JPS646279Y2 - - Google Patents

Info

Publication number
JPS646279Y2
JPS646279Y2 JP1982139727U JP13972782U JPS646279Y2 JP S646279 Y2 JPS646279 Y2 JP S646279Y2 JP 1982139727 U JP1982139727 U JP 1982139727U JP 13972782 U JP13972782 U JP 13972782U JP S646279 Y2 JPS646279 Y2 JP S646279Y2
Authority
JP
Japan
Prior art keywords
honeycomb core
band
core
cells
radial honeycomb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982139727U
Other languages
Japanese (ja)
Other versions
JPS5950716U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13972782U priority Critical patent/JPS5950716U/en
Publication of JPS5950716U publication Critical patent/JPS5950716U/en
Application granted granted Critical
Publication of JPS646279Y2 publication Critical patent/JPS646279Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は、円形、扇形等の形状のパネル等とし
て、軽量かつ均一な特性が要求されるラジアルハ
ニカムコアに関する。 従来この種のラジアルハニカムコアとしては、
第1図および第2図に示したものが用いられてい
る。 すなわち、第1図に示すラジアルハニカムコア
は、正規に通常どおり100%の展張率で展張され
た一体物たるハニカムコアを、全体形状が円形を
なすベく切り抜いたものである。このラジアルハ
ニカムコアにあつては、各セルの形状が均一では
あるが、リボン方向と展張方向とでは剛性の差が
大であり、ために荷重が加わつた場合タワミ量が
不均一でその差が大となり、パネルとしての不都
合が従来より指摘されていた。 また、第2図に示すラジアルハニカムコアは、
ノードボンド(条線)幅Nおよび条線ピツチPは
ほぼ同一であるが、展張方向Wへの展張率を内径
側は小さく(例えば20%程度)外径側は大きく
(例えば100%)して、その展張方向側両端面を接
合することにより、全体形状をドーナツ盤状とし
たものである。このラジアルハニカムコアにあつ
ては、内外径側によつてセルの形状が著しく不均
一となり、ためにコア密度も不均一となり、又全
体のコア密度も高く重量が重く、更に内径側の剛
性が大でありすぎるため全体として均一な曲げ特
性が得られない等、パネルとしての不都合が従来
より指摘されていた。 本考案は、このような実情に鑑み上記従来例の
諸欠点を克服すべくなされたものであつて、展張
されたハニカムコアを切断分割して得られ形状が
ほぼ均一のセルを直列に配してなる帯体を、平面
的に曲線に添つて並列固定してなることにより、
軽量かつ均一な特性を有し、円形、扇形等のパネ
ルとして好適な、ラジアルハニカムコアを提案す
ることを目的とする。 以下本考案を、第3図および第4図に示す実施
例に基づいて説明する。 まず構成について説明する。 第3図は本考案の第1実施例を示し、図中1
は、形状がほぼ均一のセル2,2,…を1個ずつ
直列に配してなる帯体である。この帯体1は、図
示例ではセル2,2,…を1個ずつ直列に配して
なるが、2個ずつ、3個ずつ等任意数ずつ直列に
配したものであつてもよい。又この帯体1は、正
規に通常どおり例えば100%の展張率で展張され
アルミその他の金属製、紙製等の素材よりなる一
体物たるハニカムコアを、展張方向に沿つて切断
分割して得られるものである。 そしてこのような帯体1は、平面的に渦巻・ラ
セン状曲線に添つて巻回することにより、並列固
定され、全体として円形をなしている。 なおここで、このラジアルハニカムコアの製造
方法、特にその並列固定について詳述しておく。 まず一般にハニカムコアどうしを接続固定する
場合、従来より次の2つの手段のうちいずれか
が、周知的に用いられている。 すなわち第1に、相互の継目において、セル壁
の突出自由端どうしを接着剤で接着する手段が、
広く取られている。又第2に、このようなセル壁
の突出自由端どうしを含み、広く継目全体に接着
剤を充填して接着してしまう手段も、広く行われ
ている。 そこでこのような従来よりの公知手段を用い、
このラジアルハニカムコアにおける並列固定が行
われる。 まず上述の第1の公知手段を用いた場合は、次
のとおり。すなわち前記帯体1において、その継
目にて対向すべきセル壁の突出自由端の一方に、
予め接着剤を塗布した後、帯体1を前述により巻
回し、重合状態で対向する突出自由端間で接着剤
が硬化するまでのその状態を保持し、もつて係る
突出自由端どうしを接着剤で重合接着する。この
ようにして帯体1が並列固定される。 次に上述の第2に周知手段を用いた場合は、次
のとおり。すなわち前記帯体1をまず前述により
巻回し、その状態を保持させておいて、継目にお
いて重合状態で対向するセル壁の突出自由端どう
しを含む、継目空間全体に広く接着剤を充填して
硬化させ、もつて継目全体を接着剤で接着する。
このようにして帯体1が並列固定される。 ラジアルハニカムコアにおける並列固定は、こ
のような第1、第2公知手段のいずれかにより、
行われる。 なお前述の曲線に沿つた帯体1の巻回は、次に
より、容易に達成される。 第1に、セル2,2,…を直列に配してなる前
記帯体1は、その幅方向に特に優れた柔軟性を備
えている。そこで係る特性により、帯体1は容易
に前述のごとく所定曲線に沿つて変形され巻回で
きる。 第2に、このような巻回に際し当然セル2,
2,…に変形が発生するが、係る変形は、そのセ
ル2,2,…を形成する箔状基材等よりなるセル
壁の変形により、吸収される。そこで帯体1は、
このように容易に、曲線に沿つて変形され巻回さ
れる。 第3に、更にこのような巻回に際し、先に巻回
された帯体1のセル壁の突出自由端間のピツチ
と、この帯体1の外側に巻回される帯体1のセル
壁の突出自由端間のピツチとは、セル2,2,…
の密度つまりコア密度が外側部分と内側部分とで
は異なることにより、当然異なる。 しかしながらこのラジアルハニカムコアにあつ
ては、後で詳述するごとく係る異なりは僅かであ
り、又一般にハニカムコアは基材の肉厚が薄くそ
のセル壁の突出自由端が柔軟性を有するので、巻
回に際し容易に変形して重合状態となつて対向す
るので、帯体1の巻回、並列固定等に支障はな
い。 このように構成されたラジアルハニカムコア
は、ノードボンド幅Nおよび条線ピツチPがほぼ
同一であるとともに、内外径側の展張率もほぼ同
一となつている。 第4図は本考案の第2実施例の要部を示し、こ
の実施例にあつては、セル2,2,…を任意数ず
つ例えば3個、5個、7個ずつ直列に配してなる
複数の帯体1′,1′,…を用い、このような帯体
1′,1′,…をそれぞれ同心円曲線に添つて巻回
することにより、並列固定され、全体としてドー
ナツ形をなしている。なおその他セル2の説明等
は、第1実施例におけると同様である。 なお、ラジアルハニカムコアの全体形状は、円
形、ドーナツ形等に限定されず、扇形、円弧形等
であつてもよい。 次に、以上のごとく構成された本考案に係るラ
ジアルハニカムコアの性能の1例を、従来例のラ
ジアルハニカムコアと比較して、測定した結果に
より示す。
The present invention relates to a radial honeycomb core that is required to be lightweight and have uniform characteristics when used as a circular, fan-shaped, etc. shaped panel. Conventionally, this type of radial honeycomb core is
