JPS647132B2 - - Google Patents

Info

Publication number
JPS647132B2
JPS647132B2 JP3614784A JP3614784A JPS647132B2 JP S647132 B2 JPS647132 B2 JP S647132B2 JP 3614784 A JP3614784 A JP 3614784A JP 3614784 A JP3614784 A JP 3614784A JP S647132 B2 JPS647132 B2 JP S647132B2
Authority
JP
Japan
Prior art keywords
rolling
strength
ferrite
temperature
bainite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3614784A
Other languages
Japanese (ja)
Other versions
JPS60181230A (en
Inventor
Kazuaki Ezaka
Seishiro Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3614784A priority Critical patent/JPS60181230A/en
Publication of JPS60181230A publication Critical patent/JPS60181230A/en
Publication of JPS647132B2 publication Critical patent/JPS647132B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はC―Si―Mn鋼又はC―Mn鋼を用い、
特殊元素(Nb,Ti,V…等炭窒化物形成元素)
の添加を必要とせず、現行の熱延プロセスの改良
によつて従来の析出強化型高張力熱延鋼板よりも
特に強度―延性バランスの良好な加工性に優れた
高張力熱延鋼板の製造方法に関するものである。 (従来技術) 近年、自動車産業において自動車の燃費改善の
対策のひとつとして車体の軽量化を図ることがあ
り、使用鋼板の薄肉化と安全性の面から加工性に
優れた高張力熱延鋼板の要求が高まつている。 従来、加工性に優れた高張力熱延鋼板を得るに
はNb,Ti,V…等の特殊元素を添加して固溶硬
化及び炭窒化物形成による析出強化により強度を
向上させる製造方法と、最近製造され始めたデユ
アルフエイズ(Dual Phase)鋼板とすることに
より、強度―延性バランスを向上させる製造方法
とがある。前者はNb,Ti,V…等の添加元素が
高価でコスト上昇の原因となり、また資源的にも
将来制約が予想される。後者のDP鋼板は強度―
延性バランスは良好であるが、自動車部品である
ホイールに適用するにあたつての問題として、○イ
伸びフランジ性が劣ることから例えばホイールデ
イスク加工時、バーリング加工によるハブ穴成形
で割れを発生し易い。○ロ溶接熱影響部の軟化現象
が大きいためのホイールリム,型矯正時にその部
分の肉厚減少が大きく、疲労特性の向上が認めら
れないの2点がある。 これ等の問題を解決する方法としてC―Si―
Mn鋼でフエライトとベーナイトの複合組織を持
つ高張力熱延鋼板の製造が考えられる。例えば、
特開昭57―145965号に示されるようにC―Si―
Mn鋼で最終圧延パス後の冷却制御と巻取り温度
制御によつて、フエライト・ベーナイトの複合組
織を持つた高張力熱延鋼板及び製造が示されてお
り、コスト的にも安価でホイールデイスク加工
時、バーリング加工によるハブ穴成形での割れに
ついて改善がなされているが充分ではない。溶接
熱影響部の軟化現象に於てはDP鋼よりは改善さ
れているが、自動車足廻り部品等の高加工を行う
場合には単にフエライト・ベーナイト複合組織の
ものでは延性が不足で割れが発生する。本発明者
等は細粒化によつて強度―延性バランスの向上と
強度アツプをはかり、疲労特性を向上させたポリ
ゴナルフエライトとベーナイトの製造方法を特願
昭58―2485にて示している。ここではさらに細粒
化を効果的に発揮させるためにC量を増加させる
ことが有効で、しかも60Kgf/mm2以上が安定して
得られ、延性の良いポリゴナルフエライト・ベー
ナイト複合組織が得られることを示す。 (発明の目的) 本発明はこのような現状に鑑み、一般用C―Si
―Mn系と類似の成分鋼のフエライト・ベーナイ
トの複合組織を持つた高張力熱延鋼板、すなわち
特願昭58―2485に示されたフエライト・ベーナイ
トの複合組織を持つた高張力熱延鋼板よりも更に
強度アツプと強度―延性バランスの向上および疲
労特性の向上を計ることができる、ポリゴナルフ
エライトとベーナイトを有した引張強さ60Kgf/
mm2級以上で加工性に優れた高張力熱延鋼板を低コ
ストで製造するための新たな製造方法を提供する
ものである。 (発明の構成・作用) 本発明は基本成分としては、C:0.15超0.20%
以下,Si:1.5%以下,Mn:0.3〜1.5%,P:
0.02%以下,Si:0.01%以下に限定含有し、残部
Fe及び不可避元素からなる鋼片を用いる。C及
びMnは必要な強度の確保とフエライトとベーナ
イトの複合組織を得るに必須の元素であり、C:
0.15%以下,Mn:0.3%未満ではTS60Kgf/mm2
以上の強度を持つ鋼板が得がたく、またC:0.20
%超、Mn:1.5%超では延性の劣化が大きく、溶
接性も害することからC:0.15超0.20%以下、
Mn:0.3〜1.5%とする。Siは好ましくは0.2%以
上添加するとフエライト粒内の固溶[C]が減少
し、未変態オーステナイト粒のC元素濃化を促進
することから、好適なフエライトとベーナイトの
複合組織を得やすくする働きを持ち、鋼板の強度
―延性バランスを向上させる。Si:1.5%超える
と未変態オーステナイト粒のC元素濃化が飽和す
るため経済的にも不利であることと溶接性を害す
ることから、Si:1.5%以下、好ましくは0.2〜1.5
%とする。Pは溶接性を害することからP:0.02
%以下とする。SはMnS系介在物を形成して伸
びフランジ性を低下させるから、MnS系介在物
を減少せしめ、伸びフランジ性の向上を図るため
に、S:0.01%以下とする。Caは介在物を微細球
状化する形態制御の働きがあり、伸びフランジ性
を向上させることから好ましくはCa:0.01%迄含
有させる。 熱間圧延に際し加熱温度は好ましくは1100℃以
下にする。これは加熱時でのオーステナイト粒を
できるだけ小さくするためと、加熱温度が高いと
最終圧延パス温度を確保するために圧延スピード
のダウン或いは仕上圧延入側でのデイレー時間を
持つことから生産性低下阻止のためである。仕上
圧延の少なくとも最初の3パスの圧下率を各々40
%以上の高圧下率としたのは、ここでのパス間鋼
板通過時間が圧延後、オーステナイト粒が再結晶
するに充分な時間であると考えられることから、
ここでの圧下率をできるだけ高圧下率とし、再結
晶核発生を増大させ、オーステナイト粒の細粒化
を図ることにある。従つて該最初の3パスにおけ
る各パスの圧下率は、理論的には製品厚み迄が対
