JPS647043Y2 - - Google Patents
Info
- Publication number
- JPS647043Y2 JPS647043Y2 JP1981176203U JP17620381U JPS647043Y2 JP S647043 Y2 JPS647043 Y2 JP S647043Y2 JP 1981176203 U JP1981176203 U JP 1981176203U JP 17620381 U JP17620381 U JP 17620381U JP S647043 Y2 JPS647043 Y2 JP S647043Y2
- Authority
- JP
- Japan
- Prior art keywords
- lug
- tire
- tread
- grooves
- lug grooves
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000010276 construction Methods 0.000 claims description 5
- 230000017525 heat dissipation Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 238000009825 accumulation Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
Landscapes
- Tires In General (AREA)
Description
本考案は建設車両用空気入りタイヤ、特に全体
としてラグ配列になるトレツドパターンを有する
建設車両用空気入りタイヤに関する。
この種のタイヤにおいて基本的性能として要求
される点は牽引性、耐摩耗性、耐熱性および耐ラ
グ欠け性にすぐれていることである。
最近に至り、車両の大形化、高速化に伴つてタ
イヤの使用条件も高速走行に移行しつつあり、そ
の結果、タイヤも大型化してタイヤ各部が分厚く
なり、熱の内部蓄積が過大となり、熱による各部
材の劣化により所謂セパレーシヨン損傷が目立つ
てきている。
そこで耐熱性を向上する対策として、(イ)トレツ
ドゴムの配合を変更すること、(ロ)カーカス構造を
変更して発熱量の減少をはかること、(ハ)トレツド
パターンにおける溝底部からカーカス部表面まで
のアンダートレツド厚さを減少して、その分だけ
トレツド溝を深くし、放熱量の増加をはかるこ
と、などの試みが成されたが、いずれの対策も十
分とは云えなく夫々欠点を有していた。
すなわち、(イ)の対策はゴム配合を低発熱化のも
のにすればする程、耐摩耗性、耐カツト性(耐ラ
グ欠け性)がそこなわれるという二律背反の傾向
があり、(ロ)の対策は耐熱性の向上をはかる点で余
り効果が期待できなく、さらに(ハ)の対策は耐摩耗
性、耐ラグ欠け性が却つてそこなわれるなどいず
れも欠点があつた。
かかる実状に対処して本考案は成されたもので
あつて、本考案ではタイヤが摩耗するにつれてト
レツド厚みが減少し、その結果熱の内部蓄積が減
ることに注目して、トレツドの肉厚の大きい走行
初期においては放熱効果を十分に発揮し、トレツ
ド肉厚が減少して熱の内部蓄積が小さくなる走行
中期から末期においては、耐摩耗性が増加し、か
つ走行初期においても十分な耐ラグ欠け性を有す
るタイヤを提供するに至つたものである。
かかる目的を達成せしめるべく、熱の内部蓄積
が大きい走行初期の状態において主として放熱効
果を高めるためのラグ副溝を存せしめ、熱の内部
蓄積が少くなる走行中期から末期の状態において
は耐摩耗性を高めるためにラグ副溝が消減する如
き形態をなすトレツドパターンを形成したもので
あつて、特に16.00(タイヤ巾、吋)−25(リム直
径、吋)を最小とする標準型または、2.05−25を
最小とするワイドベース型の建設車両用空気入り
タイヤにおいて、全体として円周方向に略々直交
叉し、少くともその一端で開口する溝で形成され
たラグ配列になるトレツドパターンを有してい
て、ラグ主溝と、隣接する前記ラグ主溝の間にト
レツドの両側の縁部からタイヤの中心線に向つて
前記ラグ主溝にほゞ平行させたラグ副溝とが交互
に設けられており、ラグ主溝に対する副溝の巾お
よび深さの百分率がタイヤ円周方向面上、それぞ
れ20〜100%および30〜70%であり、かつラグ副
溝のタイヤ表面における巾が少くとも15mmである
ことを特徴とする。
かかる特徴を有する本考案空気入りタイヤは、
第1図にトレツドパターンが示され、第2図にト
レツドの一部が拡大断面示されているように、建
設車両用タイヤのクラウン部1の表面に、全体と
してはラグ配列になるトレツドパターンから明ら
かなように、クラウン部1には、タイヤ軸方向に
僅かな交叉角を存し横切らせたラグ主溝2…と、
隣接するラグ主溝2,2間にトレツドの両側の縁
部すなわちトレツド部とシヨルダー部との境界部
分からタイヤの中心線に向つて前記ラグ主溝に
ほゞ平行させたラグ副溝3…とが設けられ、ラグ
主溝2とラグ副溝3とは交互に配設されている。
第1図に図示するものはラグ主溝2、ラグ副溝
3が何れも真直ぐに延びており、ラグ主溝2がト
レツドの全巾を横断しているのに対して、ラグ副
溝3はトレツドの中心に至る手前で終らせること
により、該中心の両側に夫々延在せしめている。
一方、第3図に示したものは、ラグ主溝2、ラ
グ副溝3ともにトレツド中心を挾む両側に夫々延
在せしめると共に、トレツドの両側の縁部から
夫々トレツド中心線に向き、かつ互いに向い合つ
た主溝、副溝一対のラグ溝の多数をタイヤ円周方
向に主、副交互に配設しており、さらにラグ主溝
2、ラグ副溝3は何れも折曲形状となつている。
かかる形状となしたラグ主溝2とラグ副溝3と
は、次の如く寸法上に特定の条件を有するもので
あつて、まずラグ副溝3のタイヤ軸方向長さは
トレツドの半巾Lに対して短くとも0.3Lであるこ
とが好ましく、また、第2図の断面図を併せて参
照しながら説明すると、ラグ主溝2の巾をW、深
さをHとし、ラグ副溝3の巾をw、深さをhとし
た場合、w=(0.2〜1.0)W,h=(0.3〜0.7)H
の寸法関係が成立するように両者の寸法を決定す
ることが好ましく、その結果、タイヤの耐熱性ま
たは放熱効果、耐摩耗性、耐ラグ欠け性にすぐれ
たタイヤが得られるものである。
たゞしwは小さくては放熱効果が期待できない
ので15mm以上とすることが望ましい。
上述する如き寸法関係が特定されたのは、ラグ
副溝3の巾wが小さすぎるとタイヤの放熱効果が
期待できなく、一方、大きすぎると耐摩耗性、耐
ラグ欠け性に劣るものであり、さらにラグ副溝3
の深さhが浅すぎると放熱性が悪く一方、深すぎ
ると耐摩耗性および耐ラグ欠け性に劣ることは理
論的に立証されるところであり、従つて試験品に
よつて数多くの実験を重ねた結果、上述の寸法関
係が条件として適当なものであることが裏付けさ
れたおである。
以下実施例によつて説明する。
タイヤサイズ E−3、18.00−33 32PR カ
ーカス ナイロン6、1890d/2コード
使用
本考案によるタイヤ AおよびB
従来のタイヤ CおよびD
本考案タイヤA,Bとラグ副溝を有しない従来
タイヤC,Dとについて比較試験を行つた結果は
下記第1表の通りである。
但し、第1表の本考案タイヤA,Bの欄中、
( )内数字は夫々ラグ副溝3に係る寸法を表し
ている。
また、トレツド縁部よりトレツド中心線に向つ
てトレツド巾2×Lの1/8および1/4だけ近寄つた
それぞれのトレツド上の位置を1/8点、1/4点とす
る。
