JPH0480388B2 - - Google Patents

Info

Publication number
JPH0480388B2
JPH0480388B2 JP11264288A JP11264288A JPH0480388B2 JP H0480388 B2 JPH0480388 B2 JP H0480388B2 JP 11264288 A JP11264288 A JP 11264288A JP 11264288 A JP11264288 A JP 11264288A JP H0480388 B2 JPH0480388 B2 JP H0480388B2
Authority
JP
Japan
Prior art keywords
photosensitive layer
photoreceptor
layer
arsenic
phthalocyanine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11264288A
Other languages
Japanese (ja)
Other versions
JPH01283570A (en
Inventor
Shinichi Nomura
Yoichi Fukuda
Fumyuki Suda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP11264288A priority Critical patent/JPH01283570A/en
Publication of JPH01283570A publication Critical patent/JPH01283570A/en
Publication of JPH0480388B2 publication Critical patent/JPH0480388B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0696Phthalocyanines
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/0433Photoconductive layers characterised by having two or more layers or characterised by their composite structure all layers being inorganic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08207Selenium-based

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は感光体に関し、特に電子写真機(レー
ザ、LED等の光プリンタ機等)に用いるのに適
した感光体構造物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a photoreceptor, and particularly to a photoreceptor structure suitable for use in an electrophotographic machine (optical printer using laser, LED, etc.).

[従来の技術] 電子写真機においてレーザダイオードや発光ダ
イオードからの信号光を受け、電子的潜像に変換
するため、感光体が用いられる。発光ダイオード
(LED)としては、たとえばGaAlAsやGaAlPで
発光波長660nmのものが用いられ、短波長レーザ
ダイオード(LD)としては、たとえばGaAlAs
やGaAlPで発光波長780nmのものが用いられる。
感光体は暗所で良好な絶縁体で、コロナ放電によ
る高い帯電を維持する必要がある。帯電している
感光体表面に光を当て、光導電性を利用して放電
を生じさせ、静電潜像をつくる。この潜像を電荷
を持たせたトナーで現像し、用紙に転写する。こ
のような感光体は通常アルミニウム等の金属ドラ
ムからなる導電性基板上に真空蒸着等によつて光
導電性の感光材料を膜状に堆積することによつて
形成される。感光体の構造として単層型と積層構
造型とが知られている。第2A図、第2B図とに
これらを模式的に示す。
[Prior Art] A photoreceptor is used in an electrophotographic machine to receive signal light from a laser diode or a light emitting diode and convert it into an electronic latent image. The light emitting diode (LED) used is, for example, GaAlAs or GaAlP with an emission wavelength of 660 nm, and the short wavelength laser diode (LD) is, for example, GaAlAs or GaAlP.
Or GaAlP with an emission wavelength of 780 nm is used.
The photoreceptor must be a good insulator in the dark and maintain a high charge due to corona discharge. Light is applied to the charged surface of the photoreceptor, and the photoconductivity is used to generate a discharge, creating an electrostatic latent image. This latent image is developed with charged toner and transferred to paper. Such a photoreceptor is usually formed by depositing a photoconductive material in the form of a film on a conductive substrate made of a metal drum, such as aluminum, by vacuum deposition or the like. Two types of photoreceptor structures are known: a single layer type and a laminated structure type. These are schematically shown in FIG. 2A and FIG. 2B.

第2A図に示す単層形はセレン(Se)、セレン
−テルル合金(Se−Te)又は3セレン化砒素
(As2Se3)等の光導電性感光材料を導電性基板1
上に1層12に形成したものである。
The single-layer type shown in FIG. 2A uses a photoconductive material such as selenium (Se), selenium-tellurium alloy (Se-Te), or arsenic triselenide (As 2 Se 3 ) on a conductive substrate 1.
One layer 12 is formed on top.

第2B図に示す積層型構造物は導電性基板1上
にSeの第1層13、第1層の上にSe−Te合金の
第2層14を積層させたものである。なお、必要
に応じ、Te濃度を変化させたSe−Te合金の第3
層をさらに積層させる場合もある。
The laminated structure shown in FIG. 2B is one in which a first layer 13 of Se is laminated on a conductive substrate 1, and a second layer 14 of Se--Te alloy is laminated on the first layer. In addition, if necessary, the third type of Se-Te alloy with varying Te concentration may be used.
Additional layers may be added.