象になるが、現状の圧延機の能力からその圧下率
は、ロールの噛込み角度、圧延荷重等から制限を
受け高々60%程度が実用上の限界である。4パス
以降はパス間時間が短かいため累積圧下の効果
(各パス後回復を殆ど起こさずに、圧下の累積と
して評価できる)として考え細粒化を図ることか
らトータル圧下率(仕上圧延前後の圧下率)を80
%以上とする。該微細化のためには高圧下率ほど
有効なので理論的にトータル圧下率の上限はな
く、製品厚みを得るのに必要な圧下率迄が対象と
なる。 第1の発明において最終圧延パスの温度を
(Ar3+50℃)〜(Ar3―50℃)としたのは、大圧
下を加えることと、この温度範囲で再結晶オース
テナイト粒の細粒化又は未再結晶オーステナイト
粒に導入された変形帯の増加により、フエライト
粒の細粒化を図るためである。又圧延中に変態点
を切つても大圧下により、フエライトの再結晶が
起ることが観察され細粒化に有効である。又フエ
ライトとオーステナイトの2相分離が促進され適
正なフエライトとベーナイト組織が得られる。こ
こでのAr3は圧延しない時の冷却時の変態点温度
をさす。従つて変態点は圧下率,冷却速度、成分
系によつて異なるが、(Ar3+50℃)〜(Ar3−50
℃)とは実質上840〜730℃となり得る。 第1図はフエライト粒に及ぼす最終圧延パスの
温度の影響と仕上圧延の圧下率効果について示し
ている。最終圧延パスの温度が800〜760℃のもの
が840℃超のものよりもフエライト粒は小さい。
しかも最終圧延パス後の温度が同じ800〜760℃で
あつても、仕上圧延の最初の3パスの圧下率を
各々40〜50%と大圧下することにより、更にフエ
ライト粒は小さくなつていることがわかる。即ち
フエライト粒の細粒化に最終圧延パスの温度と仕
上圧延の圧下率とが相乗効果として及ぼす影響は
大きいことが推測され得る。またCが増すことに
よつて得られる粒径は、第1図に示す如く同一圧
下率,温度条件でも更に細粒となり、C:0.15〜
0.20%でGSNo12以上が安定して得られる。細粒
化効果は強度アツプと強度―延性バランスの向上
(伸び25%以上確保),疲労強度上昇に効果があ
る。 圧延後2相共存領域から冷却速度45℃/s以上
100℃/sで300〜550℃の温度まで冷却(注水冷
却,気水冷却,ガス冷却を含む)することによつ
て適正なフエライトとベーナイトの複合組織を得
やすくすることにある。ここで、冷却速度の下限
45℃/sはベーナイトを主体とするベーナイト・
フエライト複合組織を得るために必要最低の冷却
速度である。従つて冷却速度は45℃/s以上であ
れば充分であるが、組織論とは関係なく現状の熱
間圧延工程の冷却装置の冷却能力は100℃/sが
上限に当る。最終圧延パスの温度が2相共存域で
あれば、圧延後に即冷却しても2相分離が進んで
おり適正なフエライトとベーナイトの複合組織と
なる。好ましくは5秒程度空冷して2相分離を完
全にして冷却開始することが有効である。しかし
薄物・幅広材でフエライトとベーナイトの複合組
織を持つ鋼板を製造する場合に、最終圧延パスの
温度範囲が(Ar3+50℃)〜(Ar3−50℃)で圧
延荷重が圧延機の限界値を越えるなどの点から製
造が困難なものに対しては、最終パスの温度を
(Ar3+50℃)超(第2の発明)とし、最終圧延
パス以降確実に2相域温度迄冷却速度45℃/s未
満で徐冷し、以降冷却速度45℃/s以上100℃/
s前後で300〜550℃の温度まで冷却する。これは
細粒化が充分でなく強度―延性バランスで若干劣
る。 以上述べた方法で製造されたフエライトとベー
ナイトの複合組織を有する熱延鋼板の特徴は2相
分離を進めた後、ベーナイト組織で強度を高めフ
エライトを細粒とすることで延性の向上を図るこ
とによつて、通常の製造条件下で得られるフエラ
イトとパーライト組織を有する鋼板及びTi,V,
Nb…等元素の添加による析出強化型高張力熱延
鋼板よりもはるかに強度―延性バランスに優れた
特性を持つている。 第2図は本発明の条件下で製造されたものの強
度―延性バランスについてDP熱延鋼板及び析出
強化型高張力熱延鋼板と比較整理したものである
が、デユアルフエイズ熱延鋼板よりも強度―延性
バランスで劣つているが、析出強化型高張力熱延
鋼板よりもはるかに優れている。 (実施例) 本発明による実施例を第1表に示す。発明例1
〜9は所定の成分を有する鋼を本発明に沿つて熱
間圧延を行なつたものである。比較例10はCが低
い成分系で、本発明に沿つて熱間圧延を行なつた
もので強度が低い。比較例11は所定の成分で熱間
圧延に際して冷却速度が低目と外れたもので、フ
エライト・パーライト組織であり強度が低い。比
較例12は所定の成分で熱間圧延に際して仕上F1
〜F3の圧下率が低目に外れたもので、強度―延
性バランスが低い、とくに伸びの低下が大きい。
比較例13はCが高い成分系で、熱間圧延に際して
仕上F1〜F3の圧下率が低目に外れたもので、伸
びの低下が非常に大きい。
(Industrial Application Field) The present invention uses C-Si-Mn steel or C-Mn steel,
Special elements (carbonitride forming elements such as Nb, Ti, V...)
A method for producing a high-strength hot-rolled steel sheet that does not require the addition of any of It is related to. (Prior art) In recent years, in the automobile industry, one of the measures to improve the fuel efficiency of automobiles is to reduce the weight of automobile bodies, and from the viewpoint of thinner steel plates and safety, high-strength hot-rolled steel sheets with excellent workability have been developed. Demand is increasing. Conventionally, in order to obtain high-strength hot-rolled steel sheets with excellent workability, special elements such as Nb, Ti, V, etc. are added to improve strength through solid solution hardening and precipitation strengthening through carbonitride formation. There is a manufacturing method that improves the strength-ductility balance by using dual phase steel sheets, which have recently begun to be manufactured. In the former, additive elements such as Nb, Ti, V, etc. are expensive and cause an increase in cost, and resource constraints are expected in the future. The latter DP steel plate has strength-