The present invention relates to pneumatic construction vehicle tires, and more particularly to pneumatic construction vehicle tires having a generally lug tread pattern. The basic performance requirements for this type of tire are excellent traction, wear resistance, heat resistance, and resistance to lug chipping. Recently, as vehicles have become larger and faster, the conditions under which tires are used have also shifted to higher speeds.As a result, tires have become larger and each part of the tire has become thicker, resulting in excessive internal heat accumulation. Due to the deterioration of each member due to heat, so-called separation damage is becoming noticeable. Therefore, as measures to improve heat resistance, (a) changing the composition of the tread rubber, (b) changing the carcass structure to reduce the amount of heat generated, and (c) working from the groove bottom to the carcass surface in the tread pattern. Attempts have been made to reduce the undertread thickness and deepen the tread groove by that amount in order to increase the amount of heat dissipation, but none of these measures has been sufficient and each has its own drawbacks. had. In other words, countermeasure (a) tends to be contradictory in that the lower the heat generation of the rubber compound, the more the wear resistance and cut resistance (lag chipping resistance) are impaired. The countermeasure was not expected to be very effective in terms of improving heat resistance, and the countermeasure (c) also had drawbacks, such as the wear resistance and lug chipping resistance being rather impaired. The present invention was developed in response to this situation, and the present invention focuses on the fact that as a tire wears, the tread thickness decreases, and as a result, the internal accumulation of heat decreases. At the beginning of a long run, the heat dissipation effect is sufficient, and at the middle to end of the run, when the tread wall thickness decreases and the internal accumulation of heat becomes smaller, the wear resistance increases, and even at the beginning of the run, there is sufficient lag resistance. This has led to the provision of a tire that is resistant to chipping. In order to achieve this purpose, the lug sub-grooves are mainly used to enhance the heat dissipation effect during the early stages of running when there is a large amount of internal heat accumulation, and the lug grooves are used to improve wear resistance during the mid to late stages of running when the internal heat accumulation is low. A tread pattern is formed in which the lug minor grooves disappear in order to increase the tread pattern, and in particular, the standard type with a minimum of 16.00 (tire width, inches) - 25 (rim diameter, inches) or 2.05 A pneumatic tire for construction vehicles of a wide base type with a minimum diameter of -25 has a tread pattern that is an array of lugs that are generally perpendicular to the circumferential direction and open at least at one end. The main lug grooves and the sub-lug grooves, which are substantially parallel to the main lug grooves from the edges of both sides of the tread toward the center line of the tire, alternate between the main lug grooves and the main lug grooves. The width and depth percentages of the minor grooves relative to the main lug grooves are 20 to 100% and 30 to 70%, respectively, on the tire circumferential surface, and the width of the minor lug grooves on the tire surface is small. Both are characterized by being 15mm. The pneumatic tire of the present invention having such characteristics is
