JPS646862B2 - - Google Patents

Info

Publication number
JPS646862B2
JPS646862B2 JP23526283A JP23526283A JPS646862B2 JP S646862 B2 JPS646862 B2 JP S646862B2 JP 23526283 A JP23526283 A JP 23526283A JP 23526283 A JP23526283 A JP 23526283A JP S646862 B2 JPS646862 B2 JP S646862B2
Authority
JP
Japan
Prior art keywords
wire
seed
seed wire
molten metal
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23526283A
Other languages
Japanese (ja)
Other versions
JPS60127068A (en
Inventor
Teruyuki Takayama
Tetsuo Yamaguchi
Masaaki Sakai
Kenichi Myauchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Cable Works Ltd
Original Assignee
Fujikura Cable Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Cable Works Ltd filed Critical Fujikura Cable Works Ltd
Priority to JP23526283A priority Critical patent/JPS60127068A/en
Publication of JPS60127068A publication Critical patent/JPS60127068A/en
Publication of JPS646862B2 publication Critical patent/JPS646862B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/008Continuous casting of metals, i.e. casting in indefinite lengths of clad ingots, i.e. the molten metal being cast against a continuous strip forming part of the cast product

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 この発明は銅の連続鋳造圧延法の一方法として
知られているデイツプフオーミング法に関するも
のである。 従来技術 銅荒引線の製造には従来いわゆるデイツプフオ
ーミング法が実用化されているが、このデイツプ
フオーミング法を第1図を参照して説明すると、
底部に種線挿入口1が形成された黒鉛等の耐火物
からなるるつぼ2内に溶解炉3から溶銅供給口4
を経て溶銅5を供給し、一方同じく銅からなる所
定径の種線6をるつぼ2の下方からそのるつぼ2
内に種線挿入口1を経て連続的に挿入して溶銅5
中に浸漬し、さらにその種線6をるつぼ2内の溶
銅5中から垂直上方へ連続的に引上げて冷却塔7
内において水冷等により冷却し、これによつて種
線6を芯として周囲に溶銅が付着凝固されて種線
6の径よりも大径となつた鋳造線を連続的に得、
さらに、図示しない熱間圧延装置で所望の径の銅
荒引線に加工し、図示しない巻取装置に巻取るも
のである。 ところで、上述の方法で銅種線のまわりに銅合
金を付着凝固させるなど種線と付着凝固部との材
質が異なるクラツド材を製造する場合、用途に応
じて種線と付着凝固部との断面積の比率、すなわ
ちクラツド率を適宜な数値に設定する必要があ
る。そのようにすることによつて例えば種線が鋼
で、付着凝固部が銅からなる銅被覆鋼線の場合、
用途に応じて鋼線の強度と銅の導電線を種々設定
し、用途に応じた特性を備えた材料を広範囲に設
定することができる。 その場合、付着凝固部の断面積の比率を大きく
することは前述したデイツプフオーミング法の工
程のうち種線6をるつぼ2内に連続してどぶ漬け
する工程を繰り返し行なうことによつて行なえ、
また付着凝固部の断面積の比率を小さくすること
は種線6のるつぼ2内における浸漬時間を短縮す
ることによつて行なうことができる。しかし、そ
れ等の方法では他の諸設備とのかね合いで制約を
受ける等の問題があり、クラツド率の調節を簡易
に行なうことはできなかつた。 発明の目的 この発明は以上の従来の事情に鑑みてなされた
ものであつて、クラツド率を簡易に調節してクラ
ツド材を製造することができるデイツプフオーミ
ング法を提供することを目的とするものである。 発明に関する基礎事実 前述のデイツプフオーミング法を行なう場合に
種線6をるつぼ2内を通過させることによつてる
つぼ2内の溶湯が種線6に付着凝固する量は種線
6がるつぼ2内を通過する過程で種線6とるつぼ
2内溶湯との間で生じる熱の授受量によつて決定
される。すなわち、種線6をるつぼ2の下方から
上方へ通過させる間に種線6が昇温される熱量、
すなわち種線が受取る熱量と、溶湯が凝固点まで
冷却される間に放出される熱量および溶湯が凝固
する際に発生する潜熱の合計熱量、すなわち溶湯
が種線に付着凝固する際に種線に授ける熱量とが
釣り合つて、種線上にはその釣り合つた熱量に相
当する分の付着凝固量が生ずる。 また、その場合種線6が受取ることができる熱
量はるつぼ2入口での種線6の温度から種線6の
融点に至らない温度まで種線6を昇温する程度の
熱量である。したがつて、そのことから種線6が
るつぼ2中を一回通過する間に種線6に付着凝固
させ得る溶湯量の上限は種線6の径・材質によつ
て自ずから定まる。例えば銅種線に溶銅を付着凝
固させる場合、径12.7mmの種線1Kgあたりの溶銅
付着凝固量の上限は約1.7Kgであつて、その場合
鋳造線の総重量は約2.7Kgとなる。したがつて付
着比すなわちクラツド率はγ=2.7/1=2.7とな
り、またこれを鋳造線の全体横断面積に対する付
着凝固部分の断面積比に換算すると1.7/2.7×
100=63(%)となる。 さらに前述の事実からるつぼ2内を通過する種
線6の温度を種々設定すれば、種線6が受取るこ
とができる熱量を設定することができ溶湯が種線
6に付着凝固する量も種々に設定することができ
る。すなわち現象的に見れば、種線の温度が低け
れば、種線を溶融金属中から引上げる際の種線上
での溶融金属の凝固が速やかに進行し、その結果
溶融金属の付着凝固量が多くなり、これに対し種
線の温度が高ければ、溶融金属中から種線を引上
げる際の種線上での溶融金属の凝固が遅れ、その
結果溶融金属の付着凝固量が少なくなるから、種
線の予熱温度を制御することによつて種線上の溶
融金属の付着凝固量を調整することができるので
ある。 発明の構成 すなわちこの発明のデイツプフオーミング法
は、芯となる種線を種線の材質とは異なる溶融金
属中に連続的に浸漬し、続いてその種線を溶融金
属中から上方へ連続的に引上げて、種線の周囲に
その溶融金属を付着凝固せしめるデイツプフオー
ミング法において、溶融金属に浸漬する前に非酸
化性雰囲気中で種線を予熱し、かつその予熱温度
を制御することによつて種線周囲の金属の付着凝
固量を制御することを特徴とするものである。 以下にこの発明をさらに具体的に説明する。 第2図はこの発明の実施に供される装置を示
し、るつぼ2の下方入口1に接続して非酸化性雰
囲気を形成する真空器8が設けられ、その真空器
8には皮むきダイス9が配設された種線導入口1
0と排気口11が設けられている。また真空容器
8内部には上方に予熱器12が配設され、またそ
の下方にキヤプスタン13が配設されている。 皮むきダイス9によつて表面層が除去されなが