Although the ductility balance is good, there are problems when applying it to wheels, which are automobile parts, because the stretch flangeability is poor, so for example, when processing wheel discs, cracks may occur when forming hub holes by burring. easy. ○B) There are two points: the wheel rim has a large softening phenomenon in the weld heat affected zone, the wall thickness of that part decreases significantly during mold correction, and no improvement in fatigue properties is observed. As a way to solve these problems, C-Si-
It is possible to manufacture high-strength hot-rolled steel sheets with a composite structure of ferrite and bainite using Mn steel. for example,
As shown in Japanese Patent Application Laid-Open No. 57-145965, C-Si-
It has been demonstrated that high-strength hot-rolled steel sheets with a ferrite-bainite composite structure can be manufactured using Mn steel by controlling the cooling after the final rolling pass and controlling the coiling temperature, making it possible to process wheel discs at low cost. At the same time, improvements have been made to the cracking caused by forming hub holes through burring, but this is not sufficient. The softening phenomenon of the weld heat-affected zone is better than that of DP steel, but when performing high-level processing such as automobile suspension parts, the ferrite-bainite composite structure simply lacks ductility and cracks occur. do. The present inventors have proposed in Japanese Patent Application No. 58-2485 a method for producing polygonal ferrite and bainite, which improves the strength-ductility balance and strength through grain refinement and improves fatigue properties. Here, it is effective to increase the amount of C in order to achieve even more effective grain refinement, and moreover, it is possible to stably obtain 60 Kgf/mm 2 or more, and to obtain a polygonal ferrite/bainite composite structure with good ductility. Show that. (Object of the invention) In view of the current situation, the present invention has been developed to develop general-use C-Si.
- From a high-strength hot-rolled steel sheet with a ferrite-bainite composite structure of steel with similar composition to Mn-based steel, that is, a high-strength hot-rolled steel sheet with a ferrite-bainite composite structure shown in Japanese Patent Application No. 58-2485. A tensile strength of 60Kgf/60Kgf with polygonal ferrite and bainite, which can further increase strength, improve strength-ductility balance, and improve fatigue properties.
The objective is to provide a new manufacturing method for manufacturing high-strength hot-rolled steel sheets with mm 2 class or higher and excellent workability at low cost. (Structure and operation of the invention) The basic component of the present invention is C: more than 0.15 and 0.20%.
Below, Si: 1.5% or less, Mn: 0.3 to 1.5%, P:
0.02% or less, Si: limited to 0.01% or less, the remainder
