JPS646023B2 - - Google Patents

Info

Publication number
JPS646023B2
JPS646023B2 JP18855386A JP18855386A JPS646023B2 JP S646023 B2 JPS646023 B2 JP S646023B2 JP 18855386 A JP18855386 A JP 18855386A JP 18855386 A JP18855386 A JP 18855386A JP S646023 B2 JPS646023 B2 JP S646023B2
Authority
JP
Japan
Prior art keywords
aminophenol
heat
bisimide
reaction product
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18855386A
Other languages
Japanese (ja)
Other versions
JPS6345052A (en
Inventor
Itsuo Matsuda
Satoshi Hasegawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Chemical Products Co Ltd
Original Assignee
Toshiba Chemical Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Chemical Products Co Ltd filed Critical Toshiba Chemical Products Co Ltd
Priority to JP18855386A priority Critical patent/JPS6345052A/en
Publication of JPS6345052A publication Critical patent/JPS6345052A/en
Publication of JPS646023B2 publication Critical patent/JPS646023B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 [発明の構成] (産業上の利用分野) 本発明は、純ポリイミド樹脂を用いたもので、
層間接着力、耐湿性に優れた耐熱性積層板に関す
る。
[Detailed description of the invention] [Structure of the invention] (Industrial application field) The present invention uses pure polyimide resin,
This invention relates to a heat-resistant laminate with excellent interlayer adhesion and moisture resistance.

(従来の技術) 樹脂として純ポリイミド樹脂を用いた耐熱性積
層板は、電子機器、通信機器等に使用され、特に
耐熱性を要し、かつ他の諸特性も高信頼性の要求
されるものに広く使用されている。
(Prior art) Heat-resistant laminates using pure polyimide resin as the resin are used in electronic equipment, communication equipment, etc., and are particularly required for heat resistance and high reliability in other characteristics. widely used.

そのポリイミド樹脂の1つとして、ビスマレイ
ミドに芳香族ジアミンを付加させたものやアニリ
ンを付加させたものが知られている。これらは溶
媒に対する溶解性が悪く、含窒素の極性溶媒であ
るジメチルホルムアミドやN−メチルピロリドン
などに溶解するにすぎなく、かつその溶液の安定
性も悪いという欠点がある。また、積層板を製造
する際に、溶媒が完全に揮散せずに残りボイドが
発生しやすく、成形温度がやや高い等の欠点があ
る。一方、重縮合して得られる芳香族ポリイミド
樹脂は、更に溶解性が悪く、また成形温度も200
℃という高温であるという欠点がある。その他純
ポリイミド樹脂を用いた積層板の共通の問題点と
して、銅箔との接着力、ガラスクロスとガラスク
ロスとの層間接着力が弱いという欠点がある。特
にビスマレイミドとアニリンとの付加反応物は層
間接着力が弱い。この欠点を解消するものとし
て、我々はアミノフエノールとビスマレイミドの
付加反応物を提案した。しかし、アミノフエノー
ルがある量以上であるとフエノール性水酸基のた
め耐湿性が悪くなり、反対にある量以下だと反応
時間が長くなるという欠点があつた。
As one of the polyimide resins, those obtained by adding aromatic diamine or aniline to bismaleimide are known. These have the disadvantage that they have poor solubility in solvents and are only soluble in nitrogen-containing polar solvents such as dimethylformamide and N-methylpyrrolidone, and the stability of their solutions is also poor. Furthermore, when manufacturing a laminate, the solvent is not completely volatilized and remains, which tends to cause voids, and the molding temperature is somewhat high. On the other hand, aromatic polyimide resins obtained by polycondensation have even worse solubility and molding temperatures of 200°C.
The disadvantage is that the temperature is as high as ℃. Another common problem with laminates using pure polyimide resins is that the adhesive strength with copper foil and the interlayer adhesive strength between glass cloth and glass cloth are weak. In particular, the addition reaction product of bismaleimide and aniline has weak interlayer adhesion. To overcome this drawback, we proposed an addition reaction product of aminophenol and bismaleimide. However, if the amount of aminophenol exceeds a certain level, moisture resistance deteriorates due to the phenolic hydroxyl group, while if the amount falls below a certain level, the reaction time becomes longer.

(発明が解決しようとする問題点) 本発明は、上記の欠点を解消するためになされ
たもので、溶解性、低温成形性、銅箔との接着力
やガラスクロス間の層間接着力、耐湿性に優れた
耐熱性積層板を提供しようとするものである。
(Problems to be Solved by the Invention) The present invention was made in order to eliminate the above-mentioned drawbacks, and focuses on improving solubility, low-temperature formability, adhesion with copper foil, interlayer adhesion between glass cloth, and moisture resistance. The purpose of this invention is to provide a heat-resistant laminate with excellent properties.

