JPS645979B2 - - Google Patents

Info

Publication number
JPS645979B2
JPS645979B2 JP7021883A JP7021883A JPS645979B2 JP S645979 B2 JPS645979 B2 JP S645979B2 JP 7021883 A JP7021883 A JP 7021883A JP 7021883 A JP7021883 A JP 7021883A JP S645979 B2 JPS645979 B2 JP S645979B2
Authority
JP
Japan
Prior art keywords
resin
phenolic resin
solid
sand
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7021883A
Other languages
Japanese (ja)
Other versions
JPS59197339A (en
Inventor
Masato Akiba
Tadayoshi Matsura
Hideo Kunitomo
Shinjiro Ootsuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP7021883A priority Critical patent/JPS59197339A/en
Publication of JPS59197339A publication Critical patent/JPS59197339A/en
Publication of JPS645979B2 publication Critical patent/JPS645979B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
    • B22C1/2233Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • B22C1/226Polyepoxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mold Materials And Core Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規にして有用な鋳物砂用結合剤に関
し、さらに詳細には、特定の固形樹脂と液状樹脂
とを組み合せて成る、アルミニウム合金の如き低
温で鋳造される軽金属ないしは軽合金用砂鋳型の
造型に用いられる結合剤(粘結剤)に関する。 アルミニウム合金の如く、700℃程度の比較的
低い温度で鋳込まれる鋳物にあつては、フエノー
ル樹脂粘結剤が十分に分解するまでの熱覆歴を受
けるには至らなく、したがつて砂落しのために
は、わざわざ型焼き工程を入れるなどの多大な労
力とエネルギーが費やされている。 そのために、これまでにも、フエノール樹脂以
外の耐熱性のやや劣るポリエステル樹脂粘結剤を
使う方法や、フエノール樹脂に分解助剤を添加使
用する方法や、さらには易分解性組成物でフエノ
ール樹脂を変性せしめる方法などが提案されては
いるけれども、いずれの方法も作業標準に合致し
得なくて、トラブルが発生したり、鋳型の強度が
低下したりするし、あるいはこの鋳型強度の低下
を補うためにその使用量を増大させればガス欠陥
を増長させたりして、実用上、十分に満足すべき
結合剤が見出されていないというのが現状であ
る。 しかるに、本発明者らは上述した如き実状に鑑
みて、現行のシエルモールド法の作業標準を何ら
変更することなしに、アルミニウム合金の如く低
温で鋳込まれても十分に分解し、砂落しのための
“型焼き”などの工程をも大幅に省略することの
できるフエノール系樹脂を見出すことを目的とし
て鋭意研究した結果、まず、鋳型の易分解性(易
崩壊性)をはかるためには、 1 結合剤(粘結剤)の添加量を少なくして鋳型
をつくる、 2 フエノール樹脂の架橋密度を少なくして耐熱
性を低下させる、 3 分解し易い組成物で変性せしめる、 4 分解し易い結合を導入せしめる、 5 含酸素物質もしくは発熱性物質または分解促
進物質などの助剤を用いる などの方法があり、それぞれは有効なものである
ことが判明したが、こうした方法によるときは、
単独の手段による限り、いずれも今一歩の域を脱
し切れないばかりか、シエルモールド法の作業標
準には合致し得なくて、遅硬化性であつたり、強
度の低下があつたりする。 これに対して、上掲の1〜5なる各方法を多く
組み合せれば組み合せるほど、一層満足のいく易
崩壊性のものを得ることが、さらに判明した。 その反面において、強度が大きく低下する処か
ら高強度にしておくことが必要となるけれども、
そうした必要のために変性処方を講ずることにす
れば、遅硬化性になつたり、強度の低下もあつた
りして、総合的な面からは未だ満足すべきもので
はない。 しかるに、本発明者らは更に進んで、固形の樹
脂の使用ばかりではなく、これと同種の液状樹脂
を用いて被覆を行うときは、硬化速度ならびに強
度が著しく向上するばかりではなく、易分解性
(易崩壊性)にも効果が上がることを見出して、
本発明を完成させるに到つた。 すなわち、本発明はフエノール樹脂に対して、
その固形分重量で3〜20%のブロム化されたエポ
キシ樹脂を反応させて得られる固形の変性フエノ
ール樹脂(A)と、液状フエノール樹脂(B)と、フエノ
ール樹脂に対して、その固形分重量で20%以下の
ブロム化されたエポキシ樹脂を反応させて得られ
る液状の変性フエノール樹脂(C)とを必須の成分と
して含んで成る、とくに二液型の鋳物砂用結合剤
を提供するものである。 ここにおいて、上記したフエノール樹脂として
は、フエノールとホルムアルデヒドとから合成さ
れるノボラツク型またはレゾール型のいずれのタ
イプのものでは一般に市販されているものであれ
ば、いずれも使用できるが、とりわけ、遊離のフ
エノール・モノマーのできるだけ少ないものが適
している。 これは、当該フエノール樹脂が前記ブロム化さ
れたエポキシ樹脂と反応するさいに、このブロム
化エポキシ樹脂が遊離のフエノール・モノマーと
反応することによつて、その部分は単なる夾雑物
となつて性能を低下させるためである。 また、当該フエノール樹脂はこうしたブロム化
エポキシ樹脂との反応によつて融点が高くなつた
り、粘度が増大する処から、反応の甘い、やや融
点の低いフエノール樹脂をベースにするのが好ま
しいけれども、前記した固形の変性フエノール樹
脂(A)を調製するにさいしては、変性後の融点が65
〜100℃なる範囲内に入るようにする必要がある。 これは、かかる固形の変性フエノール樹脂(A)の
融点が低いときはコーテツド・サンドがブロツキ
ングし易くなるし、逆に融点が高いときは加熱さ
れた砂への溶け込みが悪くなつて、均一に混ざら
なくなるからである。 さらに、これらフエノール樹脂とブロム化エポ
キシ樹脂との反応のさい、フエノール性水酸基と
エポキシ基とが反応して生起するエーテル結合は
フエノール樹脂のメチレン結合よりも分解し易い
し、かかる反応に与かつたフエノール核は活性位
置の反応性が低下して、架橋密度を低くすること
になる。 次に、前記したブロム化されたエポキシ樹脂と
しては、とくにビスフエノールA型のエポキシ樹
脂が好ましい。 そして、当該ブロム化エポキシ樹脂による変性
率については、上述した分解し易い結合部分の量
や架橋密度、さらには見掛け上の硬化速度や強度
などと、分解した臭素分解ガス助剤の効果などと
から決定されるが、通常は前記フエノール樹脂の
固形分重量を基準として3〜20%、好ましくは5
〜15%なる範囲が、性能面でのバランスが良いの
で、適当である。 したがつて、本発明において主剤とも呼びうる
前記した固形の変性フエノール樹脂(A)を得るべ
く、まず、かかる固形フエノール樹脂を変性せし
める必要があり、かつ、それが望ましいが、液状
樹脂はそれ自体何ら変性しなくても、本発明の効
果は十分に発現される。 そして、かかる変性の度合(変性率)は少なす
ぎると効果が小さく、逆に多いと、臭素の分子が
それ自体大きいものである処から、その立体障害
も起るためか、著しい遅硬化性となり、強度も劣
るようになる。 このことは、架橋密度が低くなつているものと
考えられ、易崩壊性の面では頗る好ましいもの
の、作業条件の面からすれば好ましいものである
とは言えない。 以上のようにして、フエノール樹脂のブロム化
エポキシ樹脂による変性を通して、架橋密度を小
さくすると共に、分解され易い結合も導入され、