A steel billet consisting of Fe and other unavoidable elements is used. C and Mn are essential elements to ensure the necessary strength and obtain a composite structure of ferrite and bainite, and C:
TS60Kgf/mm 2 for 0.15% or less, Mn: less than 0.3%
It is difficult to obtain a steel plate with a strength higher than C: 0.20.
%, Mn: more than 1.5% causes a significant deterioration of ductility and impairs weldability, so C: more than 0.15 and less than 0.20%,
Mn: 0.3 to 1.5%. Preferably, when Si is added in an amount of 0.2% or more, the solid solution [C] in the ferrite grains decreases and promotes the concentration of C element in the untransformed austenite grains, so it serves to make it easier to obtain a suitable composite structure of ferrite and bainite. This improves the strength-ductility balance of steel sheets. Si: If it exceeds 1.5%, the concentration of C element in untransformed austenite grains will become saturated, which is economically disadvantageous and impairs weldability. Therefore, Si: 1.5% or less, preferably 0.2 to 1.5%.
%. Since P impairs weldability, P: 0.02
% or less. Since S forms MnS-based inclusions and reduces stretch-flangeability, in order to reduce MnS-based inclusions and improve stretch-flangeability, S: 0.01% or less. Ca has the function of controlling the shape of inclusions to form fine spheres and improves stretch flangeability, so it is preferably contained up to 0.01%. During hot rolling, the heating temperature is preferably 1100°C or lower. This is done in order to make the austenite grains as small as possible during heating, and if the heating temperature is high, the rolling speed must be reduced to ensure the final rolling pass temperature, or there is a delay time on the entry side of the finish rolling, which prevents productivity from decreasing. This is for the sake of The rolling reduction of at least the first three passes of finish rolling is 40% each.
The reason for the high rolling reduction ratio of over % is that the passing time of the steel plate between passes is considered to be sufficient time for the austenite grains to recrystallize after rolling.
The purpose is to set the rolling reduction rate as high as possible to increase the generation of recrystallized nuclei and to refine the austenite grains. Therefore, the rolling reduction rate for each of the first three passes theoretically covers the thickness of the product, but based on the current rolling mill capacity, the rolling reduction rate is determined by the angle of engagement of the rolls, rolling load, etc. Due to the limitations, the practical limit is about 60% at most. After the 4th pass, since the time between passes is short, the effect of cumulative reduction (can be evaluated as an accumulation of reductions with almost no recovery after each pass) is considered, and the total reduction ratio (before and after finishing rolling) is considered to be finer grain size. rolling reduction rate) 80
