JPS645774B2 - - Google Patents

Info

Publication number
JPS645774B2
JPS645774B2 JP6552681A JP6552681A JPS645774B2 JP S645774 B2 JPS645774 B2 JP S645774B2 JP 6552681 A JP6552681 A JP 6552681A JP 6552681 A JP6552681 A JP 6552681A JP S645774 B2 JPS645774 B2 JP S645774B2
Authority
JP
Japan
Prior art keywords
waveform
output
amplifier
signal
agc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6552681A
Other languages
Japanese (ja)
Other versions
JPS57181236A (en
Inventor
Tadao Ogawa
Takemi Endo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6552681A priority Critical patent/JPS57181236A/en
Publication of JPS57181236A publication Critical patent/JPS57181236A/en
Publication of JPS645774B2 publication Critical patent/JPS645774B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/04Control of transmission; Equalising
    • H04B3/06Control of transmission; Equalising by the transmitted signal
    • H04B3/08Control of transmission; Equalising by the transmitted signal in negative-feedback path of line amplifier

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Description

【発明の詳細な説明】 本発明はデイジタル伝送の中断器等に使用され
る自動利得制御増幅器に係り、特に直流分をカツ
トしたデイジタル信号のパルス列を入力し、制御
信号により利得を変化させ一定振幅の出力信号を
出力する自動利得制御(AGC)増幅器の正しい
制御信号を得るためのAGC増幅器の出力波形の
振幅を検出する波形振幅検出方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic gain control amplifier used in digital transmission interrupters, etc. In particular, the present invention relates to an automatic gain control amplifier used in a digital transmission interrupter, etc. In particular, a pulse train of a digital signal with a DC component cut is input, and the gain is changed by a control signal to maintain a constant amplitude. This invention relates to a waveform amplitude detection method for detecting the amplitude of the output waveform of an AGC amplifier in order to obtain a correct control signal for an automatic gain control (AGC) amplifier that outputs an output signal.

パルスを用いて情報伝送を行うデジタル伝送方
式では伝送路により伝送損失、波形歪を受けたパ
ルスを正規のパルスに再生するいわゆる再生中継
が行われる。再生中継には損失や波形歪を等化す
る等化増幅器が使用され、その増幅器の出力は一
定の振幅、波形であることが要求される。
In digital transmission systems that transmit information using pulses, so-called regenerative relaying is performed in which pulses that have suffered transmission loss and waveform distortion through a transmission line are regenerated into regular pulses. Regenerative relay uses an equalizing amplifier that equalizes loss and waveform distortion, and the output of the amplifier is required to have a constant amplitude and waveform.

一般に伝送路での伝送損失、波形歪は伝送媒体
の特性や伝送距離によつて変化するので、等化増
幅器にはデイジタル信号のパルス列を入力し、制
御信号により利得を変化させ一定振幅の出力信号
を出力する自動利得制御増幅器(以下AGC増幅
器と記す)が使用される。
In general, transmission loss and waveform distortion in a transmission line change depending on the characteristics of the transmission medium and the transmission distance, so a pulse train of a digital signal is input to an equalizing amplifier, and the gain is changed using a control signal to output a signal with a constant amplitude. An automatic gain control amplifier (hereinafter referred to as AGC amplifier) that outputs .

AGC機能をもつ等化増幅系の概念図を第1図
示す。図では、AGC増幅器1の出力信号の振幅
値を波形振幅検出器2で検出し、検出出力を必要
により直流増幅器3で増幅し制御信号として
AGC増幅器1の利得を制御し、その結果として
AGC増幅器出力の波形振幅が一定に保たれるよ
うに動作する。本発明はこのような用途に用いら
れるAGC増幅器1の正しい制御信号を得るため
のAGC増幅器1の出力波形の振幅を正しく検出
する波形振幅検出方式に関するものである。
Figure 1 shows a conceptual diagram of an equalization amplification system with AGC function. In the figure, the amplitude value of the output signal of AGC amplifier 1 is detected by waveform amplitude detector 2, and the detected output is amplified by DC amplifier 3 as necessary and used as a control signal.
Control the gain of AGC amplifier 1 and as a result
It operates so that the waveform amplitude of the AGC amplifier output is kept constant. The present invention relates to a waveform amplitude detection method for correctly detecting the amplitude of the output waveform of the AGC amplifier 1 in order to obtain a correct control signal for the AGC amplifier 1 used in such applications.

