger gas bubbles in the liquid, the impregnation system 9 is followed by a further channel section 15 axially. In the example shown, this has two backmixing zones 16a, 16b. Here, too, the clear width of the liquid flow channel is changed abruptly before entering a backmixing area to promote mixing. These backmixing areas 16a, 16b serve to promote mixing and homogenization and to reduce the proportion of larger bubbles. For this purpose, the system 15 has an outer jacket 18, closed off from the gas space 7, the lower open edge of which ends below the lowest liquid level 26 in the amount of liquid 8. Through the open end 21 of the jacket and through a downstream outlet opening 20 of the liquid flow channel, already impregnated liquid can be sucked in under the suction effect of the regions 16a, 16b and admixed to the liquid flow in the system 15. The outlet 25 of the system is also below the deepest liquid level 26, so that the escaping liquid cannot entrain any gas in larger bubbles from the head space 7.

Durch die seitliche Versetzung des Austritts 25 des Systems 15 gegenüber dem Auslaß 6 des Flüssigkeitsvorrates wird gewährleistet, daß etwaige größere Bläschen in der Flüssigkeit Zeit genug haben, durch den Flüssigkeitsvorrat 8 in den Kopfraum 7 aufzusteigen, so daß sie nicht durch die Flüssigkeitsentnahme und damit durch die Leitung 6 mitgerissen werden können.The lateral displacement of the outlet 25 of the system 15 relative to the outlet 6 of the liquid supply ensures that any larger bubbles in the liquid have enough time to rise through the liquid supply 8 into the head space 7, so that they do not pass through the liquid withdrawal and thus through the line 6 can be carried away.

Wird Flüssigkeit durch den Einlaß 10 eingeführt, nimmt die Flüssigkeit in der beschriebenen Weise Gas aus dem Kopfraum 7 auf. Der Flüssigkeitsspiegel 26 steigt durch die zugeführte Flüssigkeit an. Der Kopfraum 7 verkleinert sich volumenmäßig. Ist diese Volumenverkleinerung größer als die Gasaufnahme der Flüssigkeit, steigt gleichzeitig der Druck im Kopfraum 7 an, so daß die Gaszufuhr über die Zufuhrleitung 5 abgeschaltet wird. Ist die Gasaufnahme durch die Flüssigkeit größer, so wird während der lmprägnierung weiterhin Gas in den Kopfraum 7 nachgeführt, so daß in diesem Raum der Druck aufrechterhalten bleibt. Der Druck im Gasraum kann beispielsweise auf dem Leitungsdruck des Gießwassernetzes, z. B. auf einem Druck bis zu 6 bar oder auch darüber gehalten werden.If liquid is introduced through the inlet 10, the liquid takes up gas from the head space 7 in the manner described. The liquid keitspiegel 26 rises due to the liquid supplied. The head space 7 is reduced in volume. If this reduction in volume is greater than the gas absorption of the liquid, the pressure in the head space 7 increases at the same time, so that the gas supply via the supply line 5 is switched off. If the gas absorption by the liquid is greater, gas continues to be fed into the head space 7 during the impregnation, so that the pressure is maintained in this space. The pressure in the gas space can, for example, on the line pressure of the irrigation network, z. B. at a pressure up to 6 bar or above.

Werden die Systeme 9 und 15 zur Einzelabgabe oder direkten Abgabe von imprägnierter Flüssigkeit eingesetzt, entfällt der Druckbehälter 1. Das Imprägnierungssystem 9 wird von einem Mantel umgeben, dessen Ringraum mit der Druckgasquelle in Verbindung steht, während der Mantel 18 des Rückmischungssystems 15 am unteren Ende, wie bei 22 angedeutet ist, geschlossen bleibt. In diesem Fall setzt sich der Durchströmkanal für die Flüssigkeit, wie bei 6a angedeutet ist, fort, und zwar bis zur Entnahmestelle.If the systems 9 and 15 are used for the single delivery or direct delivery of impregnated liquid, the pressure vessel 1 is omitted. The impregnation system 9 is surrounded by a jacket, the annular space of which is connected to the pressurized gas source, while the jacket 18 of the backmixing system 15 at the lower end, as indicated at 22, remains closed. In this case, the flow channel for the liquid continues, as indicated at 6a, to the point of withdrawal.