[発明が解決しようとする問題点] 従来の単層型のものは全般に感度が十分長波長
域まで延びない。長波長域の感度を増そうとする
と帯電電位を高くできない。また、As2Se3以外
の感光材料は耐熱性が低く高温で結晶化しやす
い。従来のSeの第1層、Se−Te合金の第2層を
用いる積層型構造はSe−Te合金の使用によつて
長波長域の感度が向上しているが、このSe−Te
合金の第2層の膜厚制御及びTe濃度のコントロ
ールが大変難しい。このため歩留まりも低く、従
つてコストも高い。さらに、できるだけ耐久性
(耐刷性)が高いことが望まれる。
[Problems to be Solved by the Invention] Conventional single-layer type devices generally do not have sensitivity extending to a sufficiently long wavelength range. If you try to increase the sensitivity in the long wavelength range, you cannot increase the charging potential. Furthermore, photosensitive materials other than As 2 Se 3 have low heat resistance and tend to crystallize at high temperatures. The conventional laminated structure using a first layer of Se and a second layer of Se-Te alloy has improved sensitivity in the long wavelength range by using the Se-Te alloy, but this Se-Te
It is very difficult to control the thickness of the second layer of the alloy and the Te concentration. For this reason, the yield is low and therefore the cost is high. Furthermore, it is desired that the durability (printing durability) is as high as possible.

本発明は感度が長波長領域まで十分あり、耐久
性耐熱性が高く、製造歩留まりの高い感光体構造
物を提供しようとするものである。
The present invention aims to provide a photoreceptor structure that has sufficient sensitivity up to a long wavelength region, has high durability and heat resistance, and has a high manufacturing yield.

[問題点を解決するための手段] 第1図を参照すると、本発明は基板1上に、3
セレン化砒素(As2Se3)の第1感光層2と、チ
タニルフタロシアニン(TiOフタロシアニン)を
添加した3セレン化砒素(As2Se3)の第2感光
層3と、3セレン化砒素の第3感光層4とを積層
した感光体構造物を提供する。
[Means for Solving the Problems] Referring to FIG. 1, the present invention provides three
A first photosensitive layer 2 of arsenic selenide (As 2 Se 3 ), a second photosensitive layer 3 of arsenic triselenide (As 2 Se 3 ) added with titanyl phthalocyanine (TiO phthalocyanine), and a second photosensitive layer 3 of arsenic triselenide (As 2 Se 3 ) doped with titanyl phthalocyanine (TiO phthalocyanine). To provide a photoreceptor structure in which three photoreceptor layers 4 are laminated.

[作用] 積層構造物として3セレン化砒素(As2Se3
の第1感光層とTiOフタロシアニンを添加した3
セレン化砒素(As2Se3:TiOフタロシアニン)
の第2感光層を用いたため十分長波長まで感度が
あり、帯電電位も十分高い。さらに、TiOフタロ
シアニンを含む3セレン化砒素の第2感光層が、
3セレン化砒素の第3感光層でコートされている
ので、電子写真特性を劣化させることなく十分な
耐刷性も得られる。主成分が3セレン化砒素であ
り、耐熱姓も高い。
[Function] Arsenic triselenide (As 2 Se 3 ) as a laminated structure
3 with the first photosensitive layer and TiO phthalocyanine added.
Arsenic selenide (As 2 Se 3 :TiO phthalocyanine)
Since the second photosensitive layer is used, it is sensitive to sufficiently long wavelengths and has a sufficiently high charging potential. Furthermore, a second photosensitive layer of arsenic triselenide containing TiO phthalocyanine,
Since it is coated with the third photosensitive layer of arsenic triselenide, sufficient printing durability can be obtained without deteriorating the electrophotographic properties. The main component is arsenic triselenide, and it has high heat resistance.

また、感光体として用いる材料はTiOフタロシ
アニンとAs2Se3の2種類でよく、この両者は昇
華温度がほぼ同じで制御がしやすい。
Furthermore, two types of materials may be used as the photoreceptor: TiO phthalocyanine and As 2 Se 3 , and both have almost the same sublimation temperature and are easy to control.

