JPS646700B2 - - Google Patents

Info

Publication number
JPS646700B2
JPS646700B2 JP56096618A JP9661881A JPS646700B2 JP S646700 B2 JPS646700 B2 JP S646700B2 JP 56096618 A JP56096618 A JP 56096618A JP 9661881 A JP9661881 A JP 9661881A JP S646700 B2 JPS646700 B2 JP S646700B2
Authority
JP
Japan
Prior art keywords
container
liquid
electrostatic
electrostatic deflection
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56096618A
Other languages
Japanese (ja)
Other versions
JPS57211557A (en
Inventor
Kazuo Oosaki
Yoshisachi Ando
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP56096618A priority Critical patent/JPS57211557A/en
Publication of JPS57211557A publication Critical patent/JPS57211557A/en
Publication of JPS646700B2 publication Critical patent/JPS646700B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1456Electro-optical investigation, e.g. flow cytometers without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Electro-optical investigation, e.g. flow cytometers without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • G01N15/149

Description

【発明の詳細な説明】 本発明はセルソータ(Cell Sorter)に関する。[Detailed description of the invention] The present invention relates to a cell sorter.

セルソータとはセル(細胞)液を滴下させなが
らその落下途中で静電界による偏向を加え各セル
の性状に応じた複数種類の容器(試験管等)に分
画且つ収集するための装置をいう。このセルソー
タにおいて前記の分画は重要な操作であり最も精
度の要求されるプロセスである。一般にこの分画
は前記の静電界が、帯電された滴下液に及ぼす静
電力によつてなされる。
A cell sorter is a device that applies a deflection by an electrostatic field while dropping cell fluid to fractionate and collect it into multiple types of containers (test tubes, etc.) depending on the properties of each cell. In this cell sorter, the above-mentioned fractionation is an important operation and a process that requires the most precision. Generally, this fractionation is achieved by the electrostatic force exerted by the electrostatic field on the charged dripping liquid.

ところで上記分画に係る部分は従来一対の静電
偏向板と、これら静電偏向板の間を通つて落下す
る滴下液を収集する複数の容器とからなる。そし
てこれら複数の容器は一対の静電偏向板間に加わ
る静電界の方向と同一の方向に略一列で配置され
ていた。この場合、滴下液をどの容器に導くかは
その静電界の方向と大きさを適宜設定することに
より定められる。ところが、この容器への案内は
必ずしも正確に行なわれなかつた。その理由は静
電界の方向と大きさを正しく設定しても、連続し
て次々と落下する滴下液の大きさあるいは質量は
区々であり、これにより意図しない容器へ収集さ
れてしまうことがしばしばあつた。又、そのよう
な滴下液毎の大きさと質量のバラツキにより、非
常に細かい分画は不可能でありかなり粗い分画し
か期待できなかつた。このため、必要に応じ、粗
く分画された後の滴下液を再び分画するというこ
とも行なわれていた。
By the way, the part related to the above-mentioned fractionation conventionally consists of a pair of electrostatic deflection plates and a plurality of containers for collecting the dripped liquid that passes between the electrostatic deflection plates. The plurality of containers were arranged approximately in a line in the same direction as the direction of the electrostatic field applied between the pair of electrostatic deflection plates. In this case, which container the dropped liquid is guided to is determined by appropriately setting the direction and magnitude of the electrostatic field. However, this guidance to the container was not always performed accurately. The reason for this is that even if the direction and magnitude of the electrostatic field are set correctly, the size or mass of the dripping liquid that falls one after another varies, and as a result, it often ends up collecting in an unintended container. It was hot. Furthermore, due to such variations in size and mass between drops, very fine fractionation was impossible and only fairly coarse fractionation could be expected. For this reason, if necessary, the dropped liquid that has been coarsely fractionated is also fractionated again.

従つて本発明の目的は滴下液の大きさ、質量の
バラツキに左右されることなく高精度な分画を行
なうことのできるセルソータを提供することであ
る。
Therefore, an object of the present invention is to provide a cell sorter that can perform highly accurate fractionation without being affected by variations in the size and mass of the dropped liquid.

