JPS5812095B2 - Foundry sand composition - Google Patents

Foundry sand composition

Info

Publication number
JPS5812095B2
JPS5812095B2 JP4397781A JP4397781A JPS5812095B2 JP S5812095 B2 JPS5812095 B2 JP S5812095B2 JP 4397781 A JP4397781 A JP 4397781A JP 4397781 A JP4397781 A JP 4397781A JP S5812095 B2 JPS5812095 B2 JP S5812095B2
Authority
JP
Japan
Prior art keywords
parts
sand
composition
mold
foundry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4397781A
Other languages
Japanese (ja)
Other versions
JPS57159232A (en
Inventor
吉田賢治
国友秀夫
秋葉正人
森郁夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP4397781A priority Critical patent/JPS5812095B2/en
Publication of JPS57159232A publication Critical patent/JPS57159232A/en
Publication of JPS5812095B2 publication Critical patent/JPS5812095B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
    • B22C1/2233Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • B22C1/2246Condensation polymers of aldehydes and ketones
    • B22C1/2253Condensation polymers of aldehydes and ketones with phenols

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mold Materials And Core Materials (AREA)

Description

【発明の詳細な説明】 本発明は鋳物用鋳型を成型するさいに用いられる鋳物砂
組成物に係り、鋳込み後の崩壊性の良好なる組成物に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a foundry sand composition used in forming a foundry mold, and more particularly to a composition that exhibits good disintegration properties after casting.

かかる鋳物砂を用いて鋳造用鋳型を得るには、たとえば
シェルモールド法によるときは、フェノール樹脂を主成
分とする結合剤で砂を固めて成型することが一般に行な
われている。
In order to obtain a casting mold using such foundry sand, for example, when using a shell molding method, the sand is generally hardened and molded with a binder containing a phenolic resin as a main component.

ところで、このようにして得られた鋳型は、鋳鉄の如き
溶湯温度が1,000℃を超えるような高温下において
は、鋳込み後の崩壊性は良好であるものの、アルミニウ
ムの如く溶湯温度が700℃程度という比較的低温の場
合にはこの崩壊性が悪い。
Incidentally, the mold thus obtained has good disintegration properties after casting when the molten metal temperature exceeds 1,000°C, such as cast iron, but when the molten metal temperature exceeds 700°C, such as aluminum. This disintegration property is poor at relatively low temperatures such as

そこで、中子の崩壊性が悪い場合には、鋳物の内部に鋳
型の一部が付着されたまま残留することがある処から、
そのような鋳型に対しては、鋳込み後に砂焼きを行なっ
たり、SiO2の純度が高くて粗い珪砂を用いると共に
結合剤の添加量を減らすなどの方法で崩壊性を向上させ
てはいるけれども、砂焼きには多大の熱エネルギーを要
するし、粗粒珪砂を用いて結合剤量を減らす場合には鋳
肌が荒れやすくなるなどの欠点がある。
Therefore, if the core has poor collapsibility, a part of the mold may remain attached to the inside of the casting.
Although the collapsibility of such molds has been improved by sand baking after casting, using coarse silica sand with high SiO2 purity, and reducing the amount of binder added, Firing requires a large amount of thermal energy, and when coarse silica sand is used to reduce the amount of binder, there are drawbacks such as the casting surface becoming more likely to become rough.

そのほかにも、鋳造後における崩壊性良好な鋳型を作る
ための検討が種々なされてはいるが、未だ十分な効果を
奏する手段は見出されていない。
In addition, various studies have been made to create molds with good disintegration properties after casting, but no means that are sufficiently effective have yet been found.

そもそも注湯後に溶湯に囲まれる中子が崩壊するために
は、砂の結合剤は還元雰囲気において分解して結合力を
失う必要があるが、かかる結合剤がフェノール樹脂硬化
物などの有機物である場合には、還元雰囲気よりもむし
ろ酸化雰囲気において分解しやすい。
In the first place, in order for the core surrounded by molten metal to collapse after pouring, the binder in the sand must decompose in a reducing atmosphere and lose its bonding strength, but this binder is an organic substance such as a cured phenolic resin. In some cases, they are more likely to decompose in an oxidizing atmosphere than in a reducing atmosphere.