[実施例] 第1図に本発明の実施例による感光体構造物を
示す。アルミニウム等の導電性基板1上に真空蒸
着等により作成した3セレン化砒素(As2Se3
の第1感光層2と、3セレン化砒素(As2Se3
中にTiOフタロシアニンを添加した増感作用を持
つ第2感光層3と、表面保護の役割を果たす3セ
レン化砒素の第3感光層4を積層させてある。こ
こで、3セレン化砒素の第1感光層2は好ましく
は1−80μmの厚さを持つ。TiOフタロシアニン
を添加した3セレン化砒素の増感作用を持つ第2
感光層3は好ましくは0.05−5μmの厚さで、好ま
しくはTiOフタロシアニン添加量0.5−50重量%
を有する。第2感光層3にTiOフタロシアニンを
添加すること長波長域の感度が向上する。必要に
応じて第2感光層3内でTiOフタロシアニンの濃
度を変化させても良い。3セレン化砒素の第3感
光層4は好ましくは0.1μm以上10μm以下の厚さ
を有する。薄すぎると機械的強度が弱くなり、厚
すぎると長波長域の感度が低下する。
[Example] FIG. 1 shows a photoreceptor structure according to an example of the present invention. Arsenic triselenide (As 2 Se 3 ) created by vacuum evaporation on a conductive substrate 1 such as aluminum
and arsenic triselenide (As 2 Se 3 ).
A second photosensitive layer 3 containing TiO phthalocyanine and having a sensitizing effect, and a third photosensitive layer 4 made of tri-arsenic selenide serving as surface protection are laminated. Here, the first photosensitive layer 2 of arsenic triselenide preferably has a thickness of 1-80 μm. A second compound with sensitizing effect of arsenic triselenide added with TiO phthalocyanine.
The photosensitive layer 3 preferably has a thickness of 0.05-5 μm and preferably has a TiO phthalocyanine loading of 0.5-50% by weight.
has. Adding TiO phthalocyanine to the second photosensitive layer 3 improves the sensitivity in the long wavelength range. The concentration of TiO phthalocyanine may be changed within the second photosensitive layer 3 as necessary. The third photosensitive layer 4 of arsenic triselenide preferably has a thickness of 0.1 μm or more and 10 μm or less. If it is too thin, the mechanical strength will be weak, and if it is too thick, the sensitivity in the long wavelength region will be reduced.

以下製造方法の例を説明する。 An example of the manufacturing method will be explained below.

(1) 十分に洗浄したアルミニウムドラムからなる
導電性基板1を真空蒸着槽にセツトし、1×
10-5Torr以下の圧力まで真空排気を行う。
(1) Set the conductive substrate 1 made of a thoroughly cleaned aluminum drum in a vacuum deposition tank, and
Evacuate to a pressure of 10 -5 Torr or less.

(2) アルミニウムドラムである導電性基板1の温
度を220℃に制御する。
(2) Control the temperature of the conductive substrate 1, which is an aluminum drum, to 220°C.

(3) 導電性基板1の温度が220℃で一定となつた
ら、まず第1層目の3セレン化砒素(As2Se3
を50μmの膜厚まで蒸着する。
(3) When the temperature of the conductive substrate 1 becomes constant at 220℃, the first layer of arsenic triselenide (As 2 Se 3 )
is deposited to a film thickness of 50 μm.

(4) 続いて3セレン化砒素(As2Se3)とTiOフ
タロシアニンの蒸発(昇華)速度を制御し、3
セレン化砒素(As2Se3)の中にTiOフタロシ
アニンを約3重量%添加した混合物の膜を膜厚
約4μm積層する。
(4) Next, the evaporation (sublimation) rate of arsenic triselenide (As 2 Se 3 ) and TiO phthalocyanine was controlled, and
A film of a mixture of arsenic selenide (As 2 Se 3 ) with TiO phthalocyanine added in an amount of about 3% by weight is laminated to a thickness of about 4 μm.

(5) さらに3セレン化砒素(As2Se3)を膜厚約
2μm蒸着する。
(5) Furthermore, add arsenic triselenide (As 2 Se 3 ) to a thickness of approx.
Deposit 2 μm.