上記目的に従い本発明は直交する二対の静電偏
向板を設け、これら偏向板の中心位置から放射状
に滴下液を偏向するようにしたことを特徴とする
ものである。
In accordance with the above object, the present invention is characterized in that two pairs of electrostatic deflection plates orthogonal to each other are provided, and the dripped liquid is deflected radially from the center position of these deflection plates.

以下図面に従つて本発明を説明する。 The present invention will be explained below with reference to the drawings.

第1図は従来のセルソータの原理的な構成を示
す斜視図である。本図において、11―1および
11―2は一対の静電偏向板であり、これらの間
に静電界が形成される。一方、帯電された滴下液
13がセル容器14から次々と落下しその途中で
前記静電界により偏向される。この静電界の方向
(偏向板に印加する電圧の極性により定まる)と
大きさ(その電圧のレベルの高低により定まる)
によつて所定の容器15に分画される。
FIG. 1 is a perspective view showing the basic structure of a conventional cell sorter. In this figure, 11-1 and 11-2 are a pair of electrostatic deflection plates, and an electrostatic field is formed between them. On the other hand, the charged dripped liquid 13 falls one after another from the cell container 14 and is deflected by the electrostatic field along the way. The direction of this electrostatic field (determined by the polarity of the voltage applied to the deflection plate) and magnitude (determined by the level of that voltage)
is fractionated into a predetermined container 15.

ところが、既述した如く、このような第1図の
構成では滴下液の大きさ、質量のバラツキがあつ
て予定した1つの容器に正確に案内されないこと
がしばしばある。そこで本発明はこのようなバラ
ツキに左右されないセルソータを提案する。
However, as described above, in the configuration shown in FIG. 1, there are variations in the size and mass of the dropped liquid, and it is often the case that the liquid is not accurately guided into one intended container. Therefore, the present invention proposes a cell sorter that is not affected by such variations.

第2図は本発明のセルソータの原理的な構成を
示す斜視図である。なお、第1図の構成要素と同
一のものには同一の参照番号を付して示す。従つ
て、一対の静電偏向板11―1,11―2に直交
するもう一対の静電偏向板21―1および21―
2が新たに導入され、又、放射状に複数区分され
た容器22が第1図の容器15と異なる。放射状
に区分された容器22の放射中心0は滴下液13
の自由落下点と一致させてある。ここで着目すべ
き点は、放射中心0を中心にしてほぼその対称位
置におかれる任意の一対の容器(例えば22′,
22″)についてみると、滴下液13の大きさ、
質量がどのようにバラツいたとしてもその放射中
心0に対して左へ偏向すること又は右へ偏向する
ことは非常に簡単である。つまり、滴下液13は
左か右か真中(無電界のとき)かの3つのモード
を採るのみであり、その左方向のどの位置、又は
その右方向のどの位置というところまでの選択は
要求されない。ただし、容器の対22′,22″の
みでは2種の分画しか行なえないので、同様の対
を複数対設け全体として例えば円形に配列する。
そうすると、いずれの対の容器へ導き且つ当該対
の左右いずれに導くかについて定める静電界の存
在が必要となる。この場合、その静電界は2次元
的に変位する必要がある。そのために設けたのが
一対の偏向板21―1および21―2であり、一
対の偏向板11―1,11―2による静電界Ex
と一対の偏向板21―1,21―2による静電界
Eyとのベクトル合成により、静電界の2次元的
な変位を可能とする。ただし、二対の偏向板によ
りある物(例えば電子)を2次元的に変位させる
という事実そのものは例えばテレビジヨンのブラ
ウン管内におけるX―走査およびY―走査として
既に周知である。このような静電界の2次元的な
変位を放射状の容器22と組合わせたことに本発
明のセルソータの意義がある。
FIG. 2 is a perspective view showing the basic structure of the cell sorter of the present invention. Components that are the same as those in FIG. 1 are designated by the same reference numbers. Therefore, another pair of electrostatic deflection plates 21-1 and 21- are perpendicular to the pair of electrostatic deflection plates 11-1 and 11-2.
2 is newly introduced, and the container 22, which is divided into a plurality of radial sections, is different from the container 15 in FIG. The radial center 0 of the radially divided container 22 is the dripping liquid 13
It is aligned with the free fall point of . What should be noted here is that any pair of containers (for example, 22', 22',
22″), the size of the dropped liquid 13,
No matter how the mass varies, it is very easy to deflect it to the left or right with respect to its radiation center 0. In other words, the dripping liquid 13 only takes three modes: left, right, and center (when there is no electric field), and there is no need to select which position to the left or which position to the right. . However, since only two types of fractionation can be performed using only the pair of containers 22', 22'', a plurality of similar pairs are provided and arranged in a circular shape, for example.
In this case, it is necessary to have an electrostatic field that determines which pair of containers the liquid should be guided to and whether to the left or right side of the pair. In this case, the electrostatic field needs to be displaced two-dimensionally. A pair of deflection plates 21-1 and 21-2 are provided for this purpose, and the electrostatic field E x caused by the pair of deflection plates 11-1 and 11-2
and the electrostatic field caused by the pair of deflection plates 21-1 and 21-2.
Vector composition with E y enables two-dimensional displacement of the electrostatic field. However, the fact that an object (for example, an electron) is two-dimensionally displaced by two pairs of deflection plates is already well known as, for example, X-scanning and Y-scanning in a television cathode ray tube. The significance of the cell sorter of the present invention is that such two-dimensional displacement of the electrostatic field is combined with the radial container 22.