そのために、熱分解によって酸素を放出して酸化雰囲気
に近づけるような物質を加えることにより結合剤を酸化
分解させ、鋳型の崩壊性を向上させる方法も提案されて
いる。
To this end, a method has been proposed in which the binder is oxidized and decomposed by adding a substance that releases oxygen through thermal decomposition to bring it closer to an oxidizing atmosphere, thereby improving the collapsibility of the mold.

このような物質の使用例については幾つかの報告がなさ
れ、たとえば特公昭54−162622号明細書には炭
酸亜鉛を用いた例があるが、この炭酸亜鉛を含んだ結合
剤は (イ)鋳型を形成したさい、十分な強度を賦与すること
、 (ロ)アルミニウム合金におけるように比較的低温度で
鋳込んだ場合にも、注湯後に鋳型に外力を加えたさいに
容易に崩壊させうろこと、 (ハ)崩壊後の焼砂中に有害な物質を含まぬこと、およ
び に)鋳込み時、または鋳込み直後の鋳型の温度が上昇し
たさい、悪臭などの人体に好ましくないガスを多量に出
さぬこと の諸条件を満足すると記載されている。
There have been several reports on the use of such substances; for example, there is an example of the use of zinc carbonate in Japanese Patent Publication No. 54-162622. (b) Scales that easily collapse when external force is applied to the mold after pouring, even when cast at a relatively low temperature, such as in aluminum alloys. (c) The baked sand after disintegration should not contain harmful substances, and (c) When the temperature of the mold increases during casting or immediately after casting, large amounts of gases that are undesirable to the human body, such as bad odors, will not be emitted. It is stated that the following conditions are satisfied.

しかし、炭酸亜鉛を使用して鋳型の鋳込み後の崩壊性が
良好となるのは、ポリエステル樹脂の如き特定の有機物
を結合剤とした場合に限られるもので、とりわけ、最も
一般的な結合剤たるフェノール樹脂に対しては、この炭
酸亜鉛の崩壊性助長効果は頗る小さい。
However, the disintegration properties of the mold after casting using zinc carbonate are good only when a specific organic material such as polyester resin is used as a binder. For phenolic resins, the disintegration promoting effect of zinc carbonate is extremely small.

しかるに、本発明者らは有機物結合剤に対して特定のジ
カルボン酸誘導体を使用した鋳物砂が極めて鋳込み後の
鋳型の崩壊性にすぐれており、とくにフェノール樹脂を
結合剤とする場合にも、鋳込み後の崩壊性にすぐれた鋳
型を作りうることを見出した。
However, the present inventors have found that foundry sand using a specific dicarboxylic acid derivative as an organic binder has excellent mold disintegration properties after casting, and particularly when using a phenolic resin as a binder, mold sand does not disintegrate after casting. We have discovered that it is possible to create molds with excellent disintegration properties.

すなわち、本発明は有機物を結合剤とし、この有機物結
合剤を加熱によって硬化させて鋳型を成形させうる鋳物
川砂に、該結合剤の100重量部に対して、炭素数4以
下のジカルボン酸類の金属塩もしくは金属水素塩または
それらの水和物を0.5〜30重量部の割合で用いてな
る鋳物用砂組成物を提供するものである。
That is, the present invention uses an organic substance as a binder, and adds a dicarboxylic acid metal having a carbon number of 4 or less to 100 parts by weight of the binder to foundry river sand that can be hardened by heating to form a mold. The present invention provides a foundry sand composition comprising 0.5 to 30 parts by weight of a salt, a metal hydrogen salt, or a hydrate thereof.

ここにおいて、上記したジカルボン酸類の金属塩もしく
は金属水素塩またはそれらの水和物として代表的なもの
を挙げれば、シュウ酸鉛、シュウ酸鉛、シュウ酸カリウ
ム、シュウ酸ニッケル、シュウ酸ストロンチウム、シュ
ウ酸水素カリウム、酒石酸カリウムまたは酒石酸水素ナ
トリウムなどであり、そしてそれらの水和物であるが、
これらのうちでも特に好ましいものは、200℃以上6
00°C以下の分解点を有する化合物である。
Here, representative examples of the metal salts or metal hydrogen salts of the above-mentioned dicarboxylic acids or their hydrates include lead oxalate, lead oxalate, potassium oxalate, nickel oxalate, strontium oxalate, potassium oxyhydrogen, potassium tartrate or sodium hydrogen tartrate, and their hydrates,
Among these, particularly preferable ones are
It is a compound that has a decomposition point of 00°C or less.