ら導入口10から導入された種線6はキヤプスタ
ン13によつて引取られ、予熱器12を通過して
るつぼ2の下方入口1から上方へ供給される。 この発明では上述のように種線6が予熱器12
を通過する間に、種線6が所要温度に予熱され
る。また、真空容器8内は排気口6から排気され
てそれによつて予熱された種線6の酸化が防止さ
れる。 ここで種線6に対する予熱温度は種線材質の融
点未満である必要があり、また同時に付着凝固金
属の凝固点未満である必要があることから、その
結果として種線6に対する予熱温度は両金属の融
点よりも低い温度に限定される。 また予熱器12としては高精度に種線6の予熱
温度を設定できる電気的加熱方法が望ましく、高
周波誘導加熱、通電加熱等が用いられる。 さらに真空容器8内は20torr以下望ましくは
10torrとするのがよく、それを越える場合は、種
線が酸化されて得られる製品の材質が悪化する。
なお真空容器8内は必ずしも真空状態とする必要
はなく、例えばアルゴンガス等の還元性ガスによ
つて雰囲気を形成するようにしてもよい。 実施例 以下にこの発明の実施例と比較例について記
す。 実施例 種線として径12.7mmの鋼線を使用し、付着凝固
溶湯として銅を用い、前述の第2図に示す装置で
予熱器12による予熱温度を種々変化させて、デ
イツプフオーミング法を行ない、銅被覆鋼線を製
造した。その際、鋼線の供給速度と、るつぼ2内
の溶銅の高さを変えることによつて鋼線の溶銅中
での浸漬時間を種々変化させた。 比較例 実施例と同じ鋼線と溶銅を用いて従来のデイツ
プフオーミング法を行なつて銅被覆鋼線を製造し
た。 以上の結果得られた各銅被覆鋼線について付着
凝固部の銅面積比を測定した。その結果を第1表
に示す。
INDUSTRIAL APPLICATION FIELD This invention relates to the dip forming method, which is known as a method for continuous casting and rolling of copper. Prior Art Conventionally, the so-called dip forming method has been put to practical use in the production of copper rough drawn wire, but this dip forming method will be explained with reference to Fig. 1.
A molten copper supply port 4 is inserted from a melting furnace 3 into a crucible 2 made of a refractory material such as graphite, which has a seed wire insertion port 1 formed at the bottom.
Molten copper 5 is supplied through the crucible 2, and a seed wire 6 of a predetermined diameter also made of copper is supplied from below the crucible 2
The molten copper 5 is continuously inserted into the seed wire through the seed wire insertion port 1.
The seed wire 6 is then continuously pulled up vertically from the molten copper 5 in the crucible 2 to the cooling tower 7.
In this way, molten copper adheres and solidifies around the seed wire 6 as a core, thereby continuously obtaining a cast wire having a diameter larger than the diameter of the seed wire 6.
Further, the copper wire is processed into a rough drawn copper wire of a desired diameter using a hot rolling device (not shown), and then wound onto a winding device (not shown). By the way, when manufacturing a clad material in which the seed wire and the deposited solidified part are made of different materials, such as by adhering and solidifying a copper alloy around the copper seed wire using the method described above, it is necessary to separate the seed wire and the deposited solidified part depending on the application. It is necessary to set the area ratio, that is, the cladding ratio, to an appropriate value. By doing so, for example, in the case of a copper-coated steel wire where the seed wire is made of steel and the deposited solidified part is made of copper,
The strength of the steel wire and the conductive copper wire can be varied depending on the application, and a wide range of materials can be selected with characteristics suitable for the application. In that case, the ratio of the cross-sectional area of the adherent solidified portion can be increased by repeating the step of continuously soaking the seed wire 6 in the crucible 2, which is part of the step of the dip forming method described above. ,