さて、デジタル伝送に使される符号としては、
直流成分をもたないバイボーラ信号が多く用いら
れているが、近年情報伝送の多様化にともない伝
送効率の高い直流分を持つ符号構成のものが使用
され始めている。例えば、直流成分を持つが一定
でないNRZ符号のようなものである。この場合、
送出するPCM信号にマーク或いはスペースが長
く続くと、伝送路の信号の平均マーク率が一定で
なくなり、伝送路のPCM信号の直流成分が変動
するため、AGC増幅器の利得を正しく制御する
制御信号の生成が困難となる。またPCM信号の
周波数成分が直流から高周波までの広帯域にわた
るのでAGC増幅器として広帯域特性を有するの
が要求されることになり、構成が複雑となる。こ
のためにデイジタル信号の伝送路では一般に直流
成分をカツトして交流成分のみを伝送する交流結
合のAGC増幅器が普通用いられる。この直流成
分をカツトしたパルス列を入力して増幅する
AGC増幅器の出力信号のパルス列の波形には、
エンベロープの速い変動は無いがエンベロープが
緩やかに変動する所謂ワンダリング(ゆらぎ)が
生ずる。この出力のワンダリングの影響を防ぐた
めに第2図に示す如く、出力信号に直流分を再生
させる直流再生回路を持たせたのちピーク検出し
てAGC増幅器の制御信号を得る方法が用いられ
ている。AGC増幅器4の出力波形は波形振幅検
出器5の直流再生回路6で直流ワンダリングが消
滅された後、ピーク検出器7でピーク検波され、
更に直流増幅器8で直流増幅され、その出力で
AGC増幅器4の利得を制御し、AGC増幅器4の
出力波形振幅を一定に保つ。
Now, the codes used for digital transmission are:
Bibolar signals that do not have a DC component are often used, but with the diversification of information transmission in recent years, code structures that have a DC component and have high transmission efficiency have begun to be used. For example, an NRZ code that has a DC component but is not constant. in this case,
If marks or spaces continue for a long time in the transmitted PCM signal, the average mark rate of the signal on the transmission line will not be constant, and the DC component of the PCM signal on the transmission line will fluctuate. It becomes difficult to generate. Furthermore, since the frequency components of the PCM signal span a wide band from direct current to high frequencies, the AGC amplifier is required to have wide band characteristics, making the configuration complex. For this reason, AC-coupled AGC amplifiers that cut out DC components and transmit only AC components are commonly used in digital signal transmission paths. Input and amplify the pulse train with this DC component cut out.
The waveform of the pulse train of the AGC amplifier output signal is
There is no rapid fluctuation in the envelope, but so-called wandering (fluctuation) occurs in which the envelope fluctuates slowly. In order to prevent the influence of this output wandering, as shown in Figure 2, a method is used in which a DC regeneration circuit is provided to regenerate the DC component of the output signal, and then the peak is detected to obtain the control signal for the AGC amplifier. . The output waveform of the AGC amplifier 4 is subjected to peak detection by the peak detector 7 after DC wandering is eliminated by the DC regeneration circuit 6 of the waveform amplitude detector 5.
Furthermore, the DC is amplified by the DC amplifier 8, and its output is
The gain of the AGC amplifier 4 is controlled to keep the output waveform amplitude of the AGC amplifier 4 constant.

この方法ではAGC増幅器に直流再生回路が必
要となるため回路構成が複雑となる。
This method requires a DC regeneration circuit in the AGC amplifier, making the circuit configuration complicated.

本発明は上記の欠点を除去し、直流成分をカツ
トしたがワンダリングが重畳している入力パルス
列に対するAGC増幅器の正しい制御信号を得る
方法として、複雑な構成の直流再生回路を用いず
に、AGC増幅器の出力の振幅を正しく検出する
ことの可能な波形振幅検出回路を提供することを
目的とし、AGC増幅器13の出力を2分岐する
手段15と、その分岐した一方の信号eの正極側
のピーク値gを検出する手段16と、その分岐し
た他方の信号fの負極側のピーク値hを検出する
手段17と、前記の検出した2つのピーク値g,
hの差分iをとり出力する手段18とを備え、そ
の差分iをAGC増幅器13の利得を制御する制
御信号とすることを特徴とするものである。
The present invention eliminates the above-mentioned drawbacks and provides a method for obtaining a correct control signal for an AGC amplifier for an input pulse train in which the DC component is cut but wandering is superimposed. The purpose of the present invention is to provide a waveform amplitude detection circuit capable of correctly detecting the amplitude of the output of an amplifier. means 16 for detecting the value g, means 17 for detecting the negative peak value h of the other branched signal f, and the two detected peak values g,
The apparatus is characterized in that it includes means 18 for taking and outputting a difference i between h and outputting the difference i, and uses the difference i as a control signal for controlling the gain of the AGC amplifier 13.