加えてこのブロム化エポキシ樹脂の存在により難
燃効果もあるものの、ブロム化エポキシ樹脂はそ
れ自体、分解され易いものであるために、かつ、
分解されたさいには樹脂の分解、ひいては鋳型の
崩壊を促進せしめるという作用を有するものであ
るから、こうしたフエノール樹脂のブロム化フエ
ノール樹脂による変性は全体的にも易分解性(易
崩壊性)にしているわけである。 しかしながら、本発明において主剤となつてい
る前記した固形の変性フエノール樹脂(A)のみでは
遅硬化性になり、しかも強度が低下するために、
本発明においては、この(A)成分のほかに必ず液状
の樹脂たる前記した液状フエノール樹脂(B)を使用
するか、あるいは前記した液状の変性フエノール
樹脂(C)を使用する要があるわけである。 事実、固形の変性フエノール樹脂(A)を使用する
だけでは、遅硬化性であり、しかも見掛け上の強
度が低下するので、好ましいコーテツド・サンド
の製法として、該樹脂(A)を溶融被覆せしめた上
に、さらに液状フエノール樹脂(B)あるいは液状の
変性フエノール樹脂(C)を用いて二重に被覆すれば
実用上、満足しうる効果が期待できる。 しかも、乾態の被覆砂(コーテツド・サンド)
とするためには、低融点の液状樹脂を多く配合せ
しめると、被覆砂がブロツキングし易いし、溶剤
が残つてもブロツキングし易くなる処から、これ
ら成分(A)と成分(B)との使用比率、あるいは成分(A)
と成分(C)との使用比率はいずれも、固形分換算で
の重量比で95:5〜70:30なる範囲が適当であ
る。 このさい、溶剤に溶解させた形の液状樹脂は、
できるだけ高固形分のものであつて、かつ取り扱
い易い粘度、つまり通常は1000cps/25℃以下の
ものであるがよい。 本発明の効果をさらに一層大きくするために
は、公知慣用の添加剤の中でも特に効果のある、
シラン・カツプリング剤、強度付与剤、有機酸−
ヘキサメチレンテトラミン系分解促進速硬化剤ま
たはワツクス類もしくはアマイド類の如き溶融粘
度低下剤ないしは強度付与剤などの添加剤を本発
明の鋳物砂用結合剤に配合せしめてもよく、これ
によつて何ら本発明の効果を阻害するものではな
く、かくして得られる本発明の結合剤は特に樹脂
被覆砂粒(コーテツド・サンド)の調整に適用す
ることができ、通常のホツトマーリング用または
シエルモールド用のフエノール樹脂とほぼ同様に
使用できる。 次に、本発明を参考例、実施例および比較例に
より具体的に説明するが、部および%は特に断り
のない限り、すべて重量基準であるものとする。 参考例 1 〔固形の変性フエノール樹脂(A)の調製例〕 フエノールの940部、40%ホルマリンの450部お
よび蓚酸の9部を、コンデンサー付き反応器に仕
込んでリフラツクスさせながら4時間反応せしめ
たのち、直ちに真空蒸留を開始して真空度40mm
Hgで160℃まで脱水、脱フエノールを行つた。 ここに得られたフエノール樹脂は環球法による
融点(以下同様)が80℃で、かつ遊離フエノール
分は2%であつた。 次いで、このフエノール樹脂の500部に対して、
「エピクロン152」〔大日本インキ化学工業(株)製の
ブロム化エポキシ樹脂;臭素含有率=48%、融点
=61℃〕の50部を加えて160〜170℃で2時間反応
させて、融点が88℃なる固形の変性フエノール樹
脂を得た。以下、これを樹脂(A−1)と略記す
る。 参考例 2 〔液状の変性フエノール樹脂(C)の調製例〕 参考例1で得られた樹脂(A−1)をメタノー
ルに溶解させて60%濃度の溶液となした処、25℃
におけるBM型粘度計による粘度(以下同様)は
65cpsであつた。 次いで、この溶液に9%のヘキサメチレンテト
ラミンおよび9%の水を加えて液状の変性フエノ
ール樹脂(C)を得た。以下、これを樹脂(C−1)
と略記する。 参考例 3 〔液状の変性フエノール樹脂(C)の調製例〕 「プライオーフエンTD−2040」〔大日本イン
キ化学工業(株)製の固形のレゾール型フエノール樹
脂;融点=60℃〕の600部、「エピクロン152」の
60部およびメタノールの440部を仕込んで固形分
が60%となるように設計して、リフラツクス温度
(約70℃)で溶解させつつ5時間反応せしめて、
粘度が130cpsなる液状の変性フエノール樹脂(C)を
得た。以下、これを樹脂(C−2)と略記する。 実施例 1 予め140℃に加熱しておいたフラタリー砂の10
Kgに、樹脂(A−1)の135gおよび1分間混練
し、次いで樹脂(C−1)の25gおよび16.9%ヘ
キサメチレンテトラミン水溶液の120gを加えて
1分間混練し、しかるのちステアリン酸カルシウ
ムの10gを加えて20秒間混練してから取り出して
樹脂被覆砂を得た。 実施例 2 樹脂(C−1)の代りに同量の樹脂(C−2)
を用いるように変更した以外は、実施例1と同様
にして樹脂被覆砂を得た。 実施例 3 樹脂(C−1)の代りに同量の「プライオーフ
エンDG−307」〔大日本インキ化学工業(株)製の無
変性の水溶性レゾール型フエノール樹脂;固形分
=60%、粘度=200cps〕を液状フエノール樹脂(B)
として用いるように変更した以外は、実施例1と
同様にして樹脂被覆砂を得た。 比較例 1 樹脂(C−1)の使用を一切欠如し、樹脂(A
−1)の使用量を150gに変更し、かつ、18.7%
のヘキサメチレンテトラミン水溶液を123g用い
るように変更した以外は、実施例1と同様にして
樹脂被覆砂を得た。 比較例 2 樹脂(A−1)の代りに同量の「フアンドレツ
ツTD−304−B」〔大日本インキ化学工業(株)製の
ホツトマーリング用、シエルモールド用無変性固
形ノボラツク型樹脂;融点=85℃〕を用いるよう
に変更した以外は、比較例1と同様にして樹脂被
覆砂を得た。 比較例 3 樹脂(A−1)の代りに同量の「フアンドレツ
ツTD−304−B」を用いる一方、樹脂(C−1)
の代りに同量の「プライオーフエンDG−307」
を用いるように変更した以外は、実施例1と同様
にして樹脂被覆砂を得た。 以上の各実施例および比較例で得られた樹脂被
覆砂について性能の評価を行つた処を第1表にま
とめて示すが、硬化剤としてのヘキサメチレンテ
トラミンの量は各フエノール樹脂の固形分に対し
て15%とした。 また、同表中に示す各性能試験の試験法は次の
如き要領によつたものである。 融着点……JACT(鋳造技術普及協会)試験法の
C−1に準拠。 曲げ強さ……JIS K−6910に準拠。 硬化速度(たわみ)……金型を250℃として被験
砂をチヤージし、20秒間焼成し、次いで抜型し
てから10秒後に、テストピース(サイズ:50×
150×5mm、スパン幅:110mm)に200gの荷重
をかけて「たわみ」量をダイヤルゲージで読み
取るが、値の小さいものほど「たわみ」が少な
く、したがつて速硬化性であることを示す。 崩壊性……金型を230℃とし、被試砂をチヤージ
して20分間保持したのち、300℃の炉内で1分
間焼成させてテストピース(85mmφ×10mmの円
柱状物)を得、次いでこのテストピースをアル
ミ箔で二重にくるみ、しかるのち450℃の炉内
で20分間焼成して、この加熱処理済のテストピ
ースをロータツプ篩分け機を用いて10メツシユ
篩上で砂落しを行い、もはやテストピースが篩
上に全く残らなくなるまでの時間(秒数)を測
定して「崩壊性」のデーターとするか、砂落し
の結果、砂が残るものに対しては、さらにこの
砂落しの開始から2分後の砂落ち量の、砂落し
開始前のテストピースの重量に対する割合
(%)を測定して「崩壊性」のデーターとする。