The tread pattern is shown in FIG. 1, and a portion of the tread is shown in an enlarged cross-section in FIG. As is clear from the pattern, the crown portion 1 includes lug main grooves 2 that cross each other with a slight intersecting angle in the axial direction of the tire.
Between the adjacent lug main grooves 2, 2 are provided lug sub grooves 3 extending substantially parallel to the lug main grooves from the edges on both sides of the tread, that is, the boundary between the tread part and the shoulder part, toward the center line of the tire. are provided, and the lug main grooves 2 and the lug sub grooves 3 are arranged alternately. In the case shown in FIG. 1, both the lug main groove 2 and the lug sub-groove 3 extend straight, and while the lug main groove 2 crosses the entire width of the tread, the lug sub-groove 3 By terminating short of the center of the tread, it extends on each side of the center. On the other hand, in the case shown in FIG. 3, both the lug main groove 2 and the lug sub-groove 3 extend on both sides of the tread center, and extend toward the tread center line from the edges of both sides of the tread. A large number of lug grooves, consisting of a main groove and a pair of sub-grooves facing each other, are arranged alternately in the circumferential direction of the tire, and furthermore, the lug main groove 2 and the lug sub-groove 3 are both bent. There is. The lug main groove 2 and the lug sub-groove 3 having such shapes have specific dimensions in terms of the following conditions. First, the length of the lug sub-groove 3 in the tire axial direction is equal to the half width L of the tread. In contrast, it is preferable that the length is at least 0.3L. Also, referring to the sectional view of FIG. 2, the width of the lug main groove 2 is W, the depth is H, and the width of the lug minor groove 3 is When w is the depth and h is the depth, w=(0.2~1.0)W, h=(0.3~0.7)H
It is preferable to determine the dimensions of the two so that the following dimensional relationship is established, and as a result, a tire with excellent heat resistance or heat dissipation effect, abrasion resistance, and lug chipping resistance can be obtained. However, if w is too small, no heat dissipation effect can be expected, so it is desirable to set it to 15 mm or more. The above-mentioned dimensional relationship was specified because if the width w of the lug minor groove 3 is too small, the heat dissipation effect of the tire cannot be expected, whereas if it is too large, the wear resistance and lug chipping resistance are poor. , and further lug minor groove 3
It has been theoretically proven that if the depth h is too shallow, heat dissipation will be poor, while if it is too deep, wear resistance and lug chipping resistance will be poor. As a result, it was confirmed that the above-mentioned dimensional relationship is appropriate as a condition. This will be explained below using examples. Tire size E-3, 18.00-33 32PR Carcass Nylon 6, 1890d/2 cord used Tires according to the present invention A and B Conventional tires C and D Inventive tires A and B and conventional tires C and D without lug grooves The results of a comparative test are shown in Table 1 below. However, in the columns of invention tires A and B in Table 1,
The numbers in parentheses represent the dimensions of the lug minor groove 3, respectively. Further, positions on the tread that are closer to the tread center line by 1/8 and 1/4 of the tread width 2×L from the tread edge are defined as 1/8 points and 1/4 points, respectively.