このようにして得られた感光体の特性を、帯電
電位、暗減衰率、650nm,800nmでの光感度(発
光ダイオード(LED)の発光波長660nmとレー
ザダイオード(LD)の発光波長780nmとを含む
波長領域を考慮した)について調べた。帯電電位
はドラム上の感光体を帯電させ、リークによつて
それ以上電位が上らなくなる感光体の表面電位に
よつて測定し、暗減衰率は感光体に実用表面電荷
を載せ暗所で10秒後電位がどれだけ変化したかを
測定し、光感度は同様に実用表面電荷を載せた感
光体に光を照射し、表面電位が1/2に減じるまで
に照射した光の総量によつて測定した。
The characteristics of the photoreceptor obtained in this way include the charging potential, dark decay rate, and photosensitivity at 650 nm and 800 nm (including the light emission wavelength of 660 nm of the light emitting diode (LED) and the emission wavelength of 780 nm of the laser diode (LD)). (taking into account the wavelength region) was investigated. The charging potential is measured by charging the photoreceptor on the drum and measuring the surface potential of the photoreceptor, which no longer increases the potential due to leakage. Measure how much the potential changes after a second, and determine the photosensitivity by irradiating a photoreceptor with a practical surface charge and determining the total amount of light irradiated until the surface potential decreases to 1/2. It was measured.

得られたデータを以下に示す。 The obtained data are shown below.

感光体特性のデータ 帯電電位 1080V 暗減衰率[DDR(10sec)] 0.91 光感度 650nm 1.0μj/cm2 800nm 1.1μj/cm2 この感光体をレーザダイオードを用いたプリン
タに搭載したところたいへん良好な画像が得られ
た。さらに露光現像を繰り返し、10万枚を超えて
も良好な画像が得られた。従つて、赤色発光ダイ
オードを用いたLEDプリンタは勿論、近赤外半
導体レーザダイオードを用いたLDプリンタにも
使用可能である。
Data on photoconductor characteristics Charging potential 1080V Dark decay rate [DDR (10sec)] 0.91 Light sensitivity 650nm 1.0μj/cm 2 800nm 1.1μj/cm 2 When this photoconductor was installed in a printer using a laser diode, very good images were obtained. was gotten. Further exposure and development was repeated, and good images were obtained even after printing more than 100,000 copies. Therefore, it can be used not only for LED printers using red light emitting diodes but also for LD printers using near-infrared semiconductor laser diodes.

なお、基板加熱温度は220℃でなくもつと低温
にしてもよい。
Note that the substrate heating temperature may be set to a lower temperature than 220°C.

As2Se3とTiOフタロシアニンとを別々の蒸発
源から蒸発させる代わりに、混合物を1つの蒸発
源から蒸発させてもよい。
Instead of evaporating As 2 Se 3 and TiO phthalocyanine from separate sources, the mixture may be evaporated from one source.

As2Se3の第3感光層は電子写真特性を低下さ
せず十分な機械的強度を得るため0.1−10μmの膜
厚にするのが好ましい。
The third photosensitive layer of As 2 Se 3 preferably has a thickness of 0.1 to 10 μm in order to obtain sufficient mechanical strength without deteriorating the electrophotographic properties.

第2感光層はあまり厚くするとAs2Se3の第1
感光層への入力光を減少させるので、5μm以下が
好ましい。
If the second photosensitive layer is too thick, the As 2 Se 3
The thickness is preferably 5 μm or less because it reduces the amount of light input to the photosensitive layer.

[発明の効果] 耐刷性に優れ、650nm以上の波長の光に対して
も十分な光感度が得られる感光体構造物が得られ
る。
[Effects of the Invention] A photoreceptor structure having excellent printing durability and sufficient photosensitivity even to light having a wavelength of 650 nm or more can be obtained.

3セレン化砒素(As2Se3)が主材料である為、
耐熱性に優れた感光体構造物となる。
Because the main material is arsenic triselenide (As 2 Se 3 ),
The result is a photoreceptor structure with excellent heat resistance.