Die Differenz zwischen kleinstem und größtem Flüssigkeitsstand 26 bzw. 27 wird so bemessen, daß bei Einzelentnahme aus dem Druckbehälter 1 die Nachfuhr von Flüssigkeit durch die Systeme 9 und 15 nicht zu häufig erfolgt, so daß eine die Flüssigkeit dem Zulauf 10 zuführende Pumpe nicht ständig ein- und ausgeschaltet zu werden braucht.The difference between the smallest and the largest liquid level 26 or 27 is such that when liquid is removed individually from the pressure vessel 1, the supply of liquid through the systems 9 and 15 is not too frequent, so that a pump supplying the liquid to the inlet 10 is not constantly on - and needs to be switched off.

Bei Versorgung von großen Entnahmestellen wird der Durchströmquerschnitt für die Systeme 9 und 15 wesentlich vergrößert. Um dennoch eine innige homogene Durchmischung über die Querschnittsfläche der Flüssigkeitsströmung zu gewährleisten, ist es zweckmäßig, in die Systeme 9 und 15 einen Verdrängungskörper 30 einzusetzen, der die Flüssigkeit in Ringströmung durch das System führt. Wie dargestellt, könnte der Verdrängungskörper 30 allmählich oder stufenweise im Durchmesser vergrößert oder aber auch als in Strömungsrichtung glatter Zylinderkörper ausgebildet sein.When supplying large tapping points, the flow cross-section for systems 9 and 15 is significantly increased. In order nevertheless to ensure an intimate, homogeneous mixing across the cross-sectional area of the liquid flow, it is expedient to use a displacement body 30 in the systems 9 and 15, which displaces the liquid in an annular flow through the system. As shown, the displacement body 30 could be gradually or stepwise enlarged in diameter or could also be designed as a smooth cylinder body in the direction of flow.

Die Querschnittsform und Querschnittsänderung des Körpers 30 richtet sich nach der durchzusetzenden Volumenmenge und muß sicherstellen, daß die gewünschte abrupte Geschwindigkeitsänderung der Flüssigkeit von Imprägnierungszone zu Imprägnierungszone erreicht wird.The cross-sectional shape and cross-sectional change of the body 30 depends on the volume to be enforced and must ensure that the desired abrupt change in speed of the liquid is achieved from the impregnation zone to the impregnation zone.

Die beschriebene Anordnung arbeitet zuverlässig sowohl für die Direktabgabe als auch für die dargestellte indirekte Abgabe von imprägnierter Flüssigkeit und zwar in einem Druckbereich von etwa 1 bar aufwärts. Die Anordnung ist daher besonders geeignet für den Einsatz in Gartenbaubetrieben, der Landwirtschaft und Forstwirtschaft da sie für alle dort auftretenden Druckverhältnisse infrage kommt, da wegen des erniedrigten Imprägnierungsdruckes jede in der Praxis nachteilige Kompression des Gases im Wasser vermieden wird. Im gewerblichen Bereich ist der C02-Gasdruck gleich dem Leistungs-Förderdruck.The arrangement described works reliably both for direct dispensing and for the depicted indirect dispensing of impregnated liquid, namely in a pressure range of approximately 1 bar upwards. The arrangement is therefore particularly suitable for use in horticultural businesses, agriculture and forestry since it can be used for all pressure conditions which occur there, since any compression of the gas in water which is disadvantageous in practice is avoided because of the reduced impregnation pressure. In the commercial sector, the C0 2 gas pressure is the same as the output pressure.

Claims (12)