以下図面に基づいて本発明を説明する。 The present invention will be explained below based on the drawings.

第3図は本発明の一実施例で図中、9は直流成
分をカツトしたデイジタル信号を出力する送信側
の増幅器、10は出力端子、11は伝送路、12
はAGC増幅盤21の入力端子、13はAGC増幅
器、14は出力端子、15は出力信号を2分岐す
る分岐回路、16は正極側波形のピーク検波器
(以下+側ピーク検波器と記す)、17は負極側波
形のピーク検波器(以下−側ピーク検波器と記
す)、18は差分回路、19は直流増幅器(以下
DC増幅器と記す)、20はAGC増幅器13の制
御電圧入力端子、21はAGC増幅盤を示す。
FIG. 3 shows an embodiment of the present invention, in which 9 is a transmitting side amplifier that outputs a digital signal with DC components cut off, 10 is an output terminal, 11 is a transmission line, and 12
is an input terminal of the AGC amplifier board 21, 13 is an AGC amplifier, 14 is an output terminal, 15 is a branch circuit that branches the output signal into two, 16 is a peak detector for the positive side waveform (hereinafter referred to as a + side peak detector), 17 is a negative side waveform peak detector (hereinafter referred to as negative side peak detector), 18 is a differential circuit, and 19 is a DC amplifier (hereinafter referred to as a negative side peak detector).
20 is a control voltage input terminal of the AGC amplifier 13, and 21 is an AGC amplifier board.

第4図は第3図の説明図で、a〜iは第3図の
a〜iに対応しa,bはAGC増幅盤21の入力
と出力のPCM信号であつて、aは入力側の送信
側の増幅器9から伝送路11へ出力される直流成
分のカツトされたデイジタル信号の出力波形、b
はAGC増幅器13の出力であり同時にAGC増幅
盤21の出力端子14より出力される同じく直流
成分のカツトされたデイジタル信号の出力波形、
cはAGC増幅盤21の入力端子12にて受信し
AGC増幅器13へ入力する入力波形、dはAGC
増幅器13の出力波形、e,fは波形dが分岐回
路で分岐された波形、gは波形eの正極側をピー
ク検波した波形、hは波形fの負極側をピーク検
波した波形、iは差分回路の出力波形を示す。な
おd,e,fはパルス列のエンベロープのみを示
したものである。
Figure 4 is an explanatory diagram of Figure 3, where a to i correspond to a to i in Figure 3, a and b are the input and output PCM signals of the AGC amplifier board 21, and a is the input side PCM signal. Output waveform of the digital signal with the DC component cut, which is output from the amplifier 9 on the transmitting side to the transmission line 11, b
is the output of the AGC amplifier 13, and at the same time is the output waveform of the digital signal with the DC component cut, which is also output from the output terminal 14 of the AGC amplifier board 21.
c is received at the input terminal 12 of the AGC amplifier board 21.
Input waveform input to AGC amplifier 13, d is AGC
Output waveforms of the amplifier 13, e and f are waveforms obtained by branching waveform d in a branch circuit, g is a waveform obtained by peak detection of the positive side of waveform e, h is a waveform obtained by peak detection of the negative side of waveform f, and i is the difference. Shows the output waveform of the circuit. Note that d, e, and f indicate only the envelope of the pulse train.

第3図、第4図において送信側の増幅器9より
出力された直流カツトされたPCM信号aは出力
端子10−伝送路11−入力端子12を経てcの
如き波形で直流分を遮断したAGC増幅器13に
入力され、その出力波形dはエンベロープが緩や
かに変動する直流ワンダリングの重畳した波形と
なる。この波形dは分岐回路15で波形e,fに
分岐され、eは+側ピーク検波器16で検波され
検波波形gを出力する。一方、fは−側ピーク検
波器17で検波され検波波形hを出力する。これ
らの波形g,hは夫々差分回路18に入力され相
互の差分をとる差分処理が行われ、直流ワンダリ
ングの影響の相殺され、波形iの如く波形の振幅
値そのものが出力される。この波形iがDC増幅
器19を介してAGC制御入力端子20に入力さ
れ伝送路23で伝送損失及び波形歪を受けた
PCM受信々号波形cの損失、波形歪が等化増幅
され、出力端子14より一定振幅のPCM信号b
が出力される。
In Figures 3 and 4, the DC-cut PCM signal a output from the amplifier 9 on the transmitting side passes through the output terminal 10 - the transmission line 11 - the input terminal 12, and then passes through the AGC amplifier that cuts off the DC component with a waveform as shown in c. 13, and its output waveform d becomes a waveform in which DC wandering is superimposed with a gently varying envelope. This waveform d is branched into waveforms e and f by a branch circuit 15, and e is detected by a + side peak detector 16 to output a detected waveform g. On the other hand, f is detected by the negative peak detector 17 and outputs a detected waveform h. These waveforms g and h are each input to a difference circuit 18, and differential processing is performed to take the difference between them, the influence of DC wandering is canceled out, and the amplitude value of the waveform itself is outputted as waveform i. This waveform i is input to the AGC control input terminal 20 via the DC amplifier 19 and is subjected to transmission loss and waveform distortion in the transmission line 23.
The loss and waveform distortion of the PCM received signal waveform c are equalized and amplified, and the PCM signal b with a constant amplitude is output from the output terminal 14.
is output.

