JPS645681B2 - - Google Patents

Info

Publication number
JPS645681B2
JPS645681B2 JP54143028A JP14302879A JPS645681B2 JP S645681 B2 JPS645681 B2 JP S645681B2 JP 54143028 A JP54143028 A JP 54143028A JP 14302879 A JP14302879 A JP 14302879A JP S645681 B2 JPS645681 B2 JP S645681B2
Authority
JP
Japan
Prior art keywords
light
refractive index
preform
central axis
photopolymerized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54143028A
Other languages
Japanese (ja)
Other versions
JPS5666807A (en
Inventor
Toshuki Iguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP14302879A priority Critical patent/JPS5666807A/en
Publication of JPS5666807A publication Critical patent/JPS5666807A/en
Publication of JPS645681B2 publication Critical patent/JPS645681B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

【発明の詳細な説明】 本発明は半径方向に連続的に変化する屈折率分
布を有する集束性光伝送体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a convergent optical transmission body having a refractive index distribution that continuously changes in the radial direction.

従来、上記の如き集束性光伝送体は、例えば特
公昭47−816号公報に記載されているように、ガ
ラス繊維の内部組成を、その酸化物をイオン交換
することにより変化させ、屈折率に変化をもたせ
る方法により製造され、もしくは特開昭49−
10056号公報に記載されているように、円筒形の
出発部材外周面に漸進的に異なる成分を有する材
料層を堆積して半径方向に段階的に変化する屈折
率をもたせるような方法等で製造されていた。し
かし前者の方法はイオン交換によるガラス内屈折
率分布の付与に長時間を要し、また後者の方法は
屈折率分布が段階的となり、イメージガイドとし
てのレスポンス低下を生ずる欠点があつた。
Conventionally, as described in Japanese Patent Publication No. 47-816, the above-mentioned focusing optical transmitters have conventionally been produced by changing the internal composition of glass fibers by ion-exchanging their oxides to change the refractive index. Manufactured by a method that causes change, or
As described in Publication No. 10056, it is manufactured by a method such as depositing material layers having gradually different components on the outer peripheral surface of a cylindrical starting member to give it a refractive index that changes stepwise in the radial direction. It had been. However, the former method requires a long time to impart a refractive index distribution within the glass by ion exchange, and the latter method has the disadvantage that the refractive index distribution becomes stepwise, resulting in a decrease in response as an image guide.

本発明は従来の方法とは異なる方法で集束性光
伝送体を製造するものであつて、光重合プラスチ
ツク材料に光照射し、可撓性のある集束性光伝送
体を容易に製造し得る方法を提供するものであ
る。
The present invention is a method for producing a focusing light transmitting body using a method different from conventional methods, and is a method for easily producing a flexible focusing light transmitting body by irradiating a photopolymerized plastic material with light. It provides:

一般に、ある吸収係数を有する光透過材料に、
その材料によつてエネルギーが吸収される波長の
光を照射した場合、光は第1図に示されるように
材料内部に進行するに従つて漸次その材料に吸収
され、光の進行方向に光吸収量に差異を生ずるよ
うになり、またその進行状態は材料内で波長の関
数によつて異なり、波長の短い光程吸収され易
い。
Generally, a light-transmitting material with a certain absorption coefficient,
When irradiating light with a wavelength at which energy is absorbed by the material, the light is gradually absorbed by the material as it travels inside the material, as shown in Figure 1, and the light is absorbed in the direction in which the light travels. The amount of light produced differs, and its progress varies within the material as a function of wavelength, with shorter wavelengths being more easily absorbed.

本発明はこのような特定の吸収係数を有する光
透過材料の性質を利用するものである。すなわ
ち、本発明では光透過材料として重合が進むにし
たがつて屈折率の減少する光重合プラスチツク材
料を用い、これを細棒状としたプリフオーム部材
の中心軸と垂直な断面の外方周囲から中心軸に向
けて均等な強度で光照射し、この光照射を順次波
長の異なる光で繰返し行うことにより、部材内の
光重合度を変化させてプリフオーム部材の半径方
向に屈折率の変化を付与するものである。
The present invention utilizes the properties of a light-transmitting material having such a specific absorption coefficient. That is, in the present invention, a photopolymerized plastic material whose refractive index decreases as polymerization progresses is used as a light-transmitting material, and this is used as a thin rod-shaped preform member from the outer periphery of a cross section perpendicular to the central axis to the central axis. By irradiating light with uniform intensity towards the preform member and repeating this light irradiation with light of different wavelengths, the degree of photopolymerization within the member is changed and the refractive index is changed in the radial direction of the preform member. It is.

光重合プラスチツク材料としては、重合度が増
大するに従つて屈折率が低下するような、例えば
ポリカーボネートZを主体とするプラスチツクで
あり、これにアクリル酸メチル、増感剤、光吸収
制御剤およびカブリ防止剤を溶かしてなる均質が
なプラスチツクを用い、これを第2図に示した如
きプリフオームロツド部材に成形する。次いでこ
のプリフオームロツド部材を加熱延伸装置により
紡糸して第3図に示すような真円細棒状にする。
この細棒状としたプリフオーム部材に、第4図に
示されるように中心軸に垂直な断面の外方周囲か
ら中心軸に向けて均等な強度の光エネルギー
(hν1)を照射する(第4図−1)。
The photopolymerized plastic material is, for example, a plastic mainly composed of polycarbonate Z, whose refractive index decreases as the degree of polymerization increases, and which is supplemented with methyl acrylate, a sensitizer, a light absorption control agent, and a fogging agent. A homogeneous plastic made by dissolving the inhibitor is used and molded into a preform rod member as shown in FIG. Next, this preform rod member is spun into a perfect round thin rod shape as shown in FIG. 3 by using a heated drawing device.
This thin rod-shaped preform member is irradiated with light energy (hν 1 ) of uniform intensity from the outer periphery of the cross section perpendicular to the central axis toward the central axis as shown in Fig. 4. -1).