The present invention relates to a new and useful binder for foundry sand, and more particularly, the present invention relates to a new and useful binder for foundry sand, and more particularly, for use in sand molds for light metals or light alloys cast at low temperatures, such as aluminum alloys, which are made by combining a specific solid resin and a liquid resin. It relates to a binder (binding agent) used in molding. Castings such as aluminum alloys, which are cast at a relatively low temperature of around 700°C, do not undergo a thermal cycle that sufficiently decomposes the phenolic resin binder, so sand removal is difficult. For this purpose, a great deal of effort and energy is expended, including the special mold-baking process. To this end, methods have been developed to date, including the use of polyester resin binders other than phenolic resins, which have slightly lower heat resistance, methods of adding decomposition aids to phenolic resins, and even methods of using easily decomposable compositions for phenolic resins. Although methods have been proposed to denature the mold, none of these methods meet the work standards and cause trouble or reduce the strength of the mold, or compensate for this decrease in mold strength. Therefore, increasing the amount used may increase gas defects, and the current situation is that a binder that is fully satisfactory for practical use has not been found. However, in view of the above-mentioned circumstances, the inventors of the present invention have developed a method that, without making any changes to the current working standards of the shell molding method, can sufficiently decompose even when cast at low temperatures, such as aluminum alloys, and prevent sand removal. As a result of intensive research aimed at finding a phenolic resin that can greatly omit processes such as mold baking, we first determined the ease of disassembly (disintegration) of the mold. 1. Making a mold by reducing the amount of binder (caking agent) added, 2. Decreasing the crosslinking density of the phenolic resin to lower the heat resistance, 3. Modifying it with an easily decomposable composition, 4. Bonding that is easy to decompose. 5. There are methods such as using auxiliary agents such as oxygen-containing substances, pyrogenic substances, or decomposition accelerating substances, and each of them has been found to be effective, but when using these methods,
As long as a single method is used, not only is it beyond the state of the art, but it also cannot meet the working standards of the shell molding method, resulting in slow curing and a decrease in strength. On the other hand, it has been further found that the more methods 1 to 5 listed above are combined, the more satisfactory easily disintegrating products can be obtained. On the other hand, it is necessary to keep the strength high since the strength decreases significantly.
If a modified formulation is adopted to meet these needs, it may result in slow curing and a decrease in strength, which is still unsatisfactory from an overall standpoint. However, the present inventors have gone further and found that when coating is performed not only with a solid resin but also with the same type of liquid resin, not only the curing speed and strength are significantly improved, but also the easily degradable (easily disintegrating) was also found to be effective.
The present invention has now been completed. That is, the present invention provides the following for phenolic resin:
A solid modified phenolic resin (A) obtained by reacting a brominated epoxy resin with a solid content weight of 3 to 20%, a liquid phenolic resin (B), and a solid content weight of the phenolic resin. The purpose of the present invention is to provide a particularly two-component molding sand binder comprising as an essential component a liquid modified phenolic resin (C) obtained by reacting 20% or less of a brominated epoxy resin. be. Here, as the above-mentioned phenolic resin, any commercially available phenol resin, either a novolak type or a resol type synthesized from phenol and formaldehyde, can be used, but in particular, free phenol resins can be