第3図は第2図において説明した原理を利用し
てなる本発明に基づくセルソータのシステム構成
例を示す模式図である。本図において、31は試
料容器であり、その中に分画すべきセル(細胞)
浮遊液32が満たされる。この容器31には加圧
ガスGaが印加され、液32を押し出す。さらに
セル容器35内のマイクロノズル36へ導かれ
る。ここにいわゆる細胞フロー系が形成される。
なお、セル容器35には振動子39が固着され容
器35を振動させる。この振動子39は例えば超
音波振動トランスジユーサである。又、補助容器
33が設けられその中に生理食塩水34が満たさ
れ、これも加圧ガスGbにより容器35内に押し
出される。かくして、フロート37から滴下液1
3が次々と落下するが、この際、各滴下液13は
分画のための測定に供される。これはいわゆる照
射測定光学系であり、図中のレーザ光41がレー
ザ光源42より照射され、これを滴下液13に当
て、その透過光を光検知器43で検知する。この
とき、散乱光強度あるいは蛍光量等が測定され、
予め定めたこれらの基準に応じてどの容器に分画
すべきか決定される。この決定は制御部44が行
なう。
FIG. 3 is a schematic diagram showing an example of a system configuration of a cell sorter based on the present invention, which utilizes the principle explained in FIG. 2. In this figure, 31 is a sample container, and the cells to be fractionated are contained in it.
The floating liquid 32 is filled. Pressurized gas G a is applied to this container 31 to push out the liquid 32 . Furthermore, it is guided to the micro nozzle 36 inside the cell container 35. A so-called cell flow system is formed here.
Note that a vibrator 39 is fixed to the cell container 35 to vibrate the container 35. This vibrator 39 is, for example, an ultrasonic vibration transducer. Further, an auxiliary container 33 is provided and filled with physiological saline 34, which is also forced into the container 35 by the pressurized gas Gb . Thus, the liquid 1 dropped from the float 37
3 are dropped one after another, and at this time, each dropped liquid 13 is subjected to measurement for fractionation. This is a so-called irradiation measuring optical system, in which a laser beam 41 in the figure is irradiated from a laser light source 42, which is applied to the dropped liquid 13, and the transmitted light is detected by a photodetector 43. At this time, the intensity of scattered light or the amount of fluorescence is measured,
Depending on these predetermined criteria, it is determined which container the fraction should be placed into. This determination is made by the control section 44.