% or more. Since a higher rolling reduction is more effective for the refinement, there is theoretically no upper limit to the total rolling reduction, and the rolling reduction required to obtain the product thickness is the target. In the first invention, the temperature of the final rolling pass is set to (Ar 3 +50°C) to (Ar 3 -50°C) because large rolling reduction is applied and recrystallized austenite grains are refined or refined in this temperature range. This is to make the ferrite grains finer by increasing the number of deformation bands introduced into the unrecrystallized austenite grains. Further, even if the transformation point is exceeded during rolling, recrystallization of ferrite has been observed to occur due to large reduction, which is effective for grain refinement. Furthermore, the two-phase separation of ferrite and austenite is promoted, and appropriate ferrite and bainite structures can be obtained. Ar 3 here refers to the transformation point temperature during cooling without rolling. Therefore, the transformation point varies depending on the rolling reduction rate, cooling rate, and component system, but it is between (Ar 3 +50℃) and (Ar 3 -50℃).
℃) can be substantially 840 to 730℃. FIG. 1 shows the influence of the temperature of the final rolling pass and the effect of the reduction rate in the finish rolling on the ferrite grains. The ferrite grains are smaller when the final rolling pass temperature is 800 to 760°C than when it is over 840°C.
Moreover, even if the temperature after the final rolling pass is the same at 800 to 760°C, the ferrite grains become even smaller by reducing the rolling reduction ratio of 40 to 50% in each of the first three passes of finish rolling. I understand. In other words, it can be inferred that the temperature of the final rolling pass and the rolling reduction rate of finish rolling have a large synergistic effect on the refinement of ferrite grains. Furthermore, as shown in Fig. 1, the particle size obtained by increasing C becomes finer even under the same rolling reduction rate and temperature conditions, and C: 0.15~
GS No. 12 or higher can be stably obtained at 0.20%. The effect of grain refinement is effective in increasing strength, improving the strength-ductility balance (ensuring elongation of 25% or more), and increasing fatigue strength. Cooling rate of 45℃/s or more from two-phase coexistence region after rolling
The purpose is to make it easier to obtain a suitable composite structure of ferrite and bainite by cooling at a rate of 100°C/s to a temperature of 300 to 550°C (including water injection cooling, air/water cooling, and gas cooling). Here, the lower limit of cooling rate
45℃/s is bainite mainly composed of bainite.
This is the minimum cooling rate necessary to obtain a ferrite composite structure. Therefore, a cooling rate of 45° C./s or higher is sufficient, but regardless of the structure theory, the upper limit of the cooling capacity of current cooling equipment for hot rolling processes is 100° C./s. If the temperature of the final rolling pass is in the two-phase coexistence range, the two-phase separation will proceed even if the product is immediately cooled after rolling, resulting in an appropriate composite structure of ferrite and bainite. Preferably, it