なおピーク検波器および差分回路としては第5
乃至7図に示すような一般によく知られた回路を
使用すればよい。第5図は+側ピーク検波器の一
例、第6図は−側ピーク検波器の一例である。ま
た減算回路としては第7図に示すような加算回路
や演算増幅器等を用いればよい。
Note that the fifth detector is used as a peak detector and a differential circuit.
Generally well-known circuits as shown in FIGS. 7 to 7 may be used. FIG. 5 is an example of a positive side peak detector, and FIG. 6 is an example of a negative side peak detector. Further, as the subtraction circuit, an addition circuit or an operational amplifier as shown in FIG. 7 may be used.

以上説明したように、本発明によれば、直流成
分をカツトした直流ワンダリングの重畳している
入力パルス例をAGC増幅するAGC増幅器の出力
の波形振幅を正確に検出し正しい制御信号を得る
ことが出来るので、従来の複雑な直流再生回路を
省略できて制御信号を発生する制御回路を含めた
AGC増幅盤の構成を簡単にすることが出来る。
As explained above, according to the present invention, it is possible to accurately detect the waveform amplitude of the output of an AGC amplifier that AGC amplifies an input pulse example in which DC wandering is superimposed with the DC component cut, and to obtain a correct control signal. Since the conventional complicated DC regeneration circuit can be omitted, the control circuit that generates the control signal can be included.
The configuration of the AGC amplifier board can be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のAGC増幅器の概念図、第2図
は従来の直流再生回路を用いたAGC増幅器の概
念図、第3図は本発明の一実施例、第4図は第3
図の説明図、第5図は+側ピーク検波器の一例、
第6図は−側ピーク検波器の一例、第7図は差分
回路の一例を示す。 図中、1,4はAGC増幅器、2,5は波形振
幅検出器、3,8は直流増幅器、6は直流再生回
路、7はピーク検波器、9は増幅器、10,14
は出力端子、11は伝送路、12は入力端子、1
3は可変利得増幅器、15は分岐回路、16,1
7はピーク検波器、18は減算回路、19はDC
増幅器、20はAGC制御入力端子、21はAGC
増幅盤、D1はダイオード、C1はコンデンサ、
Tr1,Tr2はトランジスタを示す。また、図中の
符号、a,bはPCM信号でaは送信側の増幅器
9の出力波形、bはAGC増幅盤21の出力端子
14より出力される出力波形、cは入力端子にて
受信した受信入力波形、dはAGC増幅器13の
出力波形、e,fは波形dが分岐回路で分岐され
た波形、gは波形eの正極側ピーク検波した波
形、hは波形fの負極側をピーク検波した波形、
iは差分回路18の出力波形を示す。
Fig. 1 is a conceptual diagram of a conventional AGC amplifier, Fig. 2 is a conceptual diagram of an AGC amplifier using a conventional DC regeneration circuit, Fig. 3 is an embodiment of the present invention, and Fig. 4 is a conceptual diagram of an AGC amplifier using a conventional DC regeneration circuit.
An explanatory diagram of the figure, Fig. 5 is an example of a + side peak detector,
FIG. 6 shows an example of a negative peak detector, and FIG. 7 shows an example of a differential circuit. In the figure, 1 and 4 are AGC amplifiers, 2 and 5 are waveform amplitude detectors, 3 and 8 are DC amplifiers, 6 is a DC regeneration circuit, 7 is a peak detector, 9 is an amplifier, 10 and 14
is an output terminal, 11 is a transmission line, 12 is an input terminal, 1
3 is a variable gain amplifier, 15 is a branch circuit, 16, 1
7 is a peak detector, 18 is a subtraction circuit, 19 is DC
Amplifier, 20 is AGC control input terminal, 21 is AGC
Amplification board, D1 is diode, C1 is capacitor,
Tr 1 and Tr 2 indicate transistors. In addition, the symbols a and b in the figure are PCM signals, a is the output waveform of the amplifier 9 on the transmitting side, b is the output waveform output from the output terminal 14 of the AGC amplifier board 21, and c is the waveform received at the input terminal. Received input waveform, d is the output waveform of the AGC amplifier 13, e and f are waveforms where waveform d is branched by a branch circuit, g is the waveform that detected the positive side peak of waveform e, and h is the negative side peak detected of waveform f. waveform,
i indicates the output waveform of the differential circuit 18.