1. Process for the preparation of watering water by means of enrichment with CO2 and H2C03, in which C02 gas which is constantly under pressure is introduced into the water which is flowing through a pipe which has a pressure and temperature approximately identical to those in a normal water supply pipe, characterized in that the watering water is led through a straight flow-channel section forming an impregnation zone and in the process the pressure of the watering water is, at at least two partial areas which are at a distance in the flow direction and in each case at the circumference of the flow, momentarily reduced to below the pressure of the C02 gas by means of an abrupt change in the flow speed, the external liquid layers of the watering-water flow in the impregnation zone being led in each case, at the areas of abrupt pressure reduction, over thin, shoulder-like, cross- sectional widenings of the flow channel section, and in that the watering-water flow is, in each case in the areas of momentarily reduced pressure, ultra-finely impregnated with the C02 gas, these liquid layers being in each case maintained, immediately after each shoulder viewed in the direction of flow, in a free flow connection with the C02 gas supply chamber via a plurality of bores corresponding to the shoulder width.
2. Process in accordance with Claim 1, characterized in that the C02 gas is maintained at a pre-determined pressure in a supply chamber near to the impregnation zone, and the outer liquid layers of the watering-water flow in the areas where pressure is momentarily reduced under the gas pressure in the supply chamber are brought into a direct flow connection with the C02 gas in the supply chamber.
3. Process in accordance with Claim 1 or 2, characterized in that at least one further area is provided at a distance after the last of the C02 impregnation areas, in which further area the pressure is momentarily reduced by means of an abrupt change in the flow speed in the circumferential area of the watering-water flow, and the watering-water flow which is ultra-finely impregnated with C02 gas is, for the purposes of mixing back in, brought into a direct flow connection with a partial stream of the watering water, which partial stream branches off at the end of the impregnation zone.
4. Process in accordance with one of Claims 1 to 3, characterized in that the watering-water flow leaving the impregnation zone is led, below the liquid level, directly into a watering-water supply which is ultra-finely impregnated with C02 and is within a pressure container, in fact is laterally displaced to a container outlet leading to the withdrawal places, in that a pre-determined delivery pressure is maintained over the liquid level, in a C02 gas head space, and in that the C02 in the gas head space is kept in a constant flow connection with the circumferential areas, which in each case have momentarily reduced pressure, of the watering-water flow in the impregnation zone.
5. Process in accordance with one of Claims 1 to 4, characterized in that the impregnation-zone watering-water is fed directly, with a pressure between 1 bar and 6 bar, from a supply pipe or from a pressure pump.
6. Process in accordance with one of Claims 1 to 5, characterized in that the watering water is led through the impregnation zone in the form of a cylindrical annular-flow.
7. Arrangement to carry out the process in accordance with Claim 1 with an elongated, straight, flow channel section which at one end is joined to a pressure source for watering water -and at its other end is connected to a watering system or a storage container and which has an impregnation zone with circumferential connection to a C02 pressure gas source, characterized in that the flow channel section (13) is widened in the cross-section, in each case by thin annular shoulders (13a - 13c), in at least two areas which are arranged at a distance in the flow direction, in that in the flow direction, in each case directly after each shoulder, a ring of narrow bores (14a - 14c) corresponding to the annular shoulder freely penetrate the wall of the flow channel section (13), which bores open outwards into a CO2 pressure gas chamber (7), in that a device is provided in order to maintain the pressure in the CO2 pressure gas' chamber (7) at a pre-determined value, and in that the feed pressure of the watering water and the dimension of the annular shoulders are calculated in such a manner that by means of an abrupt change in speed of the external watering-water flow layers in the area of the annular shoulders, the pressure of the watering water is momentarily lowered below the pressure in the C02 pressure gas chamber (7).
8. Arrangement in accordance with Claim 7, characterized in that the flow channel section (13) has at least one further area (16a, 16b) which is subsequently added at a distance to the other areas (12a - 12c), which additional area has in each case an annular, shoulder-like cross-sectional widening (17a, 17b) and a bore ring (22a, 22b) which is associated with the said widening, these bores opening into a distribution channel (19) which, for the purposes of the branching off of part of the watering water which is already ultra-finely impregnated with C02 is, near the outlet end (25) of the flow channel section, connected with the watering-water flow.
9. Arrangement in accordance with Claim 7 or 8, characterized in that the outlet end (25) of the flow channel section (13) opens out below the liquid level (26) of a pressure container (3) which contains an impregnated watering-water supply, the outlet (6) of which pressure container is clearly arranged laterally displaced in relation to the flow channel section (13).
10. Arrangement in accordance with Claim 9, characterized in that a device to maintain a C02 gas atmosphere at a pre-determined pressure is associated, above the liquid level, with the head space (7) of the pressure container.
11. Arrangement in accordance with Claim 10, characterized in that the bores (14a - 14c) in the C02 impregnation areas open out freely into the C02 gas head space (7) of the pressure container (3), directly below the annular shoulders (13a - 13c) of the flow channel section (13).
12. Arrangement in accordance with one of Claims 8 to 11, characterized in that an elongated displacement body is concentrically arranged in the flow channel section (13).
EP84101155A 1983-08-23 1984-02-06 Method and apparatus for the treatment of pouring water during the pouring by enrichment with co2 and h2co3 Expired EP0142595B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84101155T ATE46278T1 (en) 1983-08-23 1984-02-06 METHOD AND DEVICE FOR THE TREATMENT OF IRRIGATION WATER DURING THE IRRIGATION PROCESS FOR ENCOURAGEMENT WITH CO2 AND H2CO3.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19833330375 DE3330375A1 (en) 1983-08-23 1983-08-23 METHOD AND ARRANGEMENT FOR IMPREGNATING A LIQUID WITH A GAS BY INJECTOR, IN PART. FOR IMPREGNATING WATER WATER WITH CO (DOWN ARROW) 2 (DOWN ARROW) FOR GARDENING COMPANIES
DE3330375 1983-08-23