これらのジカルボン酸誘導体は単独で、あるいは2種以
上を組み合わせて使用することができる。
These dicarboxylic acid derivatives can be used alone or in combination of two or more.

このように、ジカルボン酸誘導体として炭素数4以下の
化合物に限定される理由は、一種の酸素供給剤として作
用する当該化合物が分子中に酸素原子を大きな割合で含
むものであるためと考えられる。
The reason why dicarboxylic acid derivatives are limited to compounds having 4 or less carbon atoms is thought to be that the compounds that act as a type of oxygen supplying agent contain a large proportion of oxygen atoms in the molecule.

事実、ジカルボン酸類はもとよりのこと、モノカルボン
酸類にあっても、炭素数が5以上になると酸素供給剤と
しての能力が低下して本発明の目的には適当でなく、ま
たスルホニル基やニトロ基などの如く、分子構造中に酸
素原子を多く含んだ4化合物もあるにはあるが、これら
は毒性の強い分解ガスを発生するために使用に供しえな
い。
In fact, not only dicarboxylic acids, but even monocarboxylic acids, if the number of carbon atoms exceeds 5, their ability as oxygen supplying agents decreases, making them unsuitable for the purpose of the present invention. Although there are 4 compounds that contain many oxygen atoms in their molecular structure, such as 4 compounds, they cannot be used because they generate highly toxic decomposition gas.

他方、本発明組成物の結合剤成分である前記有機物とし
て代表的なものを挙げれば、ノボラック型フェノール樹
脂をはじめとして、レゾール型フェノール樹脂、ポリエ
ステル樹脂、フラン樹脂、ユリア樹脂、ポリイソシアネ
ート類またはテンプン類などである。
On the other hand, typical organic substances that are binder components of the composition of the present invention include novolac type phenolic resins, resol type phenolic resins, polyester resins, furan resins, urea resins, polyisocyanates, and starch. etc.

本発明組成物は主成分として前記したそれぞれ有機物結
合剤とジカルボン酸類の金属塩、金属水素塩またはそれ
らの水和物なるジカルボン酸誘導体とを含んで成るもの
であるが、使用すべきジカルボン酸誘導体は鋳物砂の硬
化温度に依存するもので、この硬化温度以上の分解点を
もった化合物を使用することが必要であり、このように
することによって鋳型成型時における当該ジカルボン酸
誘導体の分解が進行して鋳込み後における鋳型の崩壊が
十分に行なわれるのである。
The composition of the present invention comprises as main components each of the above-mentioned organic binders and dicarboxylic acid derivatives such as metal salts, metal hydride salts or hydrates of dicarboxylic acids, and the dicarboxylic acid derivative to be used depends on the hardening temperature of the foundry sand, and it is necessary to use a compound with a decomposition point higher than this hardening temperature.By doing this, the decomposition of the dicarboxylic acid derivative during molding can proceed. This ensures that the mold collapses sufficiently after casting.

本発明組成物を得るにさいしては種々の方法が採用でき
るが、大約次の如き方法によるのが適当である。
Although various methods can be used to obtain the composition of the present invention, the following methods are suitable.

(1)前記ジカルボン酸誘導体を予め前記の有機物結合
剤中に溶解または分散させておき、そこへ砂を混合せし
めるか、あるいはこのジカルボン酸誘導体を溶解ないし
は分散させて得られた結合剤を砂に被覆する方法、 (2)有機物結合剤と砂とを混合し、または該結合剤を
砂に被覆する工程中にジカルボン酸誘導体を添加せしめ
る方法、 (3)あらかじめジカルボン酸誘導体6を加えた砂に有
機物結合剤を被覆せしめるか、または混合せしめる方法
、および (4)有機物結合剤を含んだ鋳物川砂にジカルボン酸誘
導体を混合せしめる方法。
(1) Either the dicarboxylic acid derivative is dissolved or dispersed in the organic binder in advance and sand is mixed therein, or the binder obtained by dissolving or dispersing the dicarboxylic acid derivative is added to the sand. (2) A method of mixing an organic binder and sand or adding a dicarboxylic acid derivative during the process of coating the sand with the binder; (3) A method of adding a dicarboxylic acid derivative to sand to which dicarboxylic acid derivative 6 has been added in advance. (4) a method of coating or mixing an organic binder; and (4) a method of mixing a dicarboxylic acid derivative with foundry river sand containing an organic binder.