【表】
※、ヒートセパレーシヨンのため走行を中
止した。
ここでタイヤTKPH値(Ton−Km−Per−
Hour)の測定は次のようにして行つた。
タイヤの空気圧5.6Kg/cm2、荷重11.5トン、室
温38℃、ドラム径1.7mで時速18,20,22Km/h
の3レベルにてタイヤ内温度がほゞ一定の飽和温
度に達するまでドラム上を走行させ、新品タイヤ
A,B,C,D4種類につき、それぞれのTKPH
でのタイヤ内最高温度を第5図の如くグラフ化
て、112℃でのTKPHを読み取る。
このTKPHはタイヤの故障の1つであるヒー
トセパレーシヨンがタイヤ内温度に依存する事実
にもとづき、室温38℃時にタイヤ内最高温度が
112℃に至るTKPH値をそのタイヤの固有の
TKPH値と呼び、発熱面からみた可能仕事量評
価値とするもので、TKPH=タイヤ荷重(ton)
×速度(Km/h)により算出する。
一方、摩耗寿命は空気圧5.6Kg/cm2で32トンリ
ヤダンプ車を使用しての結果である。
前記第1表によると、ラグ副溝3を有する本考
案タイヤA,BはTKPH値が高くすぐれた負荷
能力を持つていることが明らかにされる。
さらに、本考案は摩耗寿命においてもラグ副溝
3を設けたにもかかわらず可成りすぐれているこ
とがわかる。
次に第4図においてトレツド摩耗量とタイヤ温
度との関係を、本考案タイヤ(実線)と従来タイ
ヤ(破線、ラグ副溝を有しなく他は同じ)との比
較で示しているように、新品の走行初期における
タイヤ発熱に対するラグ副溝の放熱効果がすぐれ
ていることが顕著に現われている。
本考案は以上詳記した如く、耐熱性、耐摩耗性
の向上に寄与してタイヤ寿命を延ばすことが可能
であり、とくに苛酷な条件の下で使用する建設車
両に装着してすぐれた効果を奏する空気入りタイ
ヤである。[Table] *Running was canceled due to heat separation.
Here, tire TKPH value (Ton−Km−Per−
The measurement of (Hour) was carried out as follows. Tire pressure 5.6Kg/ cm2 , load 11.5 tons, room temperature 38℃, drum diameter 1.7m, 18, 20, 22Km/h
The tire was run on the drum at three levels until the tire temperature reached a constant saturation temperature, and the TKPH of each of the four types of new tires A, B, C, and D was measured.
Graph the maximum temperature inside the tire as shown in Figure 5 and read the TKPH at 112℃. This TKPH is based on the fact that heat separation, which is one of the tire failures, depends on the tire internal temperature.
TKPH values up to 112℃ are unique to that tire.
It is called the TKPH value and is the evaluation value of possible work from the perspective of heat generation. TKPH = Tire load (ton)
Calculated by x speed (Km/h). On the other hand, the wear life is the result of using a 32-ton rear dump truck at an air pressure of 5.6 kg/cm 2 . According to Table 1, the tires A and B of the present invention having the lug minor grooves 3 have a high TKPH value and have excellent load capacity. Furthermore, it can be seen that the present invention is considerably superior in terms of wear life despite the provision of the lug sub-groove 3. Next, in Fig. 4, the relationship between tread wear amount and tire temperature is shown by comparing the tire of the present invention (solid line) and the conventional tire (dashed line, no lug minor grooves, otherwise the same). It has been clearly shown that the lug minor grooves have an excellent heat dissipation effect on the heat generated by a new tire in the early stages of running. As detailed above, the present invention contributes to improving heat resistance and abrasion resistance, thereby extending the life of tires, and is especially effective when installed on construction vehicles used under harsh conditions. It is a pneumatic tire that plays.
第1図、第3図は本考案タイヤの各例に係るト
レツド部のトレツドパターン図、第2図は第1図
におけるA−A′線矢視拡大断面図、第4図およ
び第5図はタイヤ温度とTKPHとの関係比較図
表およびタイヤ温度とトレツド摩耗量との関係比
較図表である。
2……ラグ主溝、3……ラグ副溝。
1 and 3 are tread pattern diagrams of the tread portion of each example of the tire of the present invention, FIG. 2 is an enlarged sectional view taken along the line A-A' in FIG. 1, and FIGS. 4 and 5. are a chart comparing the relationship between tire temperature and TKPH and a chart comparing the relationship between tire temperature and tread wear amount. 2...Lug main groove, 3...Lag minor groove.
