JPS647381B2 - - Google Patents

Info

Publication number
JPS647381B2
JPS647381B2 JP16977481A JP16977481A JPS647381B2 JP S647381 B2 JPS647381 B2 JP S647381B2 JP 16977481 A JP16977481 A JP 16977481A JP 16977481 A JP16977481 A JP 16977481A JP S647381 B2 JPS647381 B2 JP S647381B2
Authority
JP
Japan
Prior art keywords
layer
photoreceptor
sete
substrate
uppermost
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16977481A
Other languages
Japanese (ja)
Other versions
JPS5870235A (en
Inventor
Kohei Kyota
Hiroo Ueda
Masao Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP16977481A priority Critical patent/JPS5870235A/en
Publication of JPS5870235A publication Critical patent/JPS5870235A/en
Publication of JPS647381B2 publication Critical patent/JPS647381B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/0433Photoconductive layers characterised by having two or more layers or characterised by their composite structure all layers being inorganic

Description

【発明の詳細な説明】 本発明はセレン(Se)層、セレンテルル
(SeTe)層、セレン層を順次積層してなる感光体
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a photoreceptor in which a selenium (Se) layer, a selenium telluride (SeTe) layer, and a selenium layer are sequentially laminated.

従来、半導体レーザプリンタなど長波長に高感
度な感光体として、アルミ(A)基体上に
Se/SeTe/Seを順次積層した感光体が提案され
ているが、この感光体を通常の電子写真プロセス
で繰返し使用すると、とくに長波長光で露光工程
を行うと感光体内部にキヤリヤが蓄積し、いわゆ
る光疲労により初期帯電能力が劣化する。
Conventionally, photoreceptors with high sensitivity to long wavelengths such as semiconductor laser printers have been manufactured on aluminum (A) substrates.
A photoreceptor in which Se/SeTe/Se are sequentially laminated has been proposed, but if this photoreceptor is repeatedly used in a normal electrophotographic process, carriers will accumulate inside the photoreceptor, especially if the exposure process is performed with long wavelength light. , the initial charging ability deteriorates due to so-called optical fatigue.

こうした内部電荷は暗状態(露光工程前)で帯
電電荷と結合するため印字のとき残像を生じ印字
濃度の低下をきたす。
These internal charges combine with charged charges in the dark state (before the exposure process), resulting in an afterimage during printing and a decrease in print density.

本発明の目的は半導体レーザのような長波長の
光を露光に用いた電子写真用感光体に供される
Se/SeTe/Se積層感光体通常のカールソンプロ
セスで安定に機能するように最上層のSe層の製
造方法を提供することにある。
The purpose of the present invention is to apply it to an electrophotographic photoreceptor that uses long wavelength light such as a semiconductor laser for exposure.
Se/SeTe/Se laminated photoreceptor An object of the present invention is to provide a method for producing the uppermost Se layer so that it can function stably in the normal Carlson process.

Se/SeTe/Se積層感光体の最上層のSeとして
要求される性質としては第1図に示すように、露
光源として半導体レーザを用いる場合つまり、長
波長光の場合、電子に対して輸送性を有するこ
と、また可視光である複写光の場合には正孔に対
して輸送性を有することである。Seは正孔輸送
性であることはこれまで知られ実際に正帯電で利
用されているが、半導体レーザ光と可視光である
複写光を併用する場合、電子輸送性にすることも
必要である。
As shown in Figure 1, the properties required for Se in the uppermost layer of a Se/SeTe/Se laminated photoconductor include transportability for electrons when a semiconductor laser is used as the exposure source, that is, in the case of long wavelength light. In addition, in the case of copying light, which is visible light, the material must have a transport property for holes. It has been known that Se has hole-transporting properties, and it has actually been used with positive charges, but when using semiconductor laser light and visible light (copying light) together, it is also necessary to make it electron-transporting. .

本発明では最上層のSeを蒸着技術で形成する
にあたつて、基板温度を低温に維持することによ
つて、非晶質膜の構造を変化させ、膜内のキヤリ
ヤである電子、正孔濃度分布を変化せしめ、より
電子伝導性にした。さらに膜内の電子トラツプは
蒸着速度を緩やかにすることによつて大巾に減少
させた。
In the present invention, when forming the uppermost Se layer by vapor deposition, the structure of the amorphous film is changed by maintaining the substrate temperature at a low temperature. The concentration distribution was changed to make it more electronically conductive. Furthermore, electron traps within the film were greatly reduced by slowing down the deposition rate.