これらの種々の方法により本発明組成物を得るにさいし
て用いられる前記ジカルボン酸誘導体の量としては、前
記した有機物結合剤の100重量部に対して0.5〜3
0重量部、好ましくは2〜10重量部の範囲内が適当で
ある。
The amount of the dicarboxylic acid derivative used in obtaining the composition of the present invention by these various methods is 0.5 to 3 parts by weight per 100 parts by weight of the organic binder described above.
A suitable amount is 0 parts by weight, preferably 2 to 10 parts by weight.

このジカルボン酸誘導体の使用量が少なすぎるときは鋳
込み後の鋳型の崩壊性が悪くなり、逆に多すぎるときは
鋳物砂の融着点が低下して成型後の鋳型の強度が小さく
なるので、いずれも好ましくない。
If the amount of this dicarboxylic acid derivative used is too small, the collapsibility of the mold after casting will be poor, while if it is too large, the fusion point of the foundry sand will be lowered and the strength of the mold after molding will be reduced. Neither is preferable.

かくして得られた本発明組成物には公知慣用の充填剤が
添加できることは勿論であり、本発明組成物は主として
アルミニウム用、さらには銅合金用の鋳造に差し向けら
れる。
It goes without saying that a known and commonly used filler can be added to the thus obtained composition of the present invention, and the composition of the present invention is mainly used for casting aluminum and furthermore copper alloys.

次に、本発明を実施例および比較例、ならびにそれらの
各側で得られた応用試験結果により具体的に説明するが
、以下において特に断りのない限り、部は重量部を意味
するものとする。
Next, the present invention will be explained in detail with reference to Examples and Comparative Examples, as well as application test results obtained on each side. In the following, parts mean parts by weight unless otherwise specified. .

実施例 1 予め150℃に加熱させておいた、SiO2純度が99
%以上で、AFS粒度指数が60±3なる珪砂(以下、
これを単に珪砂と略記する。
Example 1 SiO2 purity is 99 which was heated to 150°C in advance
% or more, and the AFS particle size index is 60±3 (hereinafter referred to as
This is simply abbreviated as silica sand.

)の100部に、 「ファウンドレツズTD−3402
−B」(犬日本インキ化学工業■製ノボラック型フェノ
ール樹脂)の2.5部とシュウ酸銀1/2水和物の0.
15部とを加え、ワールミキサーで1分間混練させた。
), 100 copies of “Found Lets TD-3402
2.5 parts of "-B" (novolac type phenolic resin manufactured by Inu Nippon Ink Chemical Industry ■) and 0.0 parts of silver oxalate 1/2 hydrate.
15 parts and kneaded for 1 minute using a whirl mixer.

次いで、これにヘキサメチレンテトラミン(以下、ヘキ
サミンと略記する。
Next, hexamethylenetetramine (hereinafter abbreviated as hexamine) was added to this.

)0.375部を1,5部の水に溶解させたヘキサミン
溶液を加えて1分間混練させたのち、さらにステアリン
酸カルシウム0.1部を加えて20秒間混練させて鋳物
用砂組成物を得た。
) A hexamine solution prepared by dissolving 0.375 parts in 1.5 parts of water was added and kneaded for 1 minute, and then 0.1 part of calcium stearate was added and kneaded for 20 seconds to obtain a foundry sand composition. Ta.

実施例 2 予め150℃に加熱させておいた珪砂の100部に[フ
ァウンドレツズTD−3402−Bjの2.5部を加え
てワールミキサーで1分間混練させ、次いでこれにヘキ
サミン0.375部とシュウ酸水素カリウム0.15部
とを1.5部の水に溶解させてなる溶液を加えて1分間
混練させ、さらにステアリン酸カルシウム0.1部を加
えて20秒間混練させて鋳物用砂組成物を得た。
Example 2 2.5 parts of Foundrez TD-3402-Bj was added to 100 parts of silica sand preheated to 150°C and kneaded for 1 minute using a whirl mixer, and then 0.375 parts of hexamine was added to the mixture. A solution of 0.15 parts of potassium hydrogen oxalate and 0.15 parts of potassium hydrogen oxalate dissolved in 1.5 parts of water was added and kneaded for 1 minute, and then 0.1 part of calcium stearate was added and kneaded for 20 seconds to obtain the foundry sand composition. I got something.