Further, the ratio of the cross-sectional area of the adhered and solidified portion can be reduced by shortening the immersion time of the seed wire 6 in the crucible 2. However, these methods have problems such as being limited by the balance with other equipment, and it is not possible to easily adjust the cladding ratio. Purpose of the Invention The present invention has been made in view of the above-mentioned conventional circumstances, and it is an object of the present invention to provide a dip forming method that can easily adjust the cladding ratio and produce a cladding material. It is something. Basic facts regarding the invention When performing the above-mentioned dip forming method, when the seed line 6 is passed through the crucible 2, the amount of molten metal in the crucible 2 that adheres to the seed line 6 and solidifies is the same as the amount that the seed line 6 is in the crucible 2. It is determined by the amount of heat exchanged between the seed wire 6 and the molten metal in the crucible 2 during the process of passing through the crucible. That is, the amount of heat that increases the temperature of the seed wire 6 while passing the seed wire 6 from below to above the crucible 2;
In other words, the total heat amount of the heat received by the seed wire, the amount of heat released while the molten metal is cooled to the freezing point, and the latent heat generated when the molten metal solidifies, that is, the total amount of heat that is imparted to the seed wire when the molten metal adheres to the seed wire and solidifies. When the amount of heat is balanced, an amount of adhesion and coagulation corresponding to the balanced amount of heat is generated on the seed line. Further, in this case, the amount of heat that the seed wire 6 can receive is enough to raise the temperature of the seed wire 6 from the temperature of the seed wire 6 at the entrance of the crucible 2 to a temperature that does not reach the melting point of the seed wire 6. Therefore, the upper limit of the amount of molten metal that can be solidified on the seed wire 6 while the seed wire 6 passes through the crucible 2 once is determined by the diameter and material of the seed wire 6. For example, when molten copper is deposited and solidified on a copper seed wire, the upper limit of the amount of molten copper deposited and solidified per 1 kg of seed wire with a diameter of 12.7 mm is approximately 1.7 kg, and in that case, the total weight of the cast wire is approximately 2.7 kg. . Therefore, the adhesion ratio, or cladding ratio, is γ = 2.7/1 = 2.7, and when converted to the ratio of the cross-sectional area of the adhered solidified portion to the entire cross-sectional area of the cast wire, it is 1.7/2.7×
100=63(%). Furthermore, based on the above-mentioned fact, if the temperature of the seed wire 6 passing through the crucible 2 is set variously, the amount of heat that the seed wire 6 can receive can be set, and the amount of molten metal that adheres to and solidifies on the seed wire 6 can also be varied. Can be set. In other words, from a phenomenon perspective, if the temperature of the seed wire is low, solidification of the molten metal will proceed quickly on the seed wire when the seed wire is pulled up from the molten metal, and as a result, a large amount of molten metal will adhere and solidify. On the other hand, if the temperature of the seed wire is high, the solidification of the molten metal on the seed wire will be delayed when the seed wire is pulled up from the molten metal, and as a result, the amount of molten metal that will stick and solidify will decrease. By controlling the preheating temperature, the amount of solidified molten metal deposited on the seed line can be adjusted. Structure of the Invention In other words, the deep