used. The lowest possible amount of phenolic monomer is suitable. This is because when the phenol resin reacts with the brominated epoxy resin, the brominated epoxy resin reacts with the free phenol monomer, and that part becomes a mere contaminant and its performance is reduced. This is to reduce the Furthermore, since the phenolic resin has a high melting point and an increased viscosity due to the reaction with the brominated epoxy resin, it is preferable to use a phenolic resin that reacts slowly and has a slightly low melting point as the base. When preparing the solid modified phenolic resin (A), the melting point after modification is 65
It is necessary to keep the temperature within a range of ~100℃. This is because when the melting point of the solid modified phenolic resin (A) is low, the coated sand tends to block, and when the melting point is high, it becomes difficult to dissolve into the heated sand, making it difficult to mix uniformly. Because it will disappear. Furthermore, during the reaction between these phenolic resins and brominated epoxy resins, the ether bonds generated by the reaction between the phenolic hydroxyl groups and the epoxy groups are easier to decompose than the methylene bonds of the phenolic resins, and are less likely to participate in such reactions. The phenol nucleus reduces the reactivity of the active site, resulting in a lower crosslinking density. Next, as the above-mentioned brominated epoxy resin, bisphenol A type epoxy resin is particularly preferable. The rate of modification by the brominated epoxy resin is determined based on the amount of bonding parts that are easily decomposed, the crosslinking density, the apparent curing speed and strength, and the effect of the decomposed bromine decomposition gas auxiliary agent. Although determined, it is usually 3 to 20%, preferably 5% based on the solid content weight of the phenolic resin.
A range of ~15% is appropriate because it provides a good balance in terms of performance. Therefore, in order to obtain the solid modified phenolic resin (A) described above, which can also be referred to as the main ingredient in the present invention, it is necessary and desirable to first modify the solid phenolic resin, but the liquid resin itself cannot be modified. Even without any modification, the effects of the present invention can be fully expressed. If the degree of modification (denaturation rate) is too small, the effect will be small, and if it is too large, the bromine molecules themselves are large, so steric hindrance may occur, resulting in extremely slow curing. , the strength also becomes inferior. This is considered to be because the crosslinking density is low, and although this is highly desirable from the viewpoint of easy disintegration, it cannot be said to be desirable from the viewpoint of working conditions. As described above, by modifying the phenolic resin with the brominated epoxy resin, the crosslink density is reduced, and bonds that are easily decomposed are also introduced.
In addition, although the presence of this brominated epoxy resin has a flame retardant effect, the brominated epoxy resin itself is easily decomposed, and
When it is decomposed, it has the effect of promoting the decomposition of the resin and, ultimately, the collapse of the mold, so the modification of phenolic resin with brominated phenolic resin makes the resin more easily decomposed (easily disintegrated) as a whole. That's why. However, using only the aforementioned solid modified phenolic resin (A), which is the main ingredient in the present invention, results in slow curing and a decrease in strength.