Publications (3)

Publication Number Publication Date
EP0142595A2 EP0142595A2 (en) 1985-05-29
EP0142595A3 EP0142595A3 (en) 1987-07-15
EP0142595B1 true EP0142595B1 (en) 1989-09-13

Family

ID=6207225

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84101155A Expired EP0142595B1 (en) 1983-08-23 1984-02-06 Method and apparatus for the treatment of pouring water during the pouring by enrichment with co2 and h2co3

Country Status (6)

Country Link
EP (1) EP0142595B1 (en)
JP (1) JPS6128427A (en)
AT (1) ATE46278T1 (en)
DE (2) DE3330375A1 (en)
IN (1) IN160730B (en)
ZA (1) ZA846545B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3417546A1 (en) * 1984-05-11 1985-11-14 Technica Entwicklungsgesellschaft mbH & Co KG, 2418 Ratzeburg Process and arrangement for reducing the proportion of carbon dioxide in exhaust gases
DE3424974A1 (en) * 1984-05-21 1985-11-21 Technica Entwicklungsgesellschaft mbH & Co KG, 2418 Ratzeburg Process for improving the efficiency in the purification of flue gas, for example by the "scrubber principle"
DE3432440A1 (en) * 1984-09-04 1986-03-13 Technica Entwicklungsgesellschaft mbH & Co KG, 2418 Ratzeburg Arrangement for treating irrigation water enriched with CO2 and H2CO3
DE3436660A1 (en) * 1984-10-05 1986-04-10 Technica Entwicklungsgesellschaft mbH & Co KG, 2418 Ratzeburg METHOD AND DEVICE FOR THE FURTHER TREATMENT OF WATER INTENDED FOR DRINKING AND USE
DE3720621C1 (en) * 1987-06-23 1988-11-24 Technica Entwicklungsgmbh & Co Process for root fertilization of crops
DE9205523U1 (en) * 1992-04-23 1992-08-20 Sonnenrein, Uwe, 4795 Delbrück Device for treating liquids of different densities or gases and liquids
AT501976B1 (en) * 2005-05-25 2007-03-15 Andritz Ag Maschf DEVICE FOR FLOTING A LIQUID
US7671294B2 (en) * 2006-11-28 2010-03-02 Vladimir Belashchenko Plasma apparatus and system
JP5792533B2 (en) * 2011-07-11 2015-10-14 岩井機械工業株式会社 Gas dissolving apparatus and gas dissolving method
JP5884995B2 (en) * 2013-12-02 2016-03-15 Jfeエンジニアリング株式会社 Condensation and mixing apparatus and evaporative gas reliquefaction apparatus having the same
JP5945974B2 (en) * 2013-12-02 2016-07-05 Jfeエンジニアリング株式会社 Condensation and mixing apparatus and evaporative gas reliquefaction apparatus having the same
WO2016194056A1 (en) * 2015-05-29 2016-12-08 Jfeエンジニアリング株式会社 Condensing and mixing device and evaporated gas re-liquefaction device having same
JP6090616B2 (en) * 2016-05-30 2017-03-08 Jfeエンジニアリング株式会社 Condensation and mixing apparatus and evaporative gas reliquefaction apparatus having the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2899971A (en) * 1959-08-18 Feeding devices
DE866341C (en) * 1950-03-04 1953-02-09 Rohrbau Mannesmann G M B H Process for fertilizing crops with carbonic acid
FR1171059A (en) * 1957-04-10 1959-01-22 Soc Fr Regulateurs Arca Apparatus for mixing fluids by injecting one of the fluids into a pipe through which another fluid passes
DE3117797A1 (en) * 1981-05-06 1982-11-25 Roland 4630 Bochum Hagemann Apparatus for carbon dioxide enrichment of aquarium water