Claims (1)

【特許請求の範囲】 1 直流分をカツトしたデイジタル信号のパルス
列cを入力し制御信号20により利得を変化させ
一定振幅の出力信号bを出力する自動利得制御増
幅器において、 該自動利得制御増幅器の出力信号bを2分岐す
る手段15と、該分岐された一方の信号eの正極
側のピーク値gを検出する手段16と他方の信号
fの負極側のピーク値hを検出する手段17と、
前記検出された2つのピーク値g,hの差分iを
とり出力する手段18とを備え、 該差分iを前記自動利得制御増幅器の制御信号
20とすることを特徴とした波形振幅検出方式。
[Scope of Claims] 1. An automatic gain control amplifier that inputs a pulse train c of a digital signal with a DC component cut out, changes the gain according to a control signal 20, and outputs an output signal b with a constant amplitude, comprising: means 15 for branching the signal b into two; means 16 for detecting the peak value g on the positive side of one of the branched signals e; and means 17 for detecting the peak value h on the negative side for the other signal f;
A waveform amplitude detection method, comprising means 18 for taking and outputting a difference i between the two detected peak values g and h, the difference i being used as a control signal 20 for the automatic gain control amplifier.
JP6552681A 1981-04-30 1981-04-30 Waveform amplification detecting system Granted JPS57181236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6552681A JPS57181236A (en) 1981-04-30 1981-04-30 Waveform amplification detecting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6552681A JPS57181236A (en) 1981-04-30 1981-04-30 Waveform amplification detecting system

Publications (2)

Publication Number Publication Date
JPS57181236A JPS57181236A (en) 1982-11-08
JPS645774B2 true JPS645774B2 (en) 1989-01-31

Family

ID=13289542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6552681A Granted JPS57181236A (en) 1981-04-30 1981-04-30 Waveform amplification detecting system

Country Status (1)

Country Link
JP (1) JPS57181236A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0480660U (en) * 1990-11-21 1992-07-14

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681078B2 (en) * 1984-07-25 1994-10-12 日本電気株式会社 Spread spectrum signal automatic gain control system and device
JPH0614647B2 (en) * 1985-08-28 1994-02-23 日立電線株式会社 Optical receiver circuit
JPS63120532A (en) * 1986-11-07 1988-05-24 Fujitsu Ltd Automatic gain control circuit
FI85062C (en) * 1988-11-14 1992-02-25 Kone Oy Method and apparatus for measuring currents at a frequency converter are

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0480660U (en) * 1990-11-21 1992-07-14

Also Published As

Publication number Publication date
JPS57181236A (en) 1982-11-08

Similar Documents

Publication Publication Date Title
JP3340341B2 (en) Level identification circuit
US4932038A (en) Phase modulator circuit
KR970023254A (en) Optical disc player
JPS645774B2 (en)
GB1489544A (en) Retiming systems for pulse coded data signals
JP2002237053A (en) Optical disk read composite signal generating device
JP2570150B2 (en) Optical receiving method, optical receiving circuit, and optical repeater
JPH0697753A (en) Automatic gain control circuit
JPH02206261A (en) Optical input disconnecting/detecting circuit
JPS62122350A (en) Timing circuit
JPH0563504A (en) Coaxial cable loss equalization amplifier
JP3035882B2 (en) Optical receiver
JPS6322110B2 (en)
JPH0250545A (en) Optical repeater
US4175213A (en) Regenerator having automatic gain control referenced to a data-pattern-dependent pulse stream
JPS6193749A (en) Timing clock extraction circuit
JP2610954B2 (en) Equalizer characteristic correction method
JPS6316933B2 (en)
JPH0447834A (en) Optical repeater
JP2688963B2 (en) Magneto-optical signal detection and amplification device
JP2574540B2 (en) Data interface device
KR960002286A (en) Digital playback signal detection device and method
JPH08154072A (en) Reception alarm circuit and reception repeater
JPH03201819A (en) Pulse waveform distortion reducing circuit
JPH09233028A (en) Optical receiver