The ones shown in FIGS. 1 and 2 are used. That is, the radial honeycomb core shown in FIG. 1 is obtained by cutting out a honeycomb core, which is a monolithic body that has been expanded at a normal expansion rate of 100%, so that the overall shape is circular. In the case of this radial honeycomb core, although the shape of each cell is uniform, there is a large difference in rigidity between the ribbon direction and the stretching direction, so when a load is applied, the amount of deflection is uneven and the difference is It has been pointed out that it is inconvenient as a panel. In addition, the radial honeycomb core shown in Fig. 2 is
The node bond (stripe) width N and the striation pitch P are almost the same, but the expansion ratio in the expansion direction W is made smaller on the inner diameter side (for example, about 20%) and larger on the outer diameter side (for example, 100%). , by joining both end faces on the expansion direction side, the overall shape is shaped like a donut disk. In this radial honeycomb core, the shape of the cells is significantly uneven between the inner and outer diameter sides, resulting in uneven core density.The overall core density is also high and the weight is heavy, and the rigidity of the inner diameter side is also low. Conventionally, it has been pointed out that there are disadvantages as a panel, such as being too large and making it impossible to obtain uniform bending properties as a whole. In view of these circumstances, the present invention was devised to overcome the various drawbacks of the conventional examples described above.The present invention is made by cutting and dividing a stretched honeycomb core and arranging in series cells each having a substantially uniform shape. By fixing the strips in parallel along the curve on a plane,
The purpose of this invention is to propose a radial honeycomb core that is lightweight and has uniform properties and is suitable for circular, fan-shaped, etc. panels. The present invention will be explained below based on the embodiment shown in FIGS. 3 and 4. First, the configuration will be explained. FIG. 3 shows the first embodiment of the present invention, in which 1
is a band formed by arranging cells 2, 2, . . . each having a substantially uniform shape in series. In the illustrated example, the band 1 is made up of cells 2, 2, . . . arranged in series, one each, but it may be made up of any number of cells, such as two or three, arranged in series. The band 1 is obtained by cutting and dividing a honeycomb core made of a material such as aluminum, other metal, paper, etc., which is an integral body, which has been normally stretched at a stretching rate of 100%, for example, and divided into parts along the stretching direction. It is something that can be done. Such a band 1 is fixed in parallel by being wound in a plane along a spiral/helical curve, and has a circular shape as a whole. Here, the manufacturing method of this radial honeycomb core, especially its parallel fixing, will be explained in detail. First, in general, when connecting and fixing honeycomb cores, one of the following two methods has been conventionally used. That is, firstly, there is a means for bonding the protruding free ends of the cell walls to each other with an adhesive at their mutual joints.
It is widely taken. Secondly, a method is widely used in which the entire joint, including the protruding free ends of the cell walls, is filled with an adhesive and bonded together. Therefore, using such conventionally known means,