Also Published As

Publication number Publication date
ZA846545B (en) 1985-04-24
EP0142595A3 (en) 1987-07-15
DE3330375A1 (en) 1985-03-07
ATE46278T1 (en) 1989-09-15
DE3479710D1 (en) 1989-10-19
EP0142595A2 (en) 1985-05-29
JPS647813B2 (en) 1989-02-10
IN160730B (en) 1987-08-01
JPS6128427A (en) 1986-02-08

Similar Documents

Publication Publication Date Title
EP0142595B1 (en) Method and apparatus for the treatment of pouring water during the pouring by enrichment with co2 and h2co3
DE829071C (en) Method and device for distributing a vapor-liquid mixture
DE3728557A1 (en) Process for the distribution of ammonia in a gas stream and apparatus for carrying out the process
DE69113436T2 (en) Hydroponic system.
DE2934123A1 (en) IRRIGATION HEAD
DE4016727C2 (en)
DE19611093C2 (en) Method and device for enriching a liquid with a gas
DE69304318T2 (en) METHOD AND DEVICE FOR SELECTIVELY REDUCING THE NITROGEN OXIDE CONTENT OF EXHAUST GASES FROM AN OVEN PLANT
DE3720621C1 (en) Process for root fertilization of crops
DE9014034U1 (en) Mobile device for producing a solution consisting of water and at least one liquid active substance, particularly for spraying
EP0155683B1 (en) Method and device for the preparation of liquids for fertilizer pouring of plants for household or hobby gardeners
EP0176694B1 (en) Method and device for the subsequent preparation of drinking water and water for other usage
DE1519700A1 (en) Method and device for establishing contact between liquids and gases
DE3432440C2 (en)
EP0682979A1 (en) Device for adding carbon dioxide to tap water
DE102005002392A1 (en) Mixing and spraying method e.g. for treatment agents and for rapid generation of persistent aerosol, involves bringing treatment mix into first mixer having air flow and distributed in transverse direction
EP0060486A1 (en) Process for producing solutions of hardly soluble substances and for substances tending to agglomerate, and apparatus for carrying out said process
DE10318298A1 (en) Fermentation tank for animal slurry or sewage sludge has overhead spray returning sludge from base zone to upper layer and promoting mixing
DE4401677C1 (en) Device for influencing liquid in the ground
EP3872053B1 (en) Extraction device and extraction method for fermentation medium
DE2103362A1 (en) Device for mixing different types of liquids
CH702076A2 (en) Injection device, useful for cleaning an aerator channel and an aerator in a sewage treatment plant, comprises a dosing lance with a lance outlet, which is connected with a detergent tank through a fluid line
DE3730552A1 (en) Method and device for watering with fertiliser in homes, businesses or the like
DE886969C (en) Distribution device for agricultural distribution machines
DE2440153A1 (en) Steaming textile fabrics using liq. atomiser - controlling dispersion rate by ejector by arranging liq. supply tube coaxially downstream of ejector throat

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

ITCL It: translation for ep claims filed

Representative=s name: DR. ING. A. RACHELI & C.

EL Fr: translation of claims filed
TCNL Nl: translation of patent claims filed
17P Request for examination filed

Effective date: 19851113

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19880624

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 46278

Country of ref document: AT

Date of ref document: 19890915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3479710

Country of ref document: DE

Date of ref document: 19891019

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed

Owner name: DR. ING. A. RACHELI & C.

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19900207

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19900228

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910218

Year of fee payment: 8

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19910228

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19920206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920207

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930228

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930416

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930420

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930422

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930429

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940228

Ref country code: CH

Effective date: 19940228

Ref country code: BE

Effective date: 19940228

BERE Be: lapsed

Owner name: TECHNICA ENTWICKLUNGSG.- M.B.H. & CO. K.G.

Effective date: 19940228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940206

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19941026

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19941031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 84101155.4

Effective date: 19920904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19951101