実施例 3 100部の「ファウンドレツズTD−3402−B」を
150℃に加熱して溶融させ、次いで6部のシュウ酸ニ
ッケル2水和物を加え、よく攪拌して均一に混合し、冷
却して樹脂組成物を得た。
Example 3 100 parts of "Found Drets TD-3402-B" was heated to 150°C to melt it, then 6 parts of nickel oxalate dihydrate was added, stirred well to mix uniformly, and cooled. A resin composition was obtained.

別に、予め150℃に加熱しておいた100部の珪砂に
、2.65部の樹脂組成物を3メツシユの篩を通過して
20メツシユの篩上に残るように粗砕させて加え、ワー
ルミキサーで1分間混練させた。
Separately, 2.65 parts of the resin composition was coarsely crushed so as to pass through a 3-mesh sieve and remain on a 20-mesh sieve, and added to 100 parts of silica sand preheated to 150°C. The mixture was kneaded with a mixer for 1 minute.

以後は、実施例1と同様の操作を繰り返して鋳物用砂組
成物を得た。
Thereafter, the same operations as in Example 1 were repeated to obtain a foundry sand composition.

実施例 4 シュウ酸水素カリウムの添加を、ステアリン酸カルシウ
ムの添加までの操作を実施例2と同様に行なったのちに
得られる樹脂被覆砂の103部に対して0,15部使用
して行なった以外は、実施例2と同様にして鋳物用組成
物を得た。
Example 4 Except that potassium hydrogen oxalate was added by using 0.15 parts per 103 parts of resin-coated sand obtained after performing the same operation as in Example 2 up to the addition of calcium stearate. A foundry composition was obtained in the same manner as in Example 2.

実施例 5 フェノールの100部と37%ホルムアルデヒド水溶液
の120部と25%アンモニア水溶液の12部とを65
℃で2時間反応せしめたのち、反応液中に存在する水や
未反応物などの低沸点物を減圧蒸留することにより除去
せしめて、150℃におけるゲル化時間が90秒になっ
た時点で取り出して、直ちに冷却させて軟化点85℃な
る固形レゾール型フェノール樹脂を得た。
Example 5 100 parts of phenol, 120 parts of 37% formaldehyde aqueous solution and 12 parts of 25% ammonia aqueous solution were mixed into 65%
After reacting at 150°C for 2 hours, low-boiling substances such as water and unreacted substances present in the reaction solution were removed by vacuum distillation, and the mixture was taken out when the gelation time at 150°C reached 90 seconds. The mixture was immediately cooled to obtain a solid resol type phenol resin having a softening point of 85°C.

別に、予め150℃に加熱させておいた100部の珪砂
に、2.5部の固型レゾール型フェノール樹脂を3メツ
シユの篩を通過して20メツシユの篩上に残るように粗
砕させて加え、ワールミキサーで1分間混練させた。
Separately, 2.5 parts of solid resol type phenolic resin was crushed into 100 parts of silica sand that had been heated to 150°C in advance so that it passed through a 3-mesh sieve and remained on a 20-mesh sieve. The mixture was added and kneaded for 1 minute using a whirl mixer.

次いで、これに1.5部の水と0.15部のシュウ酸銀
1/2水和物とを加えて1分間混練させ、さらにステア
リン酸カルシウムを0.1部加えて20秒間混練させて
鋳物用砂組成物を得た。
Next, 1.5 parts of water and 0.15 parts of silver oxalate 1/2 hydrate were added and kneaded for 1 minute, and further 0.1 part of calcium stearate was added and kneaded for 20 seconds to form a casting. A sand composition was obtained.

実施例 6 予め170℃に加熱させておいた100部の珪砂に、3
.0部のポリエステル樹脂と0.15部のシュウ酸銀1
/2水和物とを加えてワールミキサーで1分間混練させ
た。
Example 6 To 100 parts of silica sand preheated to 170°C, 3
.. 0 parts polyester resin and 0.15 parts silver oxalate 1
/dihydrate and kneaded for 1 minute using a whirl mixer.