In the present invention, in addition to this component (A), it is necessary to use either the above-mentioned liquid phenolic resin (B), which is a liquid resin, or the above-mentioned liquid modified phenolic resin (C). be. In fact, if only the solid modified phenolic resin (A) is used, it will harden slowly and the apparent strength will decrease, so the preferred method for producing coated sand is to melt-coat the resin (A). Practically satisfactory effects can be expected if the layer is further coated with a liquid phenolic resin (B) or a liquid modified phenolic resin (C). Moreover, dry coated sand
In order to achieve this, if a large amount of low melting point liquid resin is blended, the coated sand will easily block, and even if the solvent remains, it will be easy to block, so these components (A) and (B) should be used. Ratio or component (A)
The usage ratio of component (C) and component (C) is preferably in the range of 95:5 to 70:30 by weight in terms of solid content. At this time, the liquid resin dissolved in a solvent is
It should have as high a solids content as possible and a viscosity that is easy to handle, that is, usually 1000 cps/25°C or less. In order to further enhance the effects of the present invention, among the known and commonly used additives, particularly effective additives,
Silane coupling agent, strength imparting agent, organic acid
Additives such as a hexamethylenetetramine-based decomposition accelerating fast curing agent, a melt viscosity lowering agent such as waxes or amides, or a strength imparting agent may be added to the binder for foundry sand of the present invention, thereby preventing any damage. Without detracting from the effects of the present invention, the binder of the present invention obtained in this way can be applied particularly to the preparation of resin-coated sand grains, and the phenol used for ordinary hot marling or shell molding It can be used in almost the same way as resin. Next, the present invention will be specifically explained using reference examples, examples, and comparative examples, and all parts and percentages are based on weight unless otherwise specified. Reference Example 1 [Preparation example of solid modified phenolic resin (A)] 940 parts of phenol, 450 parts of 40% formalin, and 9 parts of oxalic acid were charged into a reactor equipped with a condenser and reacted for 4 hours with reflux. , immediately start vacuum distillation and reduce the vacuum to 40mm.
Dehydration and dephenolization were performed with Hg up to 160°C. The phenolic resin thus obtained had a melting point of 80° C. (the same applies hereinafter) as measured by the ring and ball method, and a free phenol content of 2%. Then, for 500 parts of this phenolic resin,
50 parts of "Epiclon 152" [brominated epoxy resin manufactured by Dainippon Ink and Chemicals Co., Ltd.; bromine content = 48%, melting point = 61°C] was added and reacted at 160 to 170°C for 2 hours, and the melting point A solid modified phenolic resin with a temperature of 88°C was obtained. Hereinafter, this will be abbreviated as resin (A-1). Reference Example 2 [Preparation example of liquid modified phenolic resin (C)] The resin (A-1) obtained in Reference Example 1 was dissolved in methanol to make a 60% concentration solution, and the solution was heated at 25°C.
The viscosity measured by the BM type viscometer (hereinafter the same) is
It was 65cps. Next, 9% hexamethylenetetramine and 9% water were added to this solution to obtain a liquid modified phenolic resin (C). Hereinafter, this will be referred to as resin (C-1).
It is abbreviated as Reference Example 3 [Preparation example of liquid modified phenolic resin (C)] 600 parts of "Pryoven TD-2040" [solid resol type phenolic resin manufactured by Dainippon Ink and Chemicals Co., Ltd.; melting point = 60°C] , "Epicron 152"