forming method of the present invention involves continuously immersing a core seed wire into a molten metal different from the material of the seed wire, and then continuously dipping the seed wire upward from within the molten metal. In the dip forming method, in which the molten metal is attached and solidified around the seed wire, the seed wire is preheated in a non-oxidizing atmosphere before being immersed in the molten metal, and the preheating temperature is controlled. This method is characterized by controlling the amount of metal adhesion and solidification around the seed wire. This invention will be explained in more detail below. FIG. 2 shows an apparatus for carrying out the present invention, in which a vacuum vessel 8 is provided which is connected to the lower inlet 1 of the crucible 2 to form a non-oxidizing atmosphere, and the vacuum vessel 8 is equipped with a peeling die 9. Seed line introduction port 1 with
0 and an exhaust port 11 are provided. Further, inside the vacuum vessel 8, a preheater 12 is provided above, and a capstan 13 is provided below. The seed wire 6 introduced from the inlet 10 while the surface layer is removed by the peeling die 9 is taken up by the capstan 13, passes through the preheater 12, and is supplied upward from the lower inlet 1 of the crucible 2. Ru. In this invention, as mentioned above, the seed wire 6 is connected to the preheater 12.
While passing through, the seed wire 6 is preheated to the required temperature. Further, the inside of the vacuum container 8 is exhausted from the exhaust port 6, thereby preventing the preheated seed wire 6 from being oxidized. Here, the preheating temperature for the seed wire 6 needs to be less than the melting point of the material of the seed wire, and at the same time it needs to be less than the freezing point of the solidified metal attached, so as a result, the preheating temperature for the seed wire 6 is Limited to temperatures below the melting point. Preferably, the preheater 12 uses an electrical heating method that allows the preheating temperature of the seed wire 6 to be set with high precision, such as high-frequency induction heating, electrical heating, or the like. Furthermore, the inside of the vacuum container 8 is desirably 20 torr or less.
It is best to set the pressure to 10 torr; if it exceeds it, the seed wire will be oxidized and the quality of the product will deteriorate.
Note that the inside of the vacuum container 8 does not necessarily need to be in a vacuum state, and an atmosphere may be formed using a reducing gas such as argon gas, for example. Examples Examples and comparative examples of the present invention will be described below. Example A steel wire with a diameter of 12.7 mm was used as the seed wire, copper was used as the deposited solidified molten metal, and the preheating temperature by the preheater 12 was varied in the apparatus shown in FIG. Copper-coated steel wire was manufactured. At that time, the immersion time of the steel wire in the molten copper was varied by changing the feed rate of the steel wire and the height of the molten copper in the crucible 2. Comparative Example A copper-coated steel wire was manufactured by performing the conventional dip forming method using the same steel wire and molten copper as in the example. The copper area ratio of the deposited solidified portion was measured for each of the copper-coated steel wires obtained as above. The results are shown in Table 1.