[発明の構成] (問題点を解決するための手段) 本発明者らは、上記の目的を達成しようと鋭意
研究を重ねた結果、ビスイミド化合物と付加反応
させるアミノ基含有化合物としてアミノフエノー
ルとアニリン類とを併用することによつて、アミ
ノフエノール単独の場合のフエノール性水酸基過
剰による吸湿性を改善し、かつフエノール性水酸
基によつて接着力を向上させることができること
を見いだし、本発明を完成させたものである。す
なわち、本発明は、 (A)(a) 一般式()で示される不飽和ジカルボン
酸のN,N′−ビスイミド化合物、 (但し、式中R1は少なくとも2個の炭素原
子を有する2価の基を、R2は炭素−炭素原
子間の二重結合を含む2価の基をそれぞれ表
す) (b) 一般式()で示されるアミノフエノール
および (但し、式中R3は水素原子、ハロゲン原子
又はアルキル基を表す) (c) 一般式()で示されるアニリン類 (但し、R4、R5は水素原子、アルキル基、
ハロゲン原子、−OCH3、−OC2H5等の基で活
性水素を含まない基を表す) の反応生成物と、 (B) 硬化促進剤と を配合してなる耐熱性樹脂を用いることを特徴と
する耐熱性積層板である。
[Structure of the Invention] (Means for Solving the Problems) As a result of intensive research aimed at achieving the above object, the present inventors have discovered aminophenol and aniline as amino group-containing compounds to be subjected to an addition reaction with a bisimide compound. It was discovered that by using aminophenol alone, the hygroscopicity due to excessive phenolic hydroxyl groups can be improved, and the adhesive force can be improved by the phenolic hydroxyl groups, and the present invention has been completed. It is something that That is, the present invention provides (A)(a) an N,N'-bisimide compound of an unsaturated dicarboxylic acid represented by the general formula (), (However, in the formula, R 1 represents a divalent group having at least two carbon atoms, and R 2 represents a divalent group containing a double bond between carbon atoms.) (b) General formula ( ) Aminophenol and (However, in the formula, R 3 represents a hydrogen atom, a halogen atom, or an alkyl group) (c) Anilines represented by the general formula () (However, R 4 and R 5 are hydrogen atoms, alkyl groups,
(a halogen atom, a group such as -OCH 3 or -OC 2 H 5 that does not contain active hydrogen) and (B) a curing accelerator are used. This is a heat-resistant laminate with special characteristics.

本発明に用いる(A)反応生成物の一成分である(a)
不飽和ジカルボン酸のN,N′−ビスイミド化合
物としては次の一般式を有するものを使用する。
(a) is a component of the reaction product (A) used in the present invention
As the N,N'-bisimide compound of unsaturated dicarboxylic acid, one having the following general formula is used.

但し、式中R1は少なくとも2個の炭素原子を
有する2価の基を、R2は炭素原子間の二重結合
を含む2価の基を示す。即ち、R1としては、直
鎖状もしくは分岐状のアルキレン基、炭素原子5
〜6個の環をもつシクロアルキレン基、酸素、窒
素または硫黄原子のうち少なくとも1個を含む複
素環式基、ベンゼン基又は多環式芳香族をはじ
め、−NHCO−、−NR6−、−SiR7R8−もしくは−
SO2−などにより結合された複数個のベンゼン基
や脂環式基などを挙げることができる。但し、
R6、R7、R8は炭素数1〜4個のアルキル基、炭
素数5〜6個の環をもつシクロアルキル基、ベン
ゼン基などを示す。また、R2、つまり炭素原子
間の二重結合を含む2価の基としては、例えばマ
レイン酸残基、シトラコン酸残基、テトラヒドロ
フタル酸残基等が挙げられる。従つて、上述した
R1およびR2の条件を満たす不飽和ジカルボン酸
のN,N′−ビスイミド化合物としては、具体的
に次のようなものがあり、これらは各々1種又は
2種以上の混合系で使用することができる。マレ
イン酸N,N′−4,4′−ジフエニルメタンビスイ
ミド、マレイン酸N,N′−4,4′−ジフエニルエ
ーテルビスイミド、マレイン酸N,N′−パラフ
エニレンビスイミド、マレイン酸N,N′−ベン
ジジンビスイミド、マレイン酸N,N′−メタキ
シレンビスマレイミド、マレイン酸N,N′−1.5
−ナフタレンビスイミド、マレイン酸N,N′−
4,4′−ジフエニルスルホン−ビスイミド、マレ
イン酸N,N′−2,2′−4,4′−ジメチレン−シ
クロヘキサン−ビスイミド、マレイン酸N,
N′−4,4′−ジシクロヘキサン−メタンビスイミ
ド、マレイン酸N,N′−4,4′−ジフエニルシク
ロヘキサンビスイミド、マレイン酸N,N′−4,
4′−ジフエニル−フエニルアミン−ビスイミド、
マレイン酸N,N′−4,4′−ジフエニル−ジフエ
ニルシラン−ビスイミド、マレイン酸N,N′−
4,4′−ジフエニル硫黄−ビスイミド、マレイン
酸N,N′−2,2′−(4,4′−ジフエニル)プロ
パン−ビスイミド、マレイン酸N,N′−メタフ
エニレン−ビスイミド、マレイン酸N,N′−3,
3′−(N,N′−メタフエニレン−ビスベンツアミ
ド)ビスイミド等が挙げられる。
However, in the formula, R 1 represents a divalent group having at least two carbon atoms, and R 2 represents a divalent group containing a double bond between carbon atoms. That is, R 1 is a linear or branched alkylene group, 5 carbon atoms
Cycloalkylene groups with ~6 rings, heterocyclic groups containing at least one of oxygen, nitrogen or sulfur atoms, benzene groups or polycyclic aromatics, -NHCO-, -NR 6 -, - SiR 7 R 8 -or-
Examples include multiple benzene groups and alicyclic groups bonded by SO 2 - or the like. however,
R 6 , R 7 and R 8 each represent an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group having a ring having 5 to 6 carbon atoms, a benzene group, or the like. Examples of R 2 , that is, a divalent group containing a double bond between carbon atoms, include maleic acid residues, citraconic acid residues, and tetrahydrophthalic acid residues. Therefore, the above
Specific examples of N,N'-bisimide compounds of unsaturated dicarboxylic acids that satisfy the conditions of R 1 and R 2 include the following, and each of these may be used alone or in a mixed system of two or more. be able to. Maleic acid N,N'-4,4'-diphenylmethane bisimide, Maleic acid N,N'-4,4'-diphenyl ether bisimide, Maleic acid N,N'-paraphenylene bisimide, Malein Acid N,N'-benzidine bisimide, maleic acid N,N'-methaxylene bismaleimide, maleic acid N,N'-1.5
-Naphthalene bisimide, maleic acid N,N'-
4,4'-diphenylsulfone-bisimide, maleic acid N,N'-2,2'-4,4'-dimethylene-cyclohexane-bisimide, maleic acid N,
N'-4,4'-dicyclohexane-methane bisimide, maleic acid N,N'-4,4'-diphenylcyclohexane bisimide, maleic acid N,N'-4,
4′-diphenyl-phenylamine-bisimide,
Maleic acid N,N'-4,4'-diphenyl-diphenylsilane-bisimide, maleic acid N,N'-
4,4'-diphenyl sulfur-bisimide, maleic acid N,N'-2,2'-(4,4'-diphenyl)propane-bisimide, maleic acid N,N'-metaphenylene-bisimide, maleic acid N,N '-3,
Examples include 3'-(N,N'-metaphenylene-bisbenzamide) bisimide.