60 parts and 440 parts of methanol were charged so that the solid content was 60%, and the mixture was reacted for 5 hours while being dissolved at a reflux temperature (approximately 70°C).
A liquid modified phenolic resin (C) with a viscosity of 130 cps was obtained. Hereinafter, this will be abbreviated as resin (C-2). Example 1 10 pieces of flattery sand preheated to 140°C
Kg, 135 g of resin (A-1) and kneaded for 1 minute, then 25 g of resin (C-1) and 120 g of 16.9% hexamethylenetetramine aqueous solution were added and kneaded for 1 minute, and then 10 g of calcium stearate was added. The mixture was then kneaded for 20 seconds and then taken out to obtain resin-coated sand. Example 2 Same amount of resin (C-2) instead of resin (C-1)
Resin-coated sand was obtained in the same manner as in Example 1, except that the resin-coated sand was changed to use. Example 3 Instead of resin (C-1), the same amount of "Plyoven DG-307" [unmodified water-soluble resol type phenolic resin manufactured by Dainippon Ink and Chemicals Co., Ltd.; solid content = 60%, Viscosity = 200 cps] as liquid phenolic resin (B)
Resin-coated sand was obtained in the same manner as in Example 1, except that the sand was used as a resin. Comparative Example 1 Absent any use of resin (C-1) and using resin (A
- Change the usage amount of 1) to 150g and 18.7%
Resin-coated sand was obtained in the same manner as in Example 1, except that 123 g of the hexamethylenetetramine aqueous solution was used. Comparative Example 2 Instead of resin (A-1), the same amount of "Fandretsu TD-304-B" [unmodified solid novolac type resin for hot marling and shell molding manufactured by Dainippon Ink and Chemicals Co., Ltd.; melting point Resin-coated sand was obtained in the same manner as in Comparative Example 1, except that the temperature was changed to 85°C]. Comparative Example 3 The same amount of "Fandretsu TD-304-B" was used instead of resin (A-1), while resin (C-1)
Instead of the same amount of "Pryoven DG-307"
Resin-coated sand was obtained in the same manner as in Example 1, except that the resin-coated sand was changed to use. The performance evaluation of the resin-coated sand obtained in each of the above Examples and Comparative Examples is summarized in Table 1. It was set at 15%. The test methods for each performance test shown in the table are as follows. Melting point: Compliant with JACT (Casting Technology Promotion Association) test method C-1. Bending strength: Compliant with JIS K-6910. Curing speed (deflection)...The test sand was charged at 250℃ in the mold, fired for 20 seconds, and then 10 seconds after the mold was removed, a test piece (size: 50×
A load of 200 g is applied to the sample (150 x 5 mm, span width: 110 mm) and the amount of "deflection" is read with a dial gauge. The smaller the value, the less "deflection" and therefore the faster curing. Collapse property: The mold was heated to 230℃, the test sand was charged and held for 20 minutes, and then fired in a furnace at 300℃ for 1 minute to obtain a test piece (cylindrical object of 85mmφ x 10mm). This test piece was wrapped twice in aluminum foil, then baked in a furnace at 450℃ for 20 minutes, and the heat-treated test piece was passed through a 10-mesh sieve using a rotorp sieve to remove sand. The time (number of seconds) until no test piece remains on the sieve is measured as "disintegrability" data, or if sand remains as a result of sand removal, further sand removal is performed. The ratio (%) of the amount of sand falling 2 minutes after the start of the sand removal to the weight of the test piece before the start of sand removal is measured and used as "disintegration" data.