実施例 アルミニウム基板上に基板温度65℃でSeを
50μmの厚さに蒸着し、その上にSeTeを2μm蒸着
した。このようにして基板上に得られた蒸着膜を
恒温槽で70℃30分のポストベーク処理した。こう
して得られたSe/SeTe2層感光体上にさらにSe
の2μm程度の層を基板温度45℃、蒸着送度
0.2μm/分によつて設けた。
Example: Se is deposited on an aluminum substrate at a substrate temperature of 65℃.
It was deposited to a thickness of 50 μm, and SeTe was deposited to a thickness of 2 μm on top of it. The vapor deposited film thus obtained on the substrate was post-baked at 70° C. for 30 minutes in a constant temperature bath. Further Se on the thus obtained Se/SeTe two-layer photoreceptor.
A layer of about 2 μm was deposited at a substrate temperature of 45°C and a deposition rate of
It was set at 0.2 μm/min.

比較試料として、基板温度を60℃に保持して前
述の上層Seを形成したものをつくつた。
As a comparison sample, a substrate temperature was maintained at 60° C. and the above-mentioned upper layer Se was formed.

このようにして得た感光体を第2図に示すよう
な、回転ドラムの表面に設けて感光体ドラムと
し、同図に示す通常のカールソンプロセスと呼ば
れる電子写真プロセスにより、感光体の特性の試
験を行つた。
The photoreceptor obtained in this way was mounted on the surface of a rotating drum as shown in Figure 2 to form a photoreceptor drum, and the characteristics of the photoreceptor were tested using the usual electrophotographic process called the Carlson process shown in the same figure. I went there.

まず感光体ドラムDの表面に帯電器T1で一様
帯電を施し、露光部Lで半導体レーザ又は可視光
である複写光により露光を行う。そして電位計K
で感光体ドラム表面の露光部および非露光部の電
位を測定した後、現像器Gで現像してトナー像を
得、転写部Cでこれを記録紙Pに転写する。
First, the surface of the photosensitive drum D is uniformly charged with a charger T1 , and exposed with a semiconductor laser or visible light in the exposure section L. and electrometer K
After measuring the potentials of the exposed and non-exposed areas on the surface of the photoreceptor drum, a developing device G develops the toner image, which is transferred to a recording paper P at a transfer section C.

感光体ドラム表面に残留する現像剤を除去すべ
くコロナ帯電器T2、除電ランプRで現像剤およ
び感光体ドラム表面の電荷を中和し、クリーナS
で残留現像剤を除去する。
In order to remove the developer remaining on the surface of the photoreceptor drum, the charge on the developer and the surface of the photoreceptor drum is neutralized using the corona charger T 2 and the static elimination lamp R, and the cleaner S
Remove residual developer.

この後再び帯電器T1で感光体ドラム表面に一
様帯電を行う。
Thereafter, the surface of the photoreceptor drum is uniformly charged again by the charger T1 .

このようにして前述の本発明に係る感光体の特
性を測定した結果、波長が780mmの半導体レーザ
に対する記録エネルギーは3μJ/cm2であり複写光
に対しては2ルツクス・秒程度で記録される。
As a result of measuring the characteristics of the photoreceptor according to the present invention as described above, the recording energy for a semiconductor laser with a wavelength of 780 mm is 3 μJ/cm 2 and the recording energy for copying light is approximately 2 lux·sec. .

そして、電位計Kで測定した感光体ドラム表面
の非露光部の電位(帯電電位)と、露光部の電位
(残留電位)を測定した結果第3図に黒丸で示す
ように前述の比較試料の特性(白丸で示す。)に
比して特性が改善されていることが判る。
The potential of the non-exposed area (charged potential) and the potential of the exposed area (residual potential) of the surface of the photoreceptor drum were measured using an electrometer K. As shown by the black circles in FIG. It can be seen that the characteristics are improved compared to the characteristics (indicated by white circles).