Claims (1)
小とする標準型または、20.5−25を最小とするワ
イドベース型の建設車両用空気入りタイヤにおい
て、全体として円周方向に略々直交叉し、少くと
もその一端で開口する溝で形成されたラグ配列に
なるトレツドパターンを有していて、ラグ主溝
と、隣接する前記ラグ主溝の間にトレツドの両側
の縁部からタイヤの中心線に向つて前記ラグ主溝
にほぼ平行させたラグ副溝とが交互に設けられて
おり、ラグ主溝に対するラグ副溝の巾および深さ
の百分率がタイヤ円周方向面上、それぞれ20〜
100%および30〜70%であり、かつ、ラグ副溝の
タイヤ表面における巾が少くとも15mmであること
を特徴とする建設車両用空気入りタイヤ。 For standard type pneumatic tires for construction vehicles with a minimum of 16.00 (tire width, inches) - 25 (rim diameter, inches) or wide base type pneumatic tires with a minimum of 20.5 - 25, approximately in the circumferential direction as a whole. The tread has a tread pattern that is an array of lugs formed by orthogonal grooves that are open at least at one end thereof, and between the main lug grooves and the adjacent main lug grooves, from the edges of the tread on both sides. Sub-lug grooves substantially parallel to the main lug grooves are alternately provided toward the center line of the tire, and the width and depth percentages of the sub-lug grooves relative to the main lug grooves are such that 20~ each
100% and 30 to 70%, and the width of the lug minor groove on the tire surface is at least 15 mm.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17620381U JPS5879405U (en) | 1981-11-26 | 1981-11-26 | Pneumatic tires for construction vehicles |
CA000414145A CA1182733A (en) | 1981-11-26 | 1982-10-26 | Pneumatic tires for construction vehicles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17620381U JPS5879405U (en) | 1981-11-26 | 1981-11-26 | Pneumatic tires for construction vehicles |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5879405U JPS5879405U (en) | 1983-05-28 |
JPS647043Y2 true JPS647043Y2 (en) | 1989-02-23 |
Family
ID=16009422
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17620381U Granted JPS5879405U (en) | 1981-11-26 | 1981-11-26 | Pneumatic tires for construction vehicles |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPS5879405U (en) |
CA (1) | CA1182733A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5311726A (en) * | 1976-07-21 | 1978-02-02 | Kubota Ltd | Stalk holding and conveying device |
JPS5438005A (en) * | 1977-09-01 | 1979-03-22 | Bridgestone Corp | Pneumatic tire for heavy vehicle |
JPS56124502A (en) * | 1979-11-02 | 1981-09-30 | Bayer Ag | Rubber spring tire |
-
1981
- 1981-11-26 JP JP17620381U patent/JPS5879405U/en active Granted
-
1982
- 1982-10-26 CA CA000414145A patent/CA1182733A/en not_active Expired
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5311726A (en) * | 1976-07-21 | 1978-02-02 | Kubota Ltd | Stalk holding and conveying device |
JPS5438005A (en) * | 1977-09-01 | 1979-03-22 | Bridgestone Corp | Pneumatic tire for heavy vehicle |
JPS56124502A (en) * | 1979-11-02 | 1981-09-30 | Bayer Ag | Rubber spring tire |
Also Published As
Publication number | Publication date |
---|---|
JPS5879405U (en) | 1983-05-28 |
CA1182733A (en) | 1985-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4723584A (en) | Pneumatic tires having excellent traction and braking performances | |
EP2163405B1 (en) | Pneumatic tire | |
US5343914A (en) | All season pneumatic tire | |
JP4589680B2 (en) | Pneumatic tire | |
JP4777547B2 (en) | Pneumatic tire | |
EP1498288A1 (en) | Pneumatic tire | |
JP2000158916A (en) | Pneumatic tire | |
JP3876156B2 (en) | Pneumatic tire | |
JPS61160303A (en) | Pneumatic tire | |
JP3561297B2 (en) | Pneumatic radial tire | |
US4739812A (en) | Pneumatic tire tread with recessed shoulder portion | |
JPH1148719A (en) | Pneumatic tire for heavy load | |
JP2749879B2 (en) | Pneumatic tire with asymmetric tread | |
JPH04228308A (en) | Steel radial tire for heavy load | |
US5016695A (en) | Pneumatic tire having the highest rigidity tread rib offset from the equatorial line | |
JP2639750B2 (en) | Pneumatic radial tire | |
JPS647043Y2 (en) | ||
JP3397226B2 (en) | Pneumatic tire | |
JP2006051836A (en) | Pneumatic tire | |
JP4285617B2 (en) | Pneumatic radial tire | |
JP3967917B2 (en) | Pneumatic tire | |
JP2000043514A (en) | Pneumatic tire | |
JPH0386606A (en) | Pneumatic tire having superior high speed durability | |
JPS63141804A (en) | Pneumatic tire | |
JP2005349970A (en) | Pneumatic tire |