is effective to perform air cooling for about 5 seconds to complete two-phase separation before starting cooling. However, when manufacturing thin and wide steel sheets with a composite structure of ferrite and bainite, the temperature range of the final rolling pass is (Ar 3 +50℃) to (Ar 3 -50℃) and the rolling load is at the limit of the rolling mill. For products that are difficult to manufacture due to exceeding the above-mentioned values, the temperature of the final pass should be set to exceed (Ar 3 +50℃) (second invention), and the cooling rate should be set to ensure the temperature in the two-phase region after the final rolling pass. Slow cooling at less than 45℃/s, then cooling rate of 45℃/s or more to 100℃/
Cool to a temperature of 300 to 550°C around s. This is because the grain size is not sufficiently refined and the strength-ductility balance is slightly inferior. The feature of the hot-rolled steel sheet with a composite structure of ferrite and bainite produced by the method described above is that after two-phase separation is carried out, the strength is increased by the bainite structure, and the ductility is improved by making the ferrite into fine grains. Steel sheets with ferrite and pearlite structures obtained under normal manufacturing conditions and Ti, V,
It has properties with a far better strength-ductility balance than precipitation-strengthened high-strength hot-rolled steel sheets created by adding elements such as Nb... Figure 2 compares the strength-ductility balance of products manufactured under the conditions of the present invention with DP hot-rolled steel sheets and precipitation-strengthened high-strength hot-rolled steel sheets. - Although inferior in ductility balance, it is far superior to precipitation-strengthened high-strength hot-rolled steel sheets. (Examples) Examples according to the present invention are shown in Table 1. Invention example 1
Steels having predetermined components were hot rolled in accordance with the present invention. Comparative Example 10 had a component system with a low C content, was hot rolled in accordance with the present invention, and had low strength. In Comparative Example 11, the cooling rate during hot rolling was extremely low due to the predetermined components, and the steel had a ferrite/pearlite structure and low strength. Comparative Example 12 has a finish of F 1 during hot rolling with the specified ingredients.
The rolling reduction of ~ F3 is too low, the strength-ductility balance is low, and the drop in elongation is particularly large.
Comparative Example 13 has a high C component system, and the rolling reduction of finishing F 1 to F 3 during hot rolling was low, resulting in a very large decrease in elongation.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は最終仕上圧延の温度,仕上圧延のF1
〜F3の圧下率,C量と結晶粒度との関係を示す
図、第2図は強度―延性バランスを比較した図で
ある。
Figure 1 shows the temperature of final finishing rolling and F 1 of finishing rolling.
A diagram showing the relationship between the rolling reduction ratio of ~F 3 , the amount of C, and the grain size, and Figure 2 is a diagram comparing the balance of strength and ductility.