Parallel fixation is performed in this radial honeycomb core. First, when the above-mentioned first known means is used, it is as follows. That is, in the band 1, one of the protruding free ends of the cell walls that should be opposed at the joint,
After applying the adhesive in advance, the band 1 is wound as described above, and the state is maintained in a polymerized state until the adhesive hardens between the opposing protruding free ends, and the adhesive is then applied between the protruding free ends. Polymerize and adhere. In this way, the strips 1 are fixed in parallel. Next, when the above-mentioned second well-known means is used, it is as follows. That is, the band 1 is first wound as described above, maintained in that state, and the entire joint space, including the protruding free ends of the cell walls facing each other in a polymerized state at the joint, is widely filled with adhesive and cured. and then glue the entire seam with adhesive.
In this way, the strips 1 are fixed in parallel. Parallel fixation in the radial honeycomb core is performed by either of the first or second known means,
It will be done. Note that the winding of the band 1 along the aforementioned curve can be easily accomplished as follows. First, the band 1 formed by arranging the cells 2, 2, . . . in series has particularly excellent flexibility in its width direction. Due to such characteristics, the band 1 can be easily deformed and wound along a predetermined curve as described above. Second, when winding like this, naturally the cells 2,
Deformation occurs in the cells 2, 2, . . . , but such deformation is absorbed by the deformation of the cell walls made of the foil-like base material or the like forming the cells 2, 2, . Therefore, the band 1 is
In this way, it can be easily deformed and wound along a curve. Thirdly, during such winding, the pitch between the protruding free ends of the cell walls of the band 1 previously wound and the cell walls of the band 1 wound on the outside of this band 1 are The pitch between the protruding free ends of cells 2, 2,...
Naturally, this difference is due to the fact that the density, that is, the core density, is different between the outer part and the inner part. However, in the case of this radial honeycomb core, as will be explained in detail later, such differences are slight, and in general, honeycomb cores have a thin base material and the protruding free ends of the cell walls are flexible, so it is difficult to wind the core. During winding, they are easily deformed and are in a polymerized state so that they face each other, so there is no problem in winding, parallel fixing, etc. of the band 1. The radial honeycomb core configured in this manner has substantially the same node bond width N and striation pitch P, and also has substantially the same expansion ratio on the inner and outer diameter sides. FIG. 4 shows the main part of the second embodiment of the present invention. In this embodiment, any number of cells 2, 2, . . . , for example, 3, 5, 7, etc. are arranged in series. By using a plurality of strips 1', 1',..., and winding each of these strips 1', 1',... along concentric curves, they are fixed in parallel and form a donut shape as a whole. ing. Note that the other explanations of the cell 2 are the same as those in the first embodiment. Note that the overall shape of the radial honeycomb core is not limited to a circle, a donut shape, or the like, but may be a fan shape, an arc shape, or the like. Next, an example of the performance of the radial honeycomb core according to the present invention configured as described above will be shown based on the results of measurement in comparison with a conventional radial honeycomb core.