一方、滴下液13は帯電回路40により帯電さ
れており、そのまま落下して偏向板11―1,1
1―2,21―1,21―2の中を通過する。こ
の通過の際、静電界ExおよびEyの大きさならび
に方向を適当に定め滴下液13に所定の静電力を
加えれば所望の分画がなされ所定の容器46に収
集される(この容器46は第2図の容器22と等
価である)。前述した所定の静電界ExおよびEy
は、制御部44による前記決定に基づき、x―電
界発生装置45―xおよびy―電界発生装置45
―yより与えられた電圧によつて形成される。
On the other hand, the dripping liquid 13 is charged by the charging circuit 40, and falls as it is, causing the deflection plates 11-1, 1
Pass through 1-2, 21-1, and 21-2. During this passage, by appropriately determining the magnitude and direction of the electrostatic fields E is equivalent to container 22 in FIG. 2). Given the previously mentioned electrostatic fields E x and E y
Based on the determination by the control unit 44, the x-electric field generator 45-x and the y-electric field generator 45
- formed by the voltage given by y.

以上説明したように本発明によれば、滴下液の
大きさ、質量に左右されることなく高精度でしか
も多種類の分画が行なえるセルソータが実現され
る。
As explained above, according to the present invention, a cell sorter is realized which can perform high precision and various types of fractionation regardless of the size and mass of the dropped liquid.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のセルソータの原理的な構成を示
す斜視図、第2図は本発明のセルソータの原理的
な構成を示す斜視図、第3図は第2図において説
明した原理を利用してなる本発明に基づくセルソ
ータのシステム構成例を示す模式図である。 11―1,11―2…一対の静電偏向板、13
…滴下液、21―1,21―2…一対の静電偏向
板、22,46…放射状に複数区分された容器、
32…セル浮遊液、40…帯電回路、42…レー
ザ光源、43…光検知器、45―x,45―y…
電界発生装置、0…落下点。
FIG. 1 is a perspective view showing the basic structure of a conventional cell sorter, FIG. 2 is a perspective view showing the basic structure of the cell sorter of the present invention, and FIG. 3 is a perspective view showing the basic structure of a cell sorter according to the present invention. 1 is a schematic diagram showing an example of a system configuration of a cell sorter based on the present invention. 11-1, 11-2...a pair of electrostatic deflection plates, 13
...Dropped liquid, 21-1, 21-2... A pair of electrostatic deflection plates, 22, 46... Containers divided into multiple radial sections,
32...Cell suspension liquid, 40...Charging circuit, 42...Laser light source, 43...Photodetector, 45-x, 45-y...
Electric field generator, 0...falling point.

Claims (1)

【特許請求の範囲】 1 分画すべき細胞を含んだ滴下液を供給する細
胞フロー系と、その滴下液に帯電を行なう帯電系
と、帯電された該滴下液が如何なる性状を備える
かをレーザ光ならびに光検知器を用いて検出する
照射測定光学系と、該照射測定光学系からの検出
結果に応じた静電界を形成する静電偏向系と、該
静電偏向系により偏向された前記滴下液を前記検
出結果に対応した部分に収集する容器とを備えて
なるセルソータにおいて、 前記静電偏向系は、前記滴下液が自由落下する
ときの落下点を中心にしてx方向に沿つて配置さ
れる一対のx―静電偏向板と前記落下点を中心と
して前記x方向に直交するy方向に配置される一
対のy―静電偏向板とからなり、前記容器は前記
落下点を放射中心として放射状に複数区分される
ことを特徴とするセルソータ。
[Claims] 1. A cell flow system that supplies a dropped liquid containing cells to be fractionated, a charging system that charges the dropped liquid, and a laser beam that determines the properties of the charged dropped liquid. and an irradiation measurement optical system that detects using a photodetector, an electrostatic deflection system that forms an electrostatic field according to the detection result from the irradiation measurement optical system, and the dropped liquid deflected by the electrostatic deflection system. and a container for collecting the liquid in a portion corresponding to the detection result, wherein the electrostatic deflection system is arranged along the x direction centered on a falling point when the dripped liquid falls freely. The container is composed of a pair of x-electrostatic deflection plates and a pair of y-electrostatic deflection plates arranged in the y direction orthogonal to the x direction with the drop point as the center, and the container is arranged radially with the drop point as the radial center. A cell sorter characterized by being divided into multiple categories.
JP56096618A 1981-06-24 1981-06-24 Cell sorter Granted JPS57211557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56096618A JPS57211557A (en) 1981-06-24 1981-06-24 Cell sorter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56096618A JPS57211557A (en) 1981-06-24 1981-06-24 Cell sorter