Claims (1)

【特許請求の範囲】 1 C:0.15超0.20%以下 Si:1.5%以下 Mn:0.3〜1.5% P:0.02%以下 S:0.01%以下 を含有し、残部はFe及び不可避元素からなる鋼
片を加熱し、連続熱間仕上圧延の少なくとも最初
の3パスを各パスの圧下率が40〜60%とし、仕上
全圧延のトータル圧下率を80%以上とし、最終圧
延パスの温度を(Ar3+50℃)〜(Ar3―50℃)
で終了し、終了後45〜100℃/sの冷却速度で冷
却し、300〜550℃で巻取ることを特徴とする微細
なフエライトとベーナイトの複合組織を持つた強
度―延性バランスの良好な加工性に優れた高張力
熱延鋼板の製造方法。 2 C:0.15超0.20%以下 Si:1.5%以下 Mn:0.3〜1.5% P:0.02%以下 S:0.01%以下 を含有し、残部はFe及び不可避元素からなる鋼
片を加熱し、連続熱間仕上圧延の少なくとも最初
の3パスを各パスでの圧下率が40〜60%とし、仕
上全圧延のトータル圧下率を80%以上とし、最終
圧延パスの温度を(Ar3+50℃)超で終了し、終
了後Ar3〜Ar1温度迄45℃/s未満の冷却速度で
徐冷し以降45〜100℃/sの冷却速度で冷却し、
300〜550℃で巻取ることを特徴とするフエライト
とベーナイトの複合組織を持つた加工性に優れた
高張力熱延鋼板の製造方法。
[Claims] 1 A steel billet containing C: more than 0.15 and not more than 0.20% Si: not more than 1.5% Mn: 0.3 to 1.5% P: not more than 0.02% S: not more than 0.01%, the balance being Fe and unavoidable elements Heating, at least the first three passes of continuous hot finishing rolling with a rolling reduction of 40 to 60% in each pass, a total rolling reduction of 80% or more in all finishing rolling, and the temperature of the final rolling pass at (Ar 3 + 50 ℃) ~ (Ar 3 -50℃)
After finishing, it is cooled at a cooling rate of 45 to 100℃/s, and coiled at 300 to 550℃.It has a fine composite structure of ferrite and bainite, and has a good strength-ductility balance. A method for producing high-strength hot-rolled steel sheets with excellent properties. 2 A steel billet containing C: more than 0.15 but not more than 0.20% Si: not more than 1.5% Mn: 0.3 to 1.5% P: not more than 0.02% S: not more than 0.01%, with the balance consisting of Fe and unavoidable elements is heated and subjected to continuous hot heating. At least the first three passes of finish rolling have a rolling reduction of 40 to 60% in each pass, the total rolling reduction of all finishing rolling is 80% or more, and the temperature of the final rolling pass is over (Ar 3 + 50℃). After completion, the temperature is gradually cooled from Ar 3 to Ar 1 at a cooling rate of less than 45°C/s, and thereafter the cooling is performed at a cooling rate of 45 to 100°C/s.
A method for producing a high-strength hot-rolled steel sheet with excellent workability and having a composite structure of ferrite and bainite, which is characterized by winding at 300 to 550°C.
JP3614784A 1984-02-29 1984-02-29 Production of high-tension hot rolled steel plate having excellent workability Granted JPS60181230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3614784A JPS60181230A (en) 1984-02-29 1984-02-29 Production of high-tension hot rolled steel plate having excellent workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3614784A JPS60181230A (en) 1984-02-29 1984-02-29 Production of high-tension hot rolled steel plate having excellent workability