反応生成物の他の成分である(b)アミノフエノー
ルとしては、次の一般式を有するものを使用す
る。
As the aminophenol (b) which is another component of the reaction product, one having the following general formula is used.

但し、式中R3は水素原子、ハロゲン原子又は
アルキル基をそれぞれ表す。具体的な化合物とし
ては次のものが挙げられ、これらは単独もしくは
2種以上混合して使用する。o−アミノフエノー
ル、m−アミノフエノール、p−アミノフエノー
ル、2−アミノ−4−クロロフエノール、2−ア
ミノ−4−メチルフエノール等が挙げられる。
However, in the formula, R 3 represents a hydrogen atom, a halogen atom, or an alkyl group, respectively. Specific compounds include the following, which may be used alone or in combination of two or more. Examples include o-aminophenol, m-aminophenol, p-aminophenol, 2-amino-4-chlorophenol, 2-amino-4-methylphenol, and the like.

反応生成物のもう1つの成分である(c)アニリン
類としては次の一般式を有するものを使用する。
As the aniline (c), which is another component of the reaction product, those having the following general formula are used.

ただし、式中R4、R5は水素原子、アルキル基、
ハロゲン原子、−OCH3、−OC2H5、−COOCH3、−
COOC2H5などの基で活性水素を含まない基を示
し、具体的にはアニリン、o−クロルアニリン、
m−トルイジン、メチル−p−アミノ安息香酸エ
ステルなどで、要するにアニリンの核置換基に活
性水素を含まないものであればいずれでも使用で
きる。
However, in the formula, R 4 and R 5 are hydrogen atoms, alkyl groups,
Halogen atom, −OCH 3 , −OC 2 H 5 , −COOCH 3 , −
A group such as COOC 2 H 5 that does not contain active hydrogen, specifically aniline, o-chloroaniline,
Any of m-toluidine, methyl-p-aminobenzoic acid ester, etc., which does not contain active hydrogen as a nuclear substituent of aniline, can be used.

本発明に用いる(B)硬化促進剤としては、イミダ
ゾールもしくはイミダゾール誘導体、N,N−ベ
ンジルジメチルアミンのような第3級アミン等が
挙げられ、これらは単独もしくは2種以上の混合
系として使用する。
Examples of the curing accelerator (B) used in the present invention include imidazole or imidazole derivatives, tertiary amines such as N,N-benzyldimethylamine, and these can be used alone or as a mixture of two or more types. .

次に(A)反応生成物を得る場合の(a)不飽和ジカル
ボン酸のN,N′−ビスイミド化合物、(b)アミノ
フエノール、(c)アニリン類の配合割合および(B)硬
化促進剤の配合割合について説明する。
Next, when obtaining (A) the reaction product, the blending ratio of (a) N,N'-bisimide compound of unsaturated dicarboxylic acid, (b) aminophenol, and (c) aniline, and (B) curing accelerator. The blending ratio will be explained.

(A)反応生成物を得るためには、(a)不飽和ジカル
ボン酸のN,N′−ビスイミド化合物1モルに対
し(b)アミノフエノールと(c)アニリン類の合計[(b)
+(c)]を0.1〜1.0モル反応させることが好まし
い。この合計の配合割合が0.1モル未満の場合は、
反応時間が長くなり、また付加反応物の溶媒に対
する溶解性が悪くなり好ましくない。また配合割
合が1.0を超えると樹脂の耐熱性が悪くなり好ま
しくない。更に(b)アミノフエノールに対する(c)ア
ニリン類のモル比[(c)/(b)]は0.1〜9.0であるこ
とが好ましい。このモル比が0.1未満の場合はア
ミノフエノールが過剰となるため耐湿性が悪くな
り好ましくない。またこのモル比が9.0を超える
と耐熱樹脂としての溶媒に対する溶解性が悪くな
り、この樹脂を用いて積層板とした場合に銅箔と
の接着力、ガラスクロスとガラスクロスや、炭素
繊維と炭素繊維の層間接着力が悪くなり好ましく
ないからである。
(A) To obtain the reaction product, the sum of (b) aminophenol and (c) anilines [(b)
+(c)] is preferably reacted in an amount of 0.1 to 1.0 mol. If this total blending ratio is less than 0.1 mole,
This is undesirable because the reaction time becomes long and the solubility of the addition reaction product in the solvent deteriorates. Moreover, if the blending ratio exceeds 1.0, the heat resistance of the resin will deteriorate, which is not preferable. Further, the molar ratio [(c)/(b)] of (c) aniline to (b) aminophenol is preferably 0.1 to 9.0. If this molar ratio is less than 0.1, the aminophenol will be in excess, resulting in poor moisture resistance, which is not preferred. In addition, if this molar ratio exceeds 9.0, the solubility of the heat-resistant resin in solvents will deteriorate, and when this resin is used to make a laminate, the adhesive strength with copper foil, glass cloth with glass cloth, carbon fiber with carbon This is because the interlayer adhesion of the fibers deteriorates, which is undesirable.