次いで、これにターシャリ−ブチルパーベンゾエート0
.03部とジクミルパーオキシド0.09部を加えて3
分30秒間混練させ、さらに0.1部のステアリン酸カ
ルシウムを加えて20秒間混練させて鋳物用砂組成物を
得た。
Then, tert-butyl perbenzoate 0
.. 3 parts by adding 0.03 parts and 0.09 parts of dicumyl peroxide.
The mixture was kneaded for 30 seconds, and 0.1 part of calcium stearate was further added and kneaded for 20 seconds to obtain a foundry sand composition.

なお、本例で使用した上記ポリエステル樹脂は、「パノ
ラツクBA−223」(大日本インキ化学工業■製ポリ
エステル樹脂)の95部とジアリルフタレートの5部と
を溶融混合させたものを3メツシユの篩を通過して20
メツシユの篩上に残るように粗砕せしめたものである。
The above polyester resin used in this example was a mixture of 95 parts of "Panolac BA-223" (polyester resin manufactured by Dainippon Ink & Chemicals) and 5 parts of diallyl phthalate, and the resulting mixture was sieved through 3 meshes. passing through 20
It is coarsely crushed so that it remains on the mesh sieve.

比較例 1 シュウ酸銀1/2水和物の使用を一切欠く以外は、実施
例1と同様の操作を繰り返して鋳物用砂組成物を得た。
Comparative Example 1 A foundry sand composition was obtained by repeating the same operation as in Example 1, except that no silver oxalate hemihydrate was used.

比較例 2 シュウ酸銀1/2水和物に替えて同量の塩基性炭酸亜鉛
を用いる以外は、実施例1と同様に行なつて鋳物用砂組
成物を得た。
Comparative Example 2 A foundry sand composition was obtained in the same manner as in Example 1, except that the same amount of basic zinc carbonate was used in place of silver oxalate hemihydrate.

比較例 3 シュウ酸銀1/2水和物の使用を一切欠如させる以外は
、実施例5と同様に行なって鋳物用砂組成物を得た。
Comparative Example 3 A foundry sand composition was obtained in the same manner as in Example 5, except that the use of silver oxalate hemihydrate was completely omitted.

比較例 4 シュウ酸銀1/2水和物の使用を一切欠く以外は、実施
例6と同様にして鋳物用砂組成物を得た。
Comparative Example 4 A foundry sand composition was obtained in the same manner as in Example 6, except that no silver oxalate hemihydrate was used.

比較例 5 シュウ酸銀1/2水和物の代わりに同量の塩基性炭酸亜
鉛を用いる以外は、実施例6と同様にして鋳物用砂組成
物を得た。
Comparative Example 5 A foundry sand composition was obtained in the same manner as in Example 6, except that the same amount of basic zinc carbonate was used instead of silver oxalate hemihydrate.

実施例1〜6および比較例1〜5において得られた各種
の鋳物用砂組成物を用いて、融着点、曲げ強さ、および
崩壊性なる項目の応用試験を行なった。
Using the various foundry sand compositions obtained in Examples 1 to 6 and Comparative Examples 1 to 5, applied tests were conducted on the following items: fusion point, bending strength, and collapsibility.

それらの試験要領を下記に、試験結果を第1表にまとめ
て示す。
The test procedures are shown below, and the test results are summarized in Table 1.

融着点 JACT(製造技術普及協会)試験法C−1に準じて測
定した。
The melting point was measured according to JACT (Japan Manufacturing Technology Association) test method C-1.

曲げ強さ JIS K−6910に準じて測定したが、実施例1
〜5および比較例1〜3で得られた鋳物用砂組成物に対
しては、金型温度を250℃とし、焼成時間を60秒間
としてテストピースを作製し、他方、実施例6および比
較例4,5で得られた組成物に対しては、金型温度を1
90℃とし、焼成時間を150秒間としてテストピース
を作製した。
Bending strength was measured according to JIS K-6910, but in Example 1
For the foundry sand compositions obtained in ~5 and Comparative Examples 1 to 3, test pieces were prepared with a mold temperature of 250°C and a firing time of 60 seconds; For the compositions obtained in steps 4 and 5, the mold temperature was
A test piece was prepared at a temperature of 90° C. and a firing time of 150 seconds.