【表】 第1表で明らかであるように種線の予熱温度が
高くなるに伴ない種線に付着した銅断面積比が減
少し、併せて種線の浸漬時間を変えることによつ
て、この例では10%〜42%の範囲で銅断面積比が
種々に設定されている。 なお、この発明の実施例は以上に限られるもの
ではなく、例えば予熱しない種線6をるつぼ2内
溶湯中を通過させ、それによつて得られた線材を
種線6として予熱してるつぼ2内溶湯中を通過さ
せる等によつて、クラツド率を小さくする場合の
みならず、クラツド率を大きくする場合にも簡易
にクラツド率の設定が行なえる。 発明の効果 以上のようにこの発明によれば、溶融金属に浸
漬する前に非酸化性雰囲気中で種線を予熱してデ
イツプフオーミング法を行ない、かつその予熱温
度を制御することにより種線の周囲の金属の付着
凝固量を調整するようにしたものであるから、ク
ラツド率を自在に設定して、用途に応じた材料特
性を有するクラツド線材を簡易に製造することが
できる。
[Table] As is clear from Table 1, as the preheating temperature of the seed wire increases, the cross-sectional area ratio of copper attached to the seed wire decreases, and by changing the immersion time of the seed wire, In this example, the copper cross-sectional area ratio is set variously in the range of 10% to 42%. Note that the embodiments of the present invention are not limited to the above, and for example, a seed wire 6 that is not preheated is passed through the molten metal in the crucible 2, and the wire rod obtained thereby is preheated as the seed wire 6 and placed in the crucible 2. By passing through the molten metal, the cladding ratio can be easily set not only when decreasing the cladding ratio but also when increasing the cladding ratio. Effects of the Invention As described above, according to the present invention, the seed wire is preheated in a non-oxidizing atmosphere before being immersed in molten metal to perform the dip forming method, and the seed wire is controlled by controlling the preheating temperature. Since the amount of adhesion and coagulation of metal around the wire is adjusted, the cladding ratio can be freely set, and a clad wire having material properties suitable for the purpose can be easily manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のデイツプフオーミング法を行な
うための設備の概略図、第2図はこの発明のデイ
ツプフオーミング法を実施するための設備の一例
を示す概略図である。 1……種線挿入口、2……るつぼ、5……溶
銅、6……種線、8……真空容器、9……皮むき
ダイス、11……排気口、12……予熱器。
FIG. 1 is a schematic diagram of equipment for carrying out the conventional dip forming method, and FIG. 2 is a schematic diagram showing an example of equipment for carrying out the dip forming method of the present invention. 1... seed wire insertion port, 2... crucible, 5... molten copper, 6... seed wire, 8... vacuum container, 9... peeling die, 11... exhaust port, 12... preheater.