次に(B)硬化促進剤の配合割合を説明するが、こ
れは低温(200℃以下)での成形性を良くするた
めに配合するものである。その配合割合は、反応
生成物に対して0.05〜2.0重量%が好ましい。そ
の割合が0.05重量%未満の場合は、スチーム加熱
による低温成形を行うのに長時間を要し、また2
重量%を超えると積層板のプリプレグ製造工程で
の調整温度幅が狭くなり好ましくない。従つて、
上記の範囲内が好ましい。こうして前記(A)付加反
応物と(B)硬化促進剤とを配合して耐熱性樹脂を得
ることができる。
Next, the blending ratio of the curing accelerator (B) will be explained, and this is blended to improve moldability at low temperatures (200°C or less). The mixing ratio thereof is preferably 0.05 to 2.0% by weight based on the reaction product. If the proportion is less than 0.05% by weight, it will take a long time to perform low-temperature molding by steam heating, and
If it exceeds % by weight, the adjustment temperature range in the prepreg manufacturing process of the laminate becomes narrow, which is not preferable. Therefore,
It is preferably within the above range. In this way, a heat-resistant resin can be obtained by blending the addition reaction product (A) and the curing accelerator (B).

不飽和ジカルボン酸のN,N′−ビスイミドと
アミノフエノールおよびアニリン類とを熔融下で
加熱反応させることも、ジオキサン、ジグライ
ム、メチルセロソルブ、エチルセロソルブ、メチ
ルセロソルブアセテートなどの不活性溶媒中で加
熱反応させることもできる。熔融下での加熱反応
は、不飽和ジカルボン酸のN,N′−ビスイミド
とアミノフエノールおよびアニリン類とを撹拌し
つつ温度上昇させると100℃前後で熔融すること
ができ、100〜140℃の温度に保持すれば付加重合
反応を起こし、所望粘度に達したら常温に冷却し
て、固体又は粘稠な液状樹脂を得ることができ
る。得られた樹脂をジオキサン、ジグライム、メ
チルセロソルブなどの溶媒に溶解し、次いで所定
の硬化促進剤を添加して均一な耐熱性樹脂溶液と
する。これはガラスクロスや炭素繊維布などに所
定量含浸塗布できる積層板用樹脂溶液である。
N,N'-bisimide of unsaturated dicarboxylic acid and aminophenol and anilines can be reacted by heating in the melt or in an inert solvent such as dioxane, diglyme, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, etc. You can also do so. In the heating reaction under melting, if N,N'-bisimide of unsaturated dicarboxylic acid, aminophenol and aniline are stirred and the temperature is raised, melting can be achieved at around 100℃, and it is possible to melt at a temperature of 100 to 140℃. If the resin is maintained at a constant temperature, an addition polymerization reaction will occur, and when the desired viscosity is reached, it can be cooled to room temperature to obtain a solid or viscous liquid resin. The obtained resin is dissolved in a solvent such as dioxane, diglyme, methyl cellosolve, etc., and then a predetermined curing accelerator is added to form a uniform heat-resistant resin solution. This is a resin solution for laminates that can be applied to glass cloth, carbon fiber cloth, etc. by impregnating it in a predetermined amount.

また溶媒中で加熱反応して付加重合させる方法
は、ジオキサン、ジグライム、メチルセロソルブ
等の不活性溶媒を使用し、80〜170℃の温度で不
飽和ジカルボン酸のN,N′−ビスイミドとアミ
ノフエノールおよびアニリン類とを加熱撹拌し、
所定の粘度に達するまで反応を進めて樹脂溶液を
得ることができる。この樹脂溶液に硬化促進剤を
所定量添加して均一な耐熱性樹脂溶液とし、ガラ
スクロスや炭素繊維布などに所定量含浸塗布でき
る積層板用樹脂溶液とする。樹脂溶液をガラスク
ロスや炭素繊維布に含浸塗布し、通常の方法で80
〜180℃で熱風加熱乾燥してプリプレグを作成し、
常法により所定の厚さになるよう調整する。この
プリプレグ複数枚を重ねて、最高170〜190℃のス
チーム加熱、10〜100Kg/cm2の圧力、1〜3時間
のプレス時間で加熱加圧積層一体に成形して積層
板とすることができる。
In addition, a method of addition polymerization by heating reaction in a solvent uses an inert solvent such as dioxane, diglyme, methyl cellosolve, etc., and at a temperature of 80 to 170°C, N,N'-bisimide of unsaturated dicarboxylic acid and aminophenol are combined. and anilines are heated and stirred,
A resin solution can be obtained by proceeding the reaction until a predetermined viscosity is reached. A predetermined amount of a curing accelerator is added to this resin solution to obtain a uniform heat-resistant resin solution, which is then used as a resin solution for laminated boards that can be impregnated and applied to glass cloth, carbon fiber cloth, etc. in a predetermined amount. Apply the resin solution to glass cloth or carbon fiber cloth and apply it to 80% by the usual method.
Create prepreg by heating and drying with hot air at ~180℃,
Adjust to the desired thickness using a conventional method. A laminate can be obtained by stacking multiple sheets of this prepreg and molding them into a heated and pressurized laminate using steam heating at a maximum temperature of 170 to 190°C, a pressure of 10 to 100 kg/cm 2 , and a press time of 1 to 3 hours. .