【表】 ・ コアの厚さ:17.5mm ・ 材 質:アルミ 材質5052 板厚0.046mm ・ セル寸法:60mm(100%展張時) ・ たわみ量測定:荷重は700Kg、荷重作用面は
直径85mmの円、たわみ量テスト位
置は直径150mmの同心円上、周端
支持位置は直径230mmの同心円上、
δ1とδ2とは直行方向をなす。 なおこのラジアルハニカムコアにおける、帯体
1又は帯体1′間での曲面の内側部分と外側部分
について、詳述しておく。 すなわち前述により、形状がほぼ均一のセル
2,2,…を直列に配した帯体1又は1′を、所
定曲線に添つて巻回すると、次のごとくなる。つ
まり対向する帯体1又は1′間において、形成さ
れる曲面の内側部分と外側部分とで、その圧扁量
が異なり、例えばセル2,2,…の密度つまりコ
ア密度も異なり、内側部分の方が外側部分より徐
徐に大となると思われる。 しかしながら、このような圧扁量の異なり例え
ばコア密度の異なりは、各帯体1又は1′の内側
部分と外側部分の円周の長さにほぼ比例する。そ
してこのラジアルハニカムコアにあつては、係る
内側部分と外側部分の円周の長さがほぼ等しい、
つまり圧扁量例えばコア密度の異なりが僅かであ
る帯体1を所定曲線に沿つて並列的に繰り返し重
ねて形成した点に、その特徴が存する。 すなわち、前述の第2図に示した従来例にあつ
ては、展張率を内径側(内側部分)は小さく(例
えば20%程度)そして外径側(外側部分)は大き
く(例えば100%程度)形成されているので、当
然内側部分の方が外側部分より、圧扁量例えばコ
ア密度が徐徐にそして極めて大きく不均一にな
り、前述のごとく多くの問題点が生じていたので
ある。 これに対しこのラジアルハニカムコアにあつて
は、前述のごとく、正規に通常どおり(例えば
100%)の展張率で展張された一体物たるハニカ
ムコアを用い、これを切断分割して得られた帯体
1を、所定曲線に沿つて並列固定したのである。
そこでその内側部分と外側部分の円周の長さがほ
ぼ等しい、つまり圧扁量例えばコア密度の異なり
が僅かで均一ともみなされる帯体1が、並列固定
されているのである。 なお付言すれば、帯体1が巻回される基準とな
る曲線の曲率半径の大小に対し、帯体1の幅つま
りその帯体1内のセル2,2,…の数の多少を対
応して選択するようにすると、上述の圧扁量例え
ばコア密度の異なりは、より確実に極めて小さく
することができる。 本考案に係るラジアルハニカムコアは、このよ
うにコア密度が低く軽量であるとともに、たわみ
量も均一である。 更に本考案に係るラジアルハニカムコアは、セ
ル形状がほぼ均一であるため、コア密度も均一で
ありかつ曲げ特性も均一である。 以上説明したごとく、本考案に係るラジアルハ
ニカムコアは、展張されたハニカムコアを切断分
割して得られ形状がほぼ均一のセルを直列に配し
てなる帯体を、平面的に曲線に添つて並列固定し
てなる構成により、軽量かつたわみ、曲げ等の特
性が均一であるので、人工衛星その他に用いられ
る円形、扇形等の各種パネルとして最適であり、
従来例のこの種のラジアルハニカムコアの有した
問題点が一掃される等、その有する効果は顕著に
して大なるものがある。
[Table] ・ Core thickness: 17.5 mm ・ Material: Aluminum Material 5052 Plate thickness 0.046 mm ・ Cell size: 60 mm (at 100% expansion) ・ Deflection measurement: Load is 700 kg, load acting surface is a circle with a diameter of 85 mm , the deflection test position is on a concentric circle with a diameter of 150 mm, the peripheral edge support position is on a concentric circle with a diameter of 230 mm,
δ 1 and δ 2 are in orthogonal directions. In this radial honeycomb core, the inner and outer portions of the curved surfaces between the strips 1 or 1' will be described in detail. That is, as described above, when the band 1 or 1' in which the cells 2, 2, . In other words, between the opposing bands 1 or 1', the amount of compression differs between the inner and outer parts of the curved surface formed, and for example, the density of the cells 2, 2, etc., that is, the core density, is also different, and the inner part of the curved surface is different. It seems that the outer part becomes larger gradually than the outer part. However, such differences in the amount of compression, such as differences in core density, are approximately proportional to the circumferential lengths of the inner and outer portions of each strip 1 or 1'. In this radial honeycomb core, the circumferential lengths of the inner and outer portions are approximately equal.
In other words, its characteristic lies in the fact that the strips 1 having a slight difference in compression amount, for example, core density, are formed by repeatedly stacking them in parallel along a predetermined curve. In other words, in the conventional example shown in Fig. 2 mentioned above, the expansion ratio is small (for example, about 20%) on the inner diameter side (inner part) and large (about 100%, for example) on the outer diameter side (outer part). As a result, the amount of compression, for example, the core density, is gradually and extremely large and non-uniform in the inner part than in the outer part, causing many problems as described above. On the other hand, for this radial honeycomb core, as mentioned above, it works normally (for example,