崩壊性 実施例1〜5および比較例1〜3で得られた鋳物用砂組
成物に対しては、それぞれの組成物を各別に、230℃
に加熱した金型に流し込んで2分間保持したのち、25
0℃の炉中で1分間焼成させて85部MtφX10mの
テストピースを作製した。
For the foundry sand compositions obtained in Disintegration Examples 1 to 5 and Comparative Examples 1 to 3, each composition was individually heated at 230°C.
After pouring into a mold heated to
A test piece of 85 parts Mtφ×10 m was prepared by firing in a furnace at 0° C. for 1 minute.

他方、実施例6および比較例4,5で得られた。On the other hand, it was obtained in Example 6 and Comparative Examples 4 and 5.

組成物に対しては、それぞれの組成物を各別に、190
℃に加熱した金型に流し込んで3分間保持したのち、2
50℃の炉中で2分間焼成させて85mmφX10mm
のテストピースを作製した。
For compositions, each composition separately, 190
After pouring into a mold heated to ℃ and holding for 3 minutes,
Baked for 2 minutes in a 50℃ oven to 85mmφX10mm
A test piece was prepared.

かくして得られた都合11種のテストピースを・各別に
アルミニウム箔で二重にくるんで500℃の炉中に20
分間放置して、次いでこのように加熱処理されたテスト
ピースをロータツブ篩分は機を用いて10メツシユの篩
上で砂落しを行ない、ナス1〜ピースが篩上に全く残ら
なくなるまでの時間(秒数)を測定するか、あるいは砂
落しを開始して4分後の砂落ち量の砂落し開始前のテス
トピース重量に対する割合(%値)を測定するかの測定
を、それぞれのテストピースについて4回行なって、そ
の平均値を以て崩壊性の値とした。
The 11 types of test pieces thus obtained were individually wrapped in aluminum foil and placed in a furnace at 500°C for 20 minutes.
After leaving the heat-treated test piece in this way, the sand was removed using a rotary sieve on a 10-mesh sieve. For each test piece, either measure the amount of sand (in seconds) or measure the ratio (% value) of the amount of sand falling 4 minutes after sand removal starts to the weight of the test piece before sand removal starts. The test was carried out four times and the average value was taken as the disintegration value.

実施例 7 100部の珪砂と0.5部の「キャタリストPD−2」
(犬日本インキ化学工業■製硬化剤)とをワールミキサ
ー中で1分間混練させ、次いでこれに0.08部の酒石
酸カリウムと[ファウンドレツズTD−807− 2、0部とを加えて1分間混練させて鋳物川砂樹脂組成
物を得た。
Example 7 100 parts of silica sand and 0.5 parts of "Catalyst PD-2"
(Hardening agent manufactured by Inu Nippon Ink Chemical Industry ■) in a Whirl mixer for 1 minute, and then 0.08 parts of potassium tartrate and [Foundrets TD-807-2.0 parts were added to give 1. The mixture was kneaded for a minute to obtain a cast river sand resin composition.

比較例 6 酒石酸カリウムを全く用いない以外は、実施例7と同様
の操作を繰り返して鋳物川砂樹脂組成物を得た。
Comparative Example 6 A foundry river sand resin composition was obtained by repeating the same operation as in Example 7 except that potassium tartrate was not used at all.

実施例7および比較例6において得られたそれぞれの鋳
物用砂組成物を用いて、曲げ強さ、および崩壊性なる項
目の応用試験を行なった。
Using each of the foundry sand compositions obtained in Example 7 and Comparative Example 6, applied tests were conducted on the items of bending strength and collapsibility.