Publications (2)

Publication Number Publication Date
JPS60181230A JPS60181230A (en) 1985-09-14
JPS647132B2 true JPS647132B2 (en) 1989-02-07

Family

ID=12461676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3614784A Granted JPS60181230A (en) 1984-02-29 1984-02-29 Production of high-tension hot rolled steel plate having excellent workability

Country Status (1)

Country Link
JP (1) JPS60181230A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388626A (en) * 1989-08-30 1991-04-15 Daiichi Seiki Kogyo Kk Sheet material feeding device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0295500B2 (en) * 1987-06-03 2003-09-10 Nippon Steel Corporation Hot rolled steel sheet with a high strength and a distinguished formability
JPH02149618A (en) * 1988-11-30 1990-06-08 Kobe Steel Ltd Manufacture of hot rolled high strength steel plate excellent in workability
JP4781563B2 (en) * 2001-06-20 2011-09-28 新日本製鐵株式会社 High strength hot-rolled steel sheet with excellent bake hardenability and method for producing the same
JP5662903B2 (en) * 2010-11-18 2015-02-04 株式会社神戸製鋼所 High-strength steel sheet with excellent formability, warm working method, and warm-worked automotive parts

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114817A (en) * 1974-07-30 1976-02-05 Nippon Steel Corp PURESUYOKOKYODONETSUENKOHANNO SEIZOHOHO
JPS5821010B2 (en) * 1975-11-14 1983-04-26 川崎製鉄株式会社 Manufacturing method for non-tempered high tensile strength hot rolled steel sheet with excellent workability
JPS5488827A (en) * 1977-12-26 1979-07-14 Kawasaki Steel Co Production of high tensile hot rolling steel plate with excellent extensibility and flanging property
JPS5842726A (en) * 1981-09-04 1983-03-12 Kobe Steel Ltd Manufacture of high strength hot rolled steel plate
JPS58141334A (en) * 1982-02-12 1983-08-22 Nippon Steel Corp Production of hot rolled steel plate having >=60kgf/mm2 tensile strength and excellent workability and weldability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388626A (en) * 1989-08-30 1991-04-15 Daiichi Seiki Kogyo Kk Sheet material feeding device

Also Published As

Publication number Publication date
JPS60181230A (en) 1985-09-14

Similar Documents

Publication Publication Date Title
US4502897A (en) Method for producing hot-rolled steel sheets having a low yield ratio and a high tensile strength due to dual phase structure
JP7244716B2 (en) High-strength steel sheet with excellent collision resistance and method for manufacturing the same
JPH0949026A (en) Production of high strength hot rolled steel plate excellent in balance between strength and elongation and in stretch-flange formability
KR101299803B1 (en) Method for manufacturing low-alloy high-strength cold rolled thin steel sheet with excellent weldability
CN110088331B (en) Hot-rolled steel sheet for electric resistance welded steel pipe having excellent weldability and method for producing same
JP2000273577A (en) High tensile strength hot rolled steel plate excellent in stretch-flanging workability and material stability and its production
JPS6237089B2 (en)
KR20160073494A (en) High strength hot rolled steel sheet having excellent bake hardenability and high burring workability and method for manufacturing thereof
JPH0432512A (en) Production of hot rolled high strength dual-phase steel plate for working
CN111511949B (en) Hot-rolled steel sheet having excellent expansibility and method for producing same
JP5381154B2 (en) Cold-rolled steel sheet excellent in strength-ductility balance after press working and paint baking and method for producing the same
JPH0248608B2 (en)
JPS647132B2 (en)
JP3539545B2 (en) High-tensile steel sheet excellent in burring property and method for producing the same
JPH0582458B2 (en)
JP3169293B2 (en) Automotive thin steel sheet excellent in impact resistance and method for producing the same
JPS63100126A (en) Manufacture of hot rolled high tension steel for resistance welded steel pipe having superior workability
JP4507364B2 (en) Manufacturing method of high strength hot-rolled steel sheet
JPS647133B2 (en)
CN111363978A (en) Welding softening resistant ferrite martensite hot-rolled dual-phase steel and manufacturing method thereof
JPH04276024A (en) Manufacture of high strength hot rolled steel sheet excellent in stretch-flanging property
JP7244715B2 (en) Hot-rolled steel sheet with excellent durability and its manufacturing method
JPS6213533A (en) Manufacture of high strength steel sheet having superior bending characteristic
JPH02179847A (en) Hot rolled steel plate excellent in workability and its production
JPH0543768B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term