Using an integral honeycomb core expanded at a stretching rate of 100%, the bands 1 obtained by cutting and dividing this core were fixed in parallel along a predetermined curve.
Therefore, the strips 1 whose inner and outer portions have approximately the same circumferential length, that is, the difference in compression amount, for example, core density, are slight and uniform, are fixed in parallel. It should be noted that the width of the band 1, that is, the number of cells 2, 2, etc. in the band 1, corresponds to the radius of curvature of the curve around which the band 1 is wound. If selected, the above-mentioned difference in the amount of compression, for example, the core density, can be more reliably made extremely small. The radial honeycomb core according to the present invention has a low core density, is lightweight, and has a uniform amount of deflection. Furthermore, since the radial honeycomb core according to the present invention has a substantially uniform cell shape, the core density is uniform and the bending properties are also uniform. As explained above, the radial honeycomb core according to the present invention is obtained by cutting and dividing a stretched honeycomb core, and forming a band in which cells of approximately uniform shape are arranged in series, along a curve in a plane. Due to the structure in which they are fixed in parallel, they are lightweight and have uniform characteristics such as deflection and bending, making them ideal for various circular and fan-shaped panels used in artificial satellites and other devices.
The effects of this method are remarkable, such as eliminating the problems of this type of conventional radial honeycomb core.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、それぞれ従来例のラジ
アルハニカムコアを示し、第1図は全体形状円形
のものの平面図、第2図は全体形状ドーナツ形の
ものの要部平面図である。第3図および第4図
は、それぞれ本考案に係るラジアルハニカムコア
の実施例を示し、第3図は全体形状円形の第1実
施例を示す平面図、第4図は全体形状ドーナツ形
の第2実施例を示す要部平面図である。 1……帯体、1′……帯体、2……セル、W…
…展張方向、L……リボン方向、N……ノードボ
ンド幅、P……条線ピツチ。
1 and 2 show conventional radial honeycomb cores, respectively. FIG. 1 is a plan view of a core having a circular overall shape, and FIG. 2 is a plan view of a main part of a core having a donut shape. 3 and 4 respectively show embodiments of the radial honeycomb core according to the present invention, FIG. 3 is a plan view showing the first embodiment having a circular overall shape, and FIG. 4 is a plan view showing a first embodiment having a donut-shaped overall shape. FIG. 2 is a plan view of main parts showing a second embodiment. 1...Band body, 1'...Band body, 2...Cell, W...
...Stretching direction, L...Ribbon direction, N...Node bond width, P...Striation pitch.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 展張されたハニカムコアを切断分割して得られ
形状がほぼ均一のセルを直列に配してなる帯体
を、平面的に曲線に添つて並列固定してなること
を特徴とするラジアルハニカムコア。
A radial honeycomb core characterized in that a band formed by cutting and dividing a stretched honeycomb core and arranging cells of substantially uniform shape in series is fixed in parallel along a curve in a plane.
JP13972782U 1982-09-14 1982-09-14 radial honeycomb core Granted JPS5950716U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13972782U JPS5950716U (en) 1982-09-14 1982-09-14 radial honeycomb core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13972782U JPS5950716U (en) 1982-09-14 1982-09-14 radial honeycomb core