(作用) 反応生成物の構造式は次のようであろうと推定
される。ビスマレイミドを例にとつて示すと(1)式
においては、N,N′−ビスイミドにアミノフエ
ノールが付加したオリゴマーが生成するが、主鎖
構造にベンゼン核が結合して分子の対称性が乱れ
ることとフエノール性OH基の溶媒との親和性が
増すといつた効果により、不飽和ジカルボン酸の
N,N′−ビスイミド単独では達成し得ない溶媒
に対する溶解性が向上するものと推定される。
(Function) The structural formula of the reaction product is presumed to be as follows. Taking bismaleimide as an example, in formula (1), an oligomer is produced in which aminophenol is added to N,N'-bisimide, but the benzene nucleus is bonded to the main chain structure, disrupting the symmetry of the molecule. It is presumed that this and the effect of increased affinity of the phenolic OH group with the solvent improve the solubility of the unsaturated dicarboxylic acid in the solvent, which cannot be achieved with N,N'-bisimide alone.

また(1)式で生成したオリゴマーをガラスクロス
や炭素繊維布に塗布乾燥し、それによりBステー
ジ化したプリプレグを加熱加圧して積層板を成形
する段階では、(2)式のような反応やオリゴマーの
炭素−炭素二重結合同士の結合により(3)のような
架橋反応が生起し、網目構造を形成して耐熱性の
よい熱硬化性樹脂となつて、耐熱性積層板が得ら
れる。アミノフエノールからのフエノール性水酸
基は、多量に存在すると耐湿性などに悪影響を及
ぼすが、適量に存在すれば耐湿性を損うことなく
前述した溶媒に対する溶解性を向上させると共
に、銅張積層板の場合は銅に対する接着性を向上
させる効果が大きく、またフエノール性水酸基が
酸化防止剤(老化防止剤)としても有効である。
フエノール性水酸基が酸化防止剤として有効であ
ることは良く知られているが、フエノール性水酸
基の水素を過酸化ラジカルに与えて安定なラジカ
ルに変化する。この反応は過酸化ラジカルがポリ
マー中の第3級水素を引き抜く反応(酸化劣化反
応)よりも早く生起するために酸化の防止になる
わけで、本発明に用いる樹脂が耐熱性のよいの
は、アミノフエノールに起因するフエノール性水
酸基の酸化防止効果も耐熱性に寄与していると考
えられる。アミノフエノールのフエノール性水酸
基は、前述のように効果があるが多量に存在する
と耐湿性を悪くする欠点がある。この欠点をアニ
リン類を併用することによりアミノフエノールの
配合量を少なく抑えてフエノール性水酸基を少な
くすることにより耐湿性を改善し、あわせて接着
力、耐熱性、溶解性の向上、低温成形性を意図し
たものである。
In addition, at the stage of applying and drying the oligomer produced in equation (1) on glass cloth or carbon fiber cloth, and heating and pressurizing the B-staged prepreg to form a laminate, the reaction as shown in equation (2) and A cross-linking reaction as shown in (3) occurs due to the bonding between the carbon-carbon double bonds of the oligomer, forming a network structure and turning into a thermosetting resin with good heat resistance, resulting in a heat-resistant laminate. If the phenolic hydroxyl group from aminophenol is present in a large amount, it will have a negative effect on moisture resistance, but if it is present in an appropriate amount, it will improve the solubility in the above-mentioned solvents without impairing the moisture resistance, and it will also improve the solubility of copper-clad laminates. In this case, the effect of improving adhesion to copper is large, and the phenolic hydroxyl group is also effective as an antioxidant (antiaging agent).
It is well known that phenolic hydroxyl groups are effective as antioxidants, and hydrogen from phenolic hydroxyl groups is given to peroxide radicals to turn them into stable radicals. This reaction occurs faster than the reaction in which peroxide radicals extract tertiary hydrogen from the polymer (oxidative deterioration reaction), which prevents oxidation.The reason why the resin used in the present invention has good heat resistance is that It is thought that the antioxidant effect of the phenolic hydroxyl group caused by aminophenol also contributes to the heat resistance. Although the phenolic hydroxyl group of aminophenol is effective as described above, it has the disadvantage that moisture resistance deteriorates when present in a large amount. By using anilines in combination, we can suppress the amount of aminophenol blended and reduce the number of phenolic hydroxyl groups, improving moisture resistance, as well as improving adhesive strength, heat resistance, solubility, and low-temperature moldability. It was intended.

実施例 次に本発明を実施例によつて具体的に説明す
る。
EXAMPLES Next, the present invention will be specifically explained by examples.