第4図は蒸着による感光体形成時の基板の温度
を変化させたときにそれぞれ得られる感光体を用
いて第2図に示した装置により帯電電位の測定結
果を示す。最上層Se層の蒸着速度は0.1μm/分で
ある。同図から明らかなように基板温度が60℃以
下ではカールソンプロセスの繰返しに伴う感光体
ドラム表面の帯電電位の低下△Vは比較的少い。
なお△Vが100V以上になると、再生像にトナー
ムラが生じ品質が悪く実用的ではない。
FIG. 4 shows the results of measuring the charging potential using the apparatus shown in FIG. 2 using photoreceptors obtained when the temperature of the substrate was varied during the formation of the photoreceptor by vapor deposition. The deposition rate of the top Se layer was 0.1 μm/min. As is clear from the figure, when the substrate temperature is below 60° C., the decrease ΔV in the charging potential on the surface of the photoreceptor drum due to repetition of the Carlson process is relatively small.
Note that when ΔV exceeds 100 V, toner unevenness occurs in the reproduced image, resulting in poor quality and is not practical.

第5図は感光体の最上層Se層形成時の蒸着速
度をかえたとき得られるそれぞれの感光体を用い
た感光ドラムを用いたときの帯電電位の変化△V
を示すもので、蒸着速度が0.5μm/分以下の場
合、露光波長770mm、1000Vの初期帯電のカール
ソンプロセス工程の250回の繰返し後の帯電電位
の変化が少く良好な感光体が得られることが判
る。
Figure 5 shows the change in charging potential △V when using a photosensitive drum using each photosensitive member, which was obtained by changing the deposition rate when forming the uppermost Se layer of the photosensitive member.
This shows that when the deposition rate is 0.5 μm/min or less, a good photoreceptor can be obtained with little change in charging potential after 250 repetitions of the Carlson process step with an exposure wavelength of 770 mm and an initial charge of 1000 V. I understand.

第6図は感光体を前述の蒸着技術によつて基板
上にSe層、SeTe層形成後に行う熱処理(つま
り、蒸着で最上層Se層形成前に一定の処理温度
で、恒温槽中で保管すること。)の処理温度と、
感光体ドラムの帯電電位の関係を示す図であつて
処理温度が60℃〜80℃の間では帯電電位が大きく
なつていることが判る。
Figure 6 shows the heat treatment performed on the photoreceptor after forming the Se and SeTe layers on the substrate using the above-mentioned vapor deposition technique (i.e., storing the photoreceptor in a constant temperature bath at a constant processing temperature before forming the uppermost Se layer by vapor deposition). ) processing temperature,
It is a diagram showing the relationship between the charging potential of the photoreceptor drum, and it can be seen that the charging potential increases when the processing temperature is between 60°C and 80°C.

これは80℃以上の高温では下層Se層、SeTe層
が結晶化し結晶中の電子が感光体ドラムの正の帯
電電荷と結合するため帯電電位が低下するためで
あり、60℃以下では下層Se層、SeTe層中の電子
が正孔に比して過剰になりこの電子が感光体ドラ
ム表面の帯電電荷と結合するためと考えられる。
This is because at high temperatures of 80°C or higher, the lower Se layer and SeTe layer crystallize, and the electrons in the crystals combine with the positive charges on the photoreceptor drum, resulting in a lower charging potential. This is thought to be because the electrons in the SeTe layer become excessive compared to the holes, and these electrons combine with the charges on the surface of the photoreceptor drum.

以上の説明から明らかなように本発明に係る感
光体の製造方法は基板上の最上層Se層を60℃以
下の基板温度で、0.5μm/分の蒸着速度で形成す
るため感光体の光疲労が少く良質の再生像が得ら
れる利点がある。
As is clear from the above explanation, the method for manufacturing the photoreceptor according to the present invention involves forming the uppermost Se layer on the substrate at a substrate temperature of 60°C or lower and at a deposition rate of 0.5 μm/min, which reduces optical fatigue of the photoreceptor. This method has the advantage that a high-quality reconstructed image can be obtained with less noise.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は感光体の構成図、第2図はカールソン
プロセスを説明する図、第3図〜第6図は本発明
に係る感光体の特性を示す図である。 T1:帯電器、L:露光部、K:電位計、C:
転写部、G:現像器、D:感光体ドラム。
FIG. 1 is a block diagram of a photoreceptor, FIG. 2 is a diagram for explaining the Carlson process, and FIGS. 3 to 6 are diagrams showing characteristics of the photoreceptor according to the present invention. T 1 : Charger, L: Exposure section, K: Electrometer, C:
Transfer section, G: developing device, D: photosensitive drum.