【表】 以上のように、ブロム化されたエポキシ樹脂で
変性された固形のフエノール樹脂、つまり前記し
た固形の変性フエノール樹脂(A)はそれ自体、極め
て易崩壊性のものではあるが、硬化速度や強度の
点で、実用的にやや不満足なものである。 したがつて、液状樹脂で更に被覆せしめること
によつて著しく硬化速度や強度の諸性能も向上
し、しかも一般的なシエルモールド法の作業条件
の一つである焼成条件(250℃×60秒間程度)に
も合致するばかりでなく、強度が向上しても崩壊
性は殆ど変らない、というすぐれた樹脂被覆砂に
することができる。
[Table] As shown above, the solid phenolic resin modified with a brominated epoxy resin, that is, the solid modified phenolic resin (A) described above, is itself extremely easily disintegrated, but the curing speed is It is somewhat unsatisfactory in terms of strength and strength. Therefore, by further coating with liquid resin, performance such as curing speed and strength can be significantly improved. ), it is possible to make excellent resin-coated sand that not only satisfies the criteria (2), but also shows almost no change in collapsibility even though the strength is improved.

Claims (1)

【特許請求の範囲】 1 (A) フエノール樹脂に対して、その固形分重
量で3〜20%のブロム化されたエポキシ樹脂を
反応させて得られる融点が65〜100℃なる固形
の変性フエノール樹脂と、 (B) 液状フエノール樹脂、または (C) フエノール樹脂に対して、その固形分重量で
20%以下のブロム化されたエポキシ樹脂を反応
させて得られる液状の変性フエノール樹脂とを
必須の成分として含んで成る、二液型鋳物砂用
結合剤。 2 上記固形の変性フエノール樹脂(A)と上記液状
フエノール樹脂(B)との比率が、固形分重量比で95
〜70:5〜30であることを特徴とする、特許請求
の範囲第1項に記載された結合剤。 3 前記固形の変性フエノール樹脂(A)と前記液状
の変性フエノール樹脂(C)との比率が、固形分重量
比で95〜70:5〜30であることを特徴とする、特
許請求の範囲第1項に記載された結合剤。
[Scope of Claims] 1 (A) A solid modified phenolic resin having a melting point of 65 to 100°C obtained by reacting a phenolic resin with 3 to 20% by solid weight of a brominated epoxy resin. and (B) liquid phenolic resin, or (C) phenolic resin, by its solid weight.
A two-component molding sand binder comprising as an essential component a liquid modified phenolic resin obtained by reacting 20% or less of a brominated epoxy resin. 2 The ratio of the solid modified phenolic resin (A) and the liquid phenolic resin (B) is 95 in terms of solid content weight ratio.
70:5-30. 3. Claim No. 3, characterized in that the ratio of the solid modified phenolic resin (A) and the liquid modified phenolic resin (C) is 95 to 70:5 to 30 in solid weight ratio. A binder as described in paragraph 1.
JP7021883A 1983-04-21 1983-04-21 Binder for molding sand and application thereof Granted JPS59197339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7021883A JPS59197339A (en) 1983-04-21 1983-04-21 Binder for molding sand and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7021883A JPS59197339A (en) 1983-04-21 1983-04-21 Binder for molding sand and application thereof