実施例 1 マレイン酸N,N′−4,4′−ジフエニルメタン
ビスイミド358g(1モル)に、m−アミノフエ
ノール32.7g(0.3モル)と、m−トルイジン64.3
g(0.6モル)を混合し、撹拌しながら100℃にす
ると一様に溶解した褐色の液体となる。この液体
を130℃に昇温し、30分間撹拌した後反応物をホ
ーロー引きバツトに流し込み冷却してからミキサ
ーで粉砕した。反応物400gを215gのジオキサン
に溶解して温度110℃で約4時間加熱撹拌し気泡
粘度計で50℃、65秒になつたところで冷却し、メ
チルセロソルブ218gを加えて樹脂分48重量%の
樹脂溶液を調製した。この溶液に0.5gの2−エ
チル−4−メチルイミダゾールを加えよく撹拌し
て均一な混合溶液とした。アミノシラン処理した
ガラスクロスにこの溶液を含浸塗布し、30分間風
乾した後110℃に保持した乾燥器中で10分間、続
いて150℃で7分間乾燥してプリプレグを作成し
た。このプリプレグを数枚重ねて、圧力40Kg/
cm2、温度185℃で1時間加熱加圧一体に成形して
積層板を製造した。この積層板を200℃で1時間
アフターキユアーした後、25℃に放冷した時点で
折り曲げ強さを測定したところ63Kg/mm2であつ
た。また200℃雰囲気中の折り曲げ強さは48Kg/
mm2で高温でも曲げ強度を維持していることがわか
る。絶縁抵抗(D−2/100+D−0.5/20)も
3.0×1013Ωであつた。参考として前記プリプレ
グ複数枚と厚さ35μmの銅箔を用いて銅張積層板
を製造した。この引き剥がし強度は1.90Kg/cm、
300℃での半田耐熱性は10分以上であつた。また
ミーズリング試験(耐湿性試験)で6時間後でも
合格であつた。いずれも本発明の顕著な効果が認
められた。
Example 1 358 g (1 mol) of maleic acid N,N'-4,4'-diphenylmethane bisimide, 32.7 g (0.3 mol) of m-aminophenol, and 64.3 g of m-toluidine
g (0.6 mol) and heated to 100°C with stirring to form a uniformly dissolved brown liquid. This liquid was heated to 130° C. and stirred for 30 minutes, then the reaction product was poured into an enameled pot, cooled, and pulverized with a mixer. 400g of the reactant was dissolved in 215g of dioxane, heated and stirred at a temperature of 110°C for about 4 hours, and when the temperature reached 50°C for 65 seconds using a bubble viscometer, it was cooled, and 218g of methyl cellosolve was added to make a resin with a resin content of 48% by weight. A solution was prepared. 0.5 g of 2-ethyl-4-methylimidazole was added to this solution and stirred well to obtain a uniform mixed solution. Aminosilane-treated glass cloth was impregnated with this solution and air-dried for 30 minutes, then dried in a dryer kept at 110°C for 10 minutes and then at 150°C for 7 minutes to prepare a prepreg. By stacking several sheets of prepreg, the pressure is 40Kg/
cm 2 and a temperature of 185° C. for 1 hour under heat and pressure to produce a laminate. After curing this laminate at 200°C for 1 hour, the bending strength was measured at 25°C and found to be 63Kg/mm 2 . In addition, the bending strength in an atmosphere of 200℃ is 48Kg/
It can be seen that bending strength is maintained even at high temperatures at mm 2 . Insulation resistance (D-2/100+D-0.5/20)
It was 3.0×10 13 Ω. As a reference, a copper-clad laminate was manufactured using a plurality of the prepregs and a 35 μm thick copper foil. This peel strength is 1.90Kg/cm,
The soldering heat resistance at 300°C was 10 minutes or more. It also passed the Measling test (moisture resistance test) even after 6 hours. In all cases, remarkable effects of the present invention were observed.

実施例 2 マレイン酸N,N′−4,4′−ジフエニルエーテ
ルビスイミド360g(1モル)に、m−アミノフ
エノール32.7g(0.3モル)と、アニリン27.9g
(0.3モル)を混合し、撹拌しながら加熱して100
℃を超えると次第に溶解し褐色の液体となる。こ
の液体を130℃まで昇温し、30分間撹拌して反応
させた反応物を、ホーロー引きバツトに流し込
み、冷却してからミキサーで粉砕した。この反応
物400gを215gのジオキサンに溶解し、温度約
110℃で約5時間加熱撹拌し、気泡粘度計で50℃、
61秒になつたところで冷却し、エチルセロソルブ
を255g加えて約46%の樹脂溶液とした。この溶
液にN,N−ベンジルジメチルアミン1gを加
え、よく撹拌して均一な耐熱性樹脂溶液とした。
Example 2 360 g (1 mol) of maleic acid N,N'-4,4'-diphenyl ether bisimide, 32.7 g (0.3 mol) of m-aminophenol, and 27.9 g of aniline.
(0.3 mol) and heated while stirring to 100
When the temperature exceeds ℃, it gradually dissolves and becomes a brown liquid. This liquid was heated to 130° C. and stirred for 30 minutes to react. The reaction product was poured into an enameled pot, cooled, and pulverized with a mixer. 400 g of this reactant was dissolved in 215 g of dioxane at a temperature of approx.
Heat and stir at 110℃ for about 5 hours, and measure 50℃ using a bubble viscometer.
When the temperature reached 61 seconds, the mixture was cooled and 255 g of ethyl cellosolve was added to obtain a resin solution of approximately 46%. 1 g of N,N-benzyldimethylamine was added to this solution and stirred well to obtain a uniform heat-resistant resin solution.