Publications (2)

Publication Number Publication Date
JPS57211557A JPS57211557A (en) 1982-12-25
JPS646700B2 true JPS646700B2 (en) 1989-02-06

Family

ID=14169832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56096618A Granted JPS57211557A (en) 1981-06-24 1981-06-24 Cell sorter

Country Status (1)

Country Link
JP (1) JPS57211557A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9717632B2 (en) 2013-10-17 2017-08-01 Yosuke KUMAGAWA Auditory sensitivity adjustment device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6080764A (en) * 1983-10-12 1985-05-08 Agency Of Ind Science & Technol Method and device for identifying microparticle
JPS6135331A (en) * 1984-07-28 1986-02-19 Japan Spectroscopic Co Fine particle separating device
JPS643541A (en) * 1987-06-26 1989-01-09 Hitachi Ltd Instrument for measuring fine particle in fluid
US5049505A (en) * 1988-09-27 1991-09-17 Kabushiki Kaisha Komatsu Seisakusho Breeding apparatus
EP0422616B1 (en) * 1989-10-11 1996-02-07 Canon Kabushiki Kaisha Apparatus for and method of fractionating particle in particle-suspended liquid in conformity with the properties thereof
JP2008000693A (en) * 2006-06-22 2008-01-10 Seiko Epson Corp Discharging device and discharging method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3741726A (en) * 1971-08-09 1973-06-26 D Mitchell Apparatus for collecting and dispensing liquids and for particle counting
JPS5319891A (en) * 1976-06-10 1978-02-23 Coulter Electronics Method and apparatus for folling drop formation and separation
US4173415A (en) * 1976-08-20 1979-11-06 Science Spectrum, Inc. Apparatus and process for rapidly characterizing and differentiating large organic cells
US4230031A (en) * 1978-04-26 1980-10-28 Coulter Electronics, Inc. Biohazard containment apparatus and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9717632B2 (en) 2013-10-17 2017-08-01 Yosuke KUMAGAWA Auditory sensitivity adjustment device

Also Published As

Publication number Publication date
JPS57211557A (en) 1982-12-25

Similar Documents

Publication Publication Date Title
US5180065A (en) Apparatus for and method of fractionating particle in particle-suspended liquid in conformity with the properties thereof
Kurachi et al. Buckling of a single microtubule by optical trapping forces: direct measurement of microtubule rigidity
US5275787A (en) Apparatus for separating or measuring particles to be examined in a sample fluid
US5366608A (en) Electrophoresis gel migration apparatus
US7259018B2 (en) Ion mobility analysis of lipoproteins
JPS60238762A (en) Fluid blood corpuscle inspection device
GB1380756A (en) Multisensor particle sorter
JPS62124441A (en) Fluidized cell measuring device
JPS646700B2 (en)
Gähler et al. Experimental limit for the charge of the free neutron
US6531044B1 (en) Capillary array electrophoresis apparatus
Kumar Fundamentals and Techniques of Biophysics and Molecular biology
JPH0441462B2 (en)
Gillespie The role of electric forces in the filtration of aerosols by fiber filters
McMillan et al. Preliminary investigation into the analytical potential of a multiwavelength fiber drop analyzer with special reference to applications in medical diagnostics
Nolan Electrification of water by splashing and spraying
JPH04110639A (en) Particle fractionating apparatus
JP3291580B2 (en) Apparatus for measuring electric charge of particles in liquid, blood cell measuring method and electric charge detecting method
US20010045126A1 (en) Process and device for determining the volume of liquid droplets
GB2059051A (en) An apparatus for measuring the aggregation of dispersed particles
US5066862A (en) Device for detecting ionizing radiation
SCHACHMAN et al. The physical properties of infective particles
Maloney et al. Measurement and dynamic simulation of particle trajectories in an electrodynamic balance: Characterization of particle drag force coefficient/mass ratios
JPS60200108A (en) Optical type thickness measuring method and apparatus thereof
Medrow Floating bubble configurations and charges of jet drops produced by bursting bubbles