Publications (2)

Publication Number Publication Date
JPS59197339A JPS59197339A (en) 1984-11-08
JPS645979B2 true JPS645979B2 (en) 1989-02-01

Family

ID=13425181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7021883A Granted JPS59197339A (en) 1983-04-21 1983-04-21 Binder for molding sand and application thereof

Country Status (1)

Country Link
JP (1) JPS59197339A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02282530A (en) * 1989-04-24 1990-11-20 Masaru Kunimoto Odorless stool

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102581216B (en) * 2011-01-04 2014-01-15 济南圣泉集团股份有限公司 Bi-component epoxy resin binder, cast mixture containing bi-component epoxy resin binder, cast molding body and method for casting metal products
CN112139442B (en) * 2020-09-23 2021-09-24 济南市平阴县玛钢厂 Preparation process and compression molding system of high-performance precoated sand for complex castings

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02282530A (en) * 1989-04-24 1990-11-20 Masaru Kunimoto Odorless stool

Also Published As

Publication number Publication date
JPS59197339A (en) 1984-11-08

Similar Documents

Publication Publication Date Title
JP4119515B2 (en) Resin coated sand for mold
JPS645979B2 (en)
JPS62282743A (en) Phenol formaldehyde resin binder
US4607067A (en) Foundry sand binder
JPS5978745A (en) Resin coated sand for casting
JP3933794B2 (en) Binder composition for carbon dioxide gas curing
JPS58224038A (en) Composition of coated sand and its production
JP4119514B2 (en) Resin coated sand for mold
JPH05353A (en) Disintegrating agent of casting mold for casting light alloy, coated sand composition and casting mold
JPS6240949A (en) Resin composition for coated sand
JP4452965B2 (en) Resin composition for shell mold
JP3197973B2 (en) Composition for foundry sand
JPS5812095B2 (en) Foundry sand composition
JPH0238054B2 (en) SHERUMOORUDOYOJUSHIHIFUKUSARYU
JPH0394952A (en) Resin-coated sand grain for hot box
JPS59113953A (en) Molding sand for shell mold
JPS6064744A (en) Coated sand composition for shell mold
JPS6114043A (en) Resin-coated sand curable by heating for casting and its production
JPS6352735A (en) Resin binder for shell mold
JP2001030045A (en) Mold binder for shell mold and mold material
JP2002263787A (en) Method of manufacturing resin coated sand for shell mold
JP2001047189A (en) Formation of sand mold for casting
JPS609548A (en) Production of easily collapsible shell core sand
JPS6096346A (en) Composition for binding casting mold
JPS59147012A (en) Preparation of modified phenolic resin composition for shell mold