この溶液をPAN系の炭素繊維布に含浸塗布さ
せ30分間風乾した後、110℃に保持した乾燥器中
で10分間乾燥し、続いて150℃、7分間乾燥して
プリプレグを作成した。このプリプレグ数枚重ね
て、圧力50Kg/cm2、温度190℃、1時間で加熱加
圧一体に成形して積層板を得た。この積層板を
200℃、15時間アフターキユアした後、25℃に放
冷した時点で曲げ強度を測定したところ125Kg/
mm2、曲げ弾性率5600Kg/mm2であり、200℃の雰囲
気中での曲げ強度は105Kg/mm2であり、曲げ弾性
率5490Kg/mm2であり、高温でも曲げ強度の保持率
は84%であつた。いずれも本発明の顕著な効果が
認められた。
This solution was impregnated and coated on a PAN-based carbon fiber cloth, air-dried for 30 minutes, dried in a dryer kept at 110°C for 10 minutes, and then dried at 150°C for 7 minutes to create a prepreg. Several sheets of this prepreg were stacked and heated and pressed into one piece at a pressure of 50 kg/cm 2 and a temperature of 190° C. for 1 hour to obtain a laminate. This laminate
After curing at 200℃ for 15 hours, the bending strength was measured after cooling to 25℃ and it was 125Kg/
mm 2 , bending elastic modulus is 5600Kg/mm 2 , bending strength in an atmosphere of 200℃ is 105Kg/mm 2 , bending elastic modulus is 5490Kg/mm 2 , and bending strength retention rate is 84% even at high temperatures. It was hot. In all cases, remarkable effects of the present invention were observed.

実施例 3 マレイン酸N,N′−ジフエニルメタンビスイ
ミド358g(1モル)とp−アミノフエノール
27.25g(0.25モル)、p−アニシジン6.16g
(0.05モル)とジオキサン211gをフラスコに仕込
み、温度110〜115℃で約40時間加熱撹拌し、気泡
粘度計で50℃、55秒まで反応を進めた。冷却して
からメチルセロソルブ180gを加えて約50%の樹
脂溶液とした。これに硬化促進剤としてキユアゾ
ールIB2MZ(四国化成工業社製、商品名)0.9g
を加え、よく撹拌して均一な耐熱性樹脂溶液とし
た。この溶液をアミノシラン処理したガラスクロ
スに含浸塗布し30分間風乾した後、110℃に保持
した乾燥器中で10分間、続いて150℃で7分間乾
燥してプリプレグを作成した。このプリプレグを
数枚重ねて圧力50Kg/cm2、温度180℃で1時間加
熱加圧一体に成形して積層板を得た。得られた積
層板を200℃、1時間アフターキユアをした後、
25℃に放冷した時点で曲げ強度を測定したところ
63Kg/mm2、205℃雰囲気中での曲げ強度51.7Kg/
mm2で、205℃での保持率は82%であつた。また絶
縁抵抗は常態で1015Ω以上、煮沸2時間(D−
2/100)後20℃の流水冷却30分間(D−0.5/
20)後も8.0×1013Ωであつた。また、銅張積層
板を製造してその引き剥がし強度を測定したとこ
ろ1.70Kg/cm、半田耐熱性は300℃、10分間以上
であつた。いずれも本発明の顕著な効果が認めら
れた。
Example 3 358 g (1 mol) of maleic acid N,N'-diphenylmethane bisimide and p-aminophenol
27.25g (0.25mol), p-anisidine 6.16g
(0.05 mol) and 211 g of dioxane were placed in a flask, heated and stirred at a temperature of 110 to 115°C for about 40 hours, and the reaction was continued at 50°C for 55 seconds using a bubble viscometer. After cooling, 180 g of methyl cellosolve was added to obtain an approximately 50% resin solution. Add 0.9 g of Kyuazol IB2MZ (manufactured by Shikoku Kasei Kogyo Co., Ltd., trade name) as a curing accelerator.
was added and stirred well to obtain a uniform heat-resistant resin solution. This solution was impregnated and coated on an aminosilane-treated glass cloth, air-dried for 30 minutes, then dried in a dryer kept at 110°C for 10 minutes, and then at 150°C for 7 minutes to prepare a prepreg. Several sheets of this prepreg were stacked and heated and pressed into one piece at a pressure of 50 kg/cm 2 and a temperature of 180° C. for 1 hour to obtain a laminate. After curing the obtained laminate at 200℃ for 1 hour,
Bending strength was measured after cooling to 25℃.
63Kg/mm 2 , bending strength in 205℃ atmosphere 51.7Kg/
mm 2 and the retention rate at 205°C was 82%. In addition, the insulation resistance is 10 15 Ω or more under normal conditions, and after boiling for 2 hours (D-
2/100) and then cooled with running water at 20℃ for 30 minutes (D-0.5/
20) It was still 8.0×10 13 Ω. In addition, when a copper-clad laminate was manufactured and its peel strength was measured, it was 1.70 kg/cm, and the soldering heat resistance was 300° C. for 10 minutes or more. In all cases, remarkable effects of the present invention were observed.

比較例 1 実施例1に於て、m−トルイジンの代わりにm
−アミノフエノールを用いた以外はすべて実施例
1と同一にして積層板を得て、ミーズリング試験
を行つたところ2時間で不合格であつた。
Comparative Example 1 In Example 1, m-toluidine was replaced with m-toluidine.
A laminate was obtained in the same manner as in Example 1 except that -aminophenol was used, and when a Measling test was conducted, it failed in 2 hours.