TiOフタロシアニンの昇華温度は230℃付近で
あり、As2Se3の昇華温度とほぼ同じであるので、
TiOフタロシアニンを添加したAs2Se3の第2感
光層を作成する際の制御性がたいへん良い。この
ため高い製造歩留まりを得られる。3層構造でも
材料は2種類であり、製造工程は複雑化しない。
The sublimation temperature of TiO phthalocyanine is around 230℃, which is almost the same as the sublimation temperature of As 2 Se 3 .
The controllability when creating the second photosensitive layer of As 2 Se 3 added with TiO phthalocyanine is very good. Therefore, a high manufacturing yield can be obtained. Even with a three-layer structure, there are only two types of materials, so the manufacturing process does not become complicated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例による感光体構造物
を模式的に示す断面図、第2A図と第2B図は従
来の感光体を模式的に示す断面図である。 符号の説明、1……基板、2……3セレン化砒
素(As2Se3)の第1感光層、3……TiOフタロ
シアニン添加3セレン化砒素(As2Se3:TiOフ
タロシアニン)の第2感光層、4……3セレン化
砒素(As2Se3)の第3感光層。
FIG. 1 is a sectional view schematically showing a photoreceptor structure according to an embodiment of the present invention, and FIGS. 2A and 2B are sectional views schematically showing a conventional photoreceptor structure. Explanation of symbols, 1...Substrate, 2...3 First photosensitive layer of arsenic selenide (As 2 Se 3 ), 3... Second photosensitive layer of TiO phthalocyanine-added 3 arsenic selenide (As 2 Se 3 :TiO phthalocyanine) Photosensitive layer, 4... Third photosensitive layer of 3 arsenic selenide (As 2 Se 3 ).

Claims (1)

【特許請求の範囲】 1 基板と、基板上に形成した3セレン化砒素の
第1感光層と、第1感光層上に形成したTiOフタ
ロシアニンを添加した3セレン化砒素の第2感光
層と、第2感光層の上に形成した3セレン化砒素
の第3感光層とを含む感光体構造物。 2 第2感光層が0.05−5μmの厚さである請求項
1記載の感光体構造物。 3 第3感光層が0.1−10.0μmの厚さである請求
項1ないし2記載の感光体構造物。
[Scope of Claims] 1. A substrate, a first photosensitive layer of arsenic triselenide formed on the substrate, a second photosensitive layer of arsenic triselenide added with TiO phthalocyanine formed on the first photosensitive layer, and a third photosensitive layer of arsenic triselenide formed on the second photosensitive layer. 2. The photoreceptor structure of claim 1, wherein the second photoreceptor layer has a thickness of 0.05-5 μm. 3. The photoreceptor structure according to claim 1, wherein the third photoreceptor layer has a thickness of 0.1-10.0 μm.
JP11264288A 1988-05-11 1988-05-11 Structure of photosensitive body Granted JPH01283570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11264288A JPH01283570A (en) 1988-05-11 1988-05-11 Structure of photosensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11264288A JPH01283570A (en) 1988-05-11 1988-05-11 Structure of photosensitive body

Publications (2)

Publication Number Publication Date
JPH01283570A JPH01283570A (en) 1989-11-15
JPH0480388B2 true JPH0480388B2 (en) 1992-12-18

Family

ID=14591840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11264288A Granted JPH01283570A (en) 1988-05-11 1988-05-11 Structure of photosensitive body

Country Status (1)

Country Link
JP (1) JPH01283570A (en)

Also Published As

Publication number Publication date
JPH01283570A (en) 1989-11-15

Similar Documents

Publication Publication Date Title
CA1075068A (en) Imaging system
US4609605A (en) Multi-layered imaging member comprising selenium and tellurium
US4379821A (en) Electrophotographic recording material with As2 Se3-x Tex charge generating layer
US3498835A (en) Method for making xerographic plates
JPH0480388B2 (en)
JP2599950B2 (en) Photoconductor structure
US4837099A (en) Multilayer photoconductor for electrophotography
JPH0536785B2 (en)
US4717635A (en) Electrophotographic recording material
US4513072A (en) Dual layer electrophotographic recording material containing a layer of selenium, arsenic and halogen, and thereabove a layer of selenium and tellurium
JPS61256353A (en) Electrophotographic selenium photosensitive body
JPH07244390A (en) Electrophotographic photoreceptor
JP2629348B2 (en) Manufacturing method of photoreceptor for electrophotography
JPH0236938B2 (en)
JPS6064357A (en) Electrophotographic sensitive body made of selenium
JPH0216912B2 (en)
JPH03149563A (en) Electrophotographic sensitive body
JPS5882250A (en) Electrophotographic receptor
JPS647381B2 (en)
JPH0455506B2 (en)
JPS63147169A (en) Recording material for xelography
JPH0117574B2 (en)
JPH0259764A (en) Electrophotographic sensitive body
JPS63223653A (en) Electrophotographic sensitive body
JPH0752300B2 (en) Electrophotographic photoreceptor