Claims (1)

【特許請求の範囲】[Claims] 1 芯となる種線を種線の材質とは異なる溶融金
属中に連続的に浸漬させ、続いてその種線を溶融
金属中から上方へ連続的に引上げて、種線の周囲
にその溶融金属を付着凝固せしめるデイツプフオ
ーミング法において、溶融金属に浸漬する前に非
酸化性雰囲気中で種線を予熱し、かつその予熱温
度を制御することによつて種線の周囲の金属の付
着凝固量を制御することを特徴とするデイツプフ
オーミング法。
1 The core seed wire is continuously immersed in a molten metal different from the material of the seed wire, and then the seed wire is continuously pulled upward from the molten metal, and the molten metal is poured around the seed wire. In the deep forming method, the seed wire is preheated in a non-oxidizing atmosphere before being immersed in molten metal, and by controlling the preheating temperature, the metal around the seed wire is deposited and solidified. Deepforming method characterized by controlling the amount.
JP23526283A 1983-12-14 1983-12-14 Dip forming method Granted JPS60127068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23526283A JPS60127068A (en) 1983-12-14 1983-12-14 Dip forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23526283A JPS60127068A (en) 1983-12-14 1983-12-14 Dip forming method

Publications (2)

Publication Number Publication Date
JPS60127068A JPS60127068A (en) 1985-07-06
JPS646862B2 true JPS646862B2 (en) 1989-02-06

Family

ID=16983477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23526283A Granted JPS60127068A (en) 1983-12-14 1983-12-14 Dip forming method

Country Status (1)

Country Link
JP (1) JPS60127068A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02127358U (en) * 1989-03-30 1990-10-19
DE19509681C1 (en) * 1995-03-07 1996-05-02 Mannesmann Ag Continuous prodn. of metal strip by inversion casting
CN106694836A (en) * 2017-04-06 2017-05-24 江西理工大学 Continuous casting forming device and method for solid-liquid wrapping composite material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH616351A5 (en) * 1976-07-20 1980-03-31 Battelle Memorial Institute
JPS5511945A (en) * 1978-07-12 1980-01-28 Tokyo Seat Kk Lid for globe box
JPS5631871A (en) * 1979-08-22 1981-03-31 Nissan Motor Co Ltd Mounting structure of hinge for opening/shutting body or the like
JPS6058787B2 (en) * 1981-03-10 1985-12-21 興国鋼線索株式会社 High-speed dip coating method and device for linear bodies

Also Published As

Publication number Publication date
JPS60127068A (en) 1985-07-06

Similar Documents

Publication Publication Date Title
JPS646862B2 (en)
JP3392509B2 (en) Manufacturing method of amorphous alloy coated member
US4665970A (en) Method of producing a metallic member having a unidirectionally solidified structure
JP2005105326A (en) Method and apparatus for manufacturing coated metal wire
JPS63195253A (en) Manufacture of phosphor bronze sheet metal
RU2201311C2 (en) Method for making contact wires of copper and its alloys
US2320129A (en) Metal coating
US3158912A (en) Controlled grain size casting method
JPH0116565B2 (en)
JPH01201453A (en) Manufacture of zirconium-copper wire coated with oxygen-free copper
JPH0377869B2 (en)
JPH0249169B2 (en)
JP3208941B2 (en) Continuous casting method of high purity aluminum alloy
JP7433262B2 (en) Method for manufacturing Cu-Ni-Sn alloy and cooler used therein
JPH08120366A (en) Method for continuously casting titanium cast slab
JPH0377602B2 (en)
JPS6132110B2 (en)
JPS5832567A (en) Manufacture of metallic shot
JPS59156550A (en) Production of fine aluminum alloy wire
US3741152A (en) Apparatus for continuously teeming and solidifying virgin fluid metals
JPS6340209A (en) Very fine wire for electronic equipment
EP0149063A1 (en) Continuous molten copper cladding of ferrous alloys
JPS6117351A (en) Production of composite wire rod
JPS59156549A (en) Production of fine copper alloy wire
EP0149064A1 (en) Continuous molten copper cladding of ferrous alloys