[発明の効果] 以上の説明から明らかなように、本発明の耐熱
性積層板は、200℃以下の低温で成形が可能で、
銅箔との接着力やガラスクロス間等の層間接着
力、耐湿性に優れた耐熱性のよいもので、これを
使用することによつて信頼性の高い電子機器や通
信機器を得ることができ工業上極めて有利なもの
である。
[Effects of the Invention] As is clear from the above explanation, the heat-resistant laminate of the present invention can be molded at a low temperature of 200°C or less,
It has excellent adhesive strength with copper foil, interlayer adhesive strength such as between glass cloth, moisture resistance, and heat resistance, and by using it, highly reliable electronic and communication equipment can be obtained. It is extremely advantageous industrially.

Claims (1)

【特許請求の範囲】 1 (A)(a) 一般式()で示される不飽和ジカル
ボン酸のN,N′−ビスイミド化合物、 (但し、式中R1は少なくとも2個の炭素原
子を有する2価の基を、R2は炭素−炭素原
子間の二重結合を含む2価の基をそれぞれ表
す) (b) 一般式()で示されるアミノフエノール
および (但し、式中R3は、水素原子、ハロゲン原
子又はアルキル基を表す) (c) 一般式()で示されるアニリン類 (但し、R4、R5は水素原子、アルキル基、
ハロゲン原子、−OCH3、−OC2H5等の基で活
性水素を含まない基を表す) の反応生成物と、 (B) 硬化促進剤と を配合してなる耐熱性樹脂を用いることを特徴と
する耐熱性積層板。 2 反応生成物が、(a)不飽和ジカルボン酸のN,
N′−ビスイミド化合物1モルに対し、(b)アミノ
フエノールと(c)アニリン類の合計[(b)+(c)]を
0.1〜1.0モルの割合で配合したものである特許請
求の範囲第1項記載の耐熱性積層板。 3 反応生成物が、(b)アミノフエノールと(c)アニ
リン類のモル比[(c)/(b)]が0.1〜9.0である特許
請求の範囲第1項又は第2項記載の耐熱性積層
板。
[Scope of Claims] 1 (A)(a) An N,N'-bisimide compound of an unsaturated dicarboxylic acid represented by the general formula (), (However, in the formula, R 1 represents a divalent group having at least two carbon atoms, and R 2 represents a divalent group containing a double bond between carbon atoms.) (b) General formula ( ) Aminophenol and (However, in the formula, R 3 represents a hydrogen atom, a halogen atom, or an alkyl group) (c) Anilines represented by the general formula () (However, R 4 and R 5 are hydrogen atoms, alkyl groups,
(a halogen atom, a group such as -OCH 3 or -OC 2 H 5 that does not contain active hydrogen) and (B) a curing accelerator are used. A heat-resistant laminate with special features. 2 The reaction product is (a) N of unsaturated dicarboxylic acid,
The sum of (b) aminophenol and (c) aniline [(b) + (c)] for 1 mol of N'-bisimide compound.
The heat-resistant laminate according to claim 1, wherein the heat-resistant laminate is blended in a proportion of 0.1 to 1.0 mole. 3. Heat resistance according to claim 1 or 2, wherein the reaction product has a molar ratio [(c)/(b)] of (b) aminophenol and (c) aniline from 0.1 to 9.0. Laminated board.
JP18855386A 1986-08-13 1986-08-13 Heat-resistant laminated board Granted JPS6345052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18855386A JPS6345052A (en) 1986-08-13 1986-08-13 Heat-resistant laminated board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18855386A JPS6345052A (en) 1986-08-13 1986-08-13 Heat-resistant laminated board

Publications (2)

Publication Number Publication Date
JPS6345052A JPS6345052A (en) 1988-02-26
JPS646023B2 true JPS646023B2 (en) 1989-02-01

Family

ID=16225710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18855386A Granted JPS6345052A (en) 1986-08-13 1986-08-13 Heat-resistant laminated board

Country Status (1)

Country Link
JP (1) JPS6345052A (en)

Also Published As

Publication number Publication date
JPS6345052A (en) 1988-02-26

Similar Documents

Publication Publication Date Title
JP6872081B2 (en) Polyamic acid resin, polyimide resin and resin composition containing these
JPS6312898B2 (en)
US5508357A (en) Polyimides, thermosetting resin compositions containing the polyimides, formed articles of the resin compositions, and production process of polyimides
JPS5871924A (en) Thermosetting resin composition and its prepolymer
JP2757588B2 (en) Thermosetting resin composition and film adhesive
JPS6363567B2 (en)
JP2575793B2 (en) Heat resistant copper clad laminate
JPS646023B2 (en)
JPH03185066A (en) Thermosetting resin composition
JPH01123831A (en) Heat-resistant resin composition
JPH0312592B2 (en)
JPS62177033A (en) Production of heat-resistant laminate
JPS6317092B2 (en)
JPH07119300B2 (en) Method for manufacturing prepreg for heat-resistant laminated plate
JPS6381161A (en) Heat-resistant resin composition
JPH0319837A (en) Heat-resistant laminated sheet
JPH0319838A (en) Heat-resistant laminated sheet
JPH0742345B2 (en) Thermosetting resin composition
JPH02229041A (en) Heat-resistant laminated sheet
JPS6339613B2 (en)
JPH02229040A (en) Heat-resistant laminated sheet
JPS58179229A (en) Thermosetting resin composition and prepolymer thereof
JPH07179756A (en) Polyaminobismaleimide resin composition
JPH07138537A (en) Thermosetting adhesive sheet
JPH0343420A (en) Heat-resistant resin composition