試験は、まずそれぞれの砂組成物を230℃に加熱され
た金型に5Kg/crAなる吹込み圧で吹き込んで30
秒間焼成させて20mX 20mmX 120調なる大
きさのテストピースを作製し、次いでかくして得られた
テストピースを用いて、JISK−6910に準じて曲
げ強さを測定することにより、他方、このテストピース
をアルミニウム箔で二重にくるんで500℃の炉中に1
0分間保持して加熱処理を行なったのち、ロータツブ篩
分は機を用いて10メツシユ篩上で砂落しを行なってテ
ストピースが篩上に残らなくなるまでの時間、つまり崩
壊に要する時間(秒数)を測定することにより行なわれ
た。
The test was carried out by first blowing each sand composition into a mold heated to 230°C at a blowing pressure of 5 kg/crA.
A test piece with a size of 20 m x 20 mm x 120 mm was prepared by firing for seconds, and the bending strength was measured using the test piece thus obtained in accordance with JISK-6910. Wrapped in double aluminum foil and placed in an oven at 500℃
After heating and holding for 0 minutes, the Rotatub sieve is removed using a machine on a 10-mesh sieve, and the time until no test pieces remain on the sieve, that is, the time required for disintegration (in seconds). ).

それらの試験結果は第2表にまとめて示す。The test results are summarized in Table 2.

Claims (1)

【特許請求の範囲】[Claims] 1 有機物を結合剤とし、これを加熱によって硬化させ
て鋳型を成型させうる鋳物川砂に、上記結合剤の100
重量部に対して、炭素数4以下のジカルボン酸類の金属
塩もしくは金属水素塩またはそれらの水和物を0.5〜
30重量部の割合で用いることを特徴とする鋳物用砂組
成物。
1 Add 100% of the above binder to foundry river sand that can be hardened by heating to form a mold by using an organic substance as a binder.
0.5 to 0.5 to parts by weight of metal salts or metal hydride salts of dicarboxylic acids having 4 or less carbon atoms, or hydrates thereof.
A foundry sand composition characterized in that it is used in a proportion of 30 parts by weight.
JP4397781A 1981-03-27 1981-03-27 Foundry sand composition Expired JPS5812095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4397781A JPS5812095B2 (en) 1981-03-27 1981-03-27 Foundry sand composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4397781A JPS5812095B2 (en) 1981-03-27 1981-03-27 Foundry sand composition

Publications (2)

Publication Number Publication Date
JPS57159232A JPS57159232A (en) 1982-10-01
JPS5812095B2 true JPS5812095B2 (en) 1983-03-07

Family

ID=12678770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4397781A Expired JPS5812095B2 (en) 1981-03-27 1981-03-27 Foundry sand composition

Country Status (1)

Country Link
JP (1) JPS5812095B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6336833B2 (en) * 1983-03-31 1988-07-21 Mitsui Shipbuilding Eng

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877738A (en) * 1981-11-02 1983-05-11 Sumitomo Deyurezu Kk Coated sand and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6336833B2 (en) * 1983-03-31 1988-07-21 Mitsui Shipbuilding Eng

Also Published As

Publication number Publication date
JPS57159232A (en) 1982-10-01

Similar Documents

Publication Publication Date Title
US4600733A (en) Disintegration assistant for casting molds
JP4119515B2 (en) Resin coated sand for mold
JPS5812095B2 (en) Foundry sand composition
US4607067A (en) Foundry sand binder
JPH0847745A (en) Binder composition,casting mold forming composition containing said binder composition and manufacture of casting core or mold using said binder composition
JPS6096345A (en) Production of casting mold
JPS5870939A (en) Resin coated sand for shell mold and its production
JP4106212B2 (en) Phenolic resin composition for shell mold and resin coated sand for shell mold mold
JPS5827227B2 (en) refractory
JP3933794B2 (en) Binder composition for carbon dioxide gas curing
JP4175849B2 (en) Resin coated sand for laminated molds
JPS59197339A (en) Binder for molding sand and application thereof
JP4440017B2 (en) Acid curable refractory granular material composition
JPS6152952A (en) Production of curable casting mold
JPS6352739A (en) Resin coated sand grain for shell mold
JP3459849B2 (en) Binder composition for mold production and mold molding method
JPH0550177A (en) Resin composition for casting sand
JPS6114043A (en) Resin-coated sand curable by heating for casting and its production
JPS628254B2 (en)
JP2002263787A (en) Method of manufacturing resin coated sand for shell mold
JPH01154843A (en) Manufacture of resin coated sand for gas hardening mold
JPS609548A (en) Production of easily collapsible shell core sand
JPS62252635A (en) Binder composition for casting mold
JPS613630A (en) Production of casting sand
JPS62282742A (en) Resin coated sand