Publications (2)

Publication Number Publication Date
JPS5950716U JPS5950716U (en) 1984-04-04
JPS646279Y2 true JPS646279Y2 (en) 1989-02-17

Family

ID=30313081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13972782U Granted JPS5950716U (en) 1982-09-14 1982-09-14 radial honeycomb core

Country Status (1)

Country Link
JP (1) JPS5950716U (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53115393U (en) * 1977-02-21 1978-09-13

Also Published As

Publication number Publication date
JPS5950716U (en) 1984-04-04

Similar Documents

Publication Publication Date Title
US4756943A (en) Sandwich structural part
US5609942A (en) Panel having cross-corrugated sandwich construction
US5543204A (en) Bi-directionally corrugated sandwich construction
EP0491277B1 (en) A honeycomb member and a honeycomb
US3991245A (en) Flexible honeycomb structure
US3959544A (en) Filamentary tape constructions and methods
JPS646279Y2 (en)
JPH01313660A (en) Rocket motor, in which fin is integrated and which is made of composite material, and manufacture thereof
RU2081267C1 (en) Method for producing cellular fillers
WO2023232081A1 (en) Amorphous-alloy three-dimensional wound core
US2719807A (en) Cellular core product and method of making same
CN109801777B (en) Three-dimensional iron core of rolling up of amorphous alloy and single frame thereof
USH1621H (en) Offset corrugated panel with curved corrugations for increased strength
GB2169471A (en) Acoustic diaphragm
JP3107477B2 (en) Honeycomb panel
SU1451052A1 (en) Method of producing laminated shell
JP3370852B2 (en) Honeycomb panel having a curvature and a method of manufacturing the same
JP2684092B2 (en) Honeycomb material and manufacturing method thereof
JPS6366406B2 (en)
JP3107478B2 (en) Method for manufacturing flexible honeycomb core and flexible honeycomb core
JPH024552Y2 (en)
SU1048075A1 (en) Laminated panel
JPS5825531B2 (en) Manufacturing method of honeycomb cylinder
JPS6149595A (en) Diaphragm for plane speaker
JPH0825535A (en) Flexible honeycomb panel