Claims (1)

【特許請求の範囲】 1 基板上にセレン(Se)層、セレンテルル
(SeTe)層、最上層のセレン層を順次積層してな
る感光体の製造方法において、前記最上層のSe
層を60℃以下の基板温度で、かつ、0.5μm/分以
下の蒸着速度で蒸着して形成することを特徴とす
る感光体の製造方法。 2 前記基板上に前記Se層、SeTe層を順次形成
後、前記最上層のSeを形成する前に大気中で60
℃〜80℃の範囲内の温度でポストベークをするこ
とを特徴とする特許請求の範囲第1項に記載の感
光体の製造方法。
[Scope of Claims] 1. A method for manufacturing a photoreceptor in which a selenium (Se) layer, a selenium tellurium (SeTe) layer, and a selenium layer as an uppermost layer are sequentially laminated on a substrate, wherein
A method for producing a photoreceptor, characterized in that the layer is formed by vapor deposition at a substrate temperature of 60° C. or less and at a deposition rate of 0.5 μm/min or less. 2 After sequentially forming the Se layer and SeTe layer on the substrate, and before forming the uppermost Se layer, the film was heated in the atmosphere for 60 minutes.
2. The method for manufacturing a photoreceptor according to claim 1, wherein post-baking is carried out at a temperature within the range of 80°C to 80°C.
JP16977481A 1981-10-23 1981-10-23 Production for photoreceptor Granted JPS5870235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16977481A JPS5870235A (en) 1981-10-23 1981-10-23 Production for photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16977481A JPS5870235A (en) 1981-10-23 1981-10-23 Production for photoreceptor

Publications (2)

Publication Number Publication Date
JPS5870235A JPS5870235A (en) 1983-04-26
JPS647381B2 true JPS647381B2 (en) 1989-02-08

Family

ID=15892608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16977481A Granted JPS5870235A (en) 1981-10-23 1981-10-23 Production for photoreceptor

Country Status (1)

Country Link
JP (1) JPS5870235A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2594960B2 (en) * 1987-08-03 1997-03-26 株式会社リコー Method for stabilizing characteristics of electrophotographic photoreceptor

Also Published As

Publication number Publication date
JPS5870235A (en) 1983-04-26

Similar Documents

Publication Publication Date Title
US4286035A (en) Halogen doped selenium-tellurium alloy electrophotographic photoconductor
CA1075068A (en) Imaging system
JPS6126055A (en) Electrophotographic sensitive body
JPS647381B2 (en)
JPH07120953A (en) Electrophotographic photoreceptor and image forming method using the same
JP2599950B2 (en) Photoconductor structure
US6243551B1 (en) Electrophotographic copying method and apparatus
JP2006189822A (en) Electrophotographic photoreceptor
JPS5967539A (en) Electrophotographic receptor
JPS5816245A (en) Electrophotographic member
JPS5872151A (en) Production for photoreceptor
JPS58179843A (en) Electrophotographic receptor
JPH0683091A (en) Electrophotographic sensitive body and manufacture thereof
JPS6064357A (en) Electrophotographic sensitive body made of selenium
JPH0371145A (en) Electrophotographic sensitive body
JP2679253B2 (en) Electrophotographic photoreceptor
JPH01283569A (en) Structure of photosensitive body
JPH02275467A (en) Production of electrophotographic sensitive body
JPS6249357A (en) Electrophotographic sensitive body
JPH01217475A (en) Image forming method
JPH0480388B2 (en)
JPS5849955A (en) Electrophotographic receptor
JP2002357943A (en) Image forming apparatus
JPS62175776A (en) Electrophotographic method
JPS6028662A (en) Amorphous silicon photosensitive body for electrophotography