あるいはプリフオーム部材を回転させながら延
伸する場合には特定の方向からのみ光照射を行
う。同様にプリフオーム部材の軸方向に連続的も
しくは断続的に変化する波長、換言すればエネル
ギーの異なる(hν2・hν3)光をローラーで搬送さ
れるプリフオーム部材に照射する(第4図−2)。
例えば、ポリカーボネートZを主体とするプラス
チツクを用いた場合、第4図−2の如く引き抜き
ローラーで搬送される途中のプリフオーム部材に
第6図のようにλ1およびλ2の波長の光を照射する
に際し、λ1の波長の光として水銀ランプ(λ1
370nm)、λ2の波長の光としてN2レーザー(λ2
337nm)をパワーによつても異るがそれぞれ数十
秒間照射することが好ましい。
Alternatively, when the preform member is stretched while being rotated, light is irradiated only from a specific direction. Similarly, the preform member being conveyed by rollers is irradiated with light of wavelengths that change continuously or intermittently in the axial direction of the preform member, in other words, with different energies (hν 2 and hν 3 ) (Figure 4-2). .
For example, when using plastic mainly composed of polycarbonate Z, as shown in Fig. 4-2, the preform member being conveyed by a pull-out roller is irradiated with light of wavelengths λ 1 and λ 2 as shown in Fig. 6. In this case, a mercury lamp (λ 1 =
370 nm), N 2 laser (λ 2 =
337 nm) for several tens of seconds each, although this varies depending on the power.

光照射を行つた後は、アクリル酸メチルを除去
する工程を経て、光について安定なプラスチツク
部材に定着される。
After the light irradiation, the methyl acrylate is removed and fixed onto a light-stable plastic member.

なお、光照射は紡糸工程のあとだけに限らず、
プリフオームロツド(第2図)の状態時に行つた
後紡糸してもよい。
Note that light irradiation is not limited to only after the spinning process.
Spinning may be carried out after the preform rod (FIG. 2) is in the state.

かくして、波長の異なる光が繰返し照射された
プリフオーム部材は、その半径方向で光重合度が
変化し、すなわち表面に近い程重合度が高く、内
部にいくに従つて重合度が低くなり、従つて表面
に近い程屈折率は小さくなり、内部にいくに従つ
て屈折率が漸次大きくなる。この関係を第5図に
示す。これにより部材自体がレンズと等価の作
用、すなわち集束性光伝送体となり得る。そして
光照射した重合体に吸収される光の量は第1図に
示されるように照射する光の波長が短い程大きく
なり、屈折率の変化の割合、すなわち第5図にお
けるΔn=n0−n1は照射する光の照射順序、光重
合に関する感光波長および照射強度を変えること
で、またプリフオーム部材の組成を変えることで
屈折率分布との関係において決定される。一般に
光重合の感光波長域は紫外部にあり、使用すべき
光源はN2レーザー、紫外線等が適当である。
In this way, the degree of photopolymerization of a preform member that is repeatedly irradiated with light of different wavelengths changes in its radial direction, that is, the degree of polymerization is higher as it approaches the surface, and the degree of polymerization decreases as it goes inside. The closer it is to the surface, the lower the refractive index becomes, and the closer it goes inside, the higher the refractive index becomes. This relationship is shown in FIG. This allows the member itself to function equivalent to a lens, that is, to function as a focusing light transmitter. As shown in FIG. 1, the amount of light absorbed by the irradiated polymer increases as the wavelength of the irradiated light becomes shorter . n 1 is determined in relation to the refractive index distribution by changing the irradiation order of light, the sensitive wavelength and irradiation intensity for photopolymerization, and by changing the composition of the preform member. Generally, the sensitive wavelength range for photopolymerization is in the ultraviolet region, and suitable light sources to be used include N 2 laser and ultraviolet light.

以上のような本発明によれば、光による屈折率
分布の付与であるので、熱による場合のような外
部要因による条件変化、電力消費および公害等の
危険が少くなる。また周辺部の分布のくずれも小
さくなる。さらにプラスチツクで形成されるため
可撓性があり、軽量である等の利点を有する。
According to the present invention as described above, since the refractive index distribution is imparted by light, there is less risk of condition changes caused by external factors such as heat, power consumption, pollution, etc. Further, the distortion of the distribution in the peripheral area is also reduced. Furthermore, since it is made of plastic, it has advantages such as being flexible and lightweight.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光透過材料中における光強度の減衰が
波長に依存することを示す説明図、第2図は光重
合プラスチツク材料で形成されたプリフオームロ
ツドの外観図、第3図はプリフオームロツドを加
熱延伸装置により紡糸する際の説明図、第4図は
プリフオーム部材への光照射の状態を示す説明
図、第5図は光照射後のプリフオーム部材内部の
屈折率分布を示す説明図、第6図は光照射の一例
を示す説明図である。
Fig. 1 is an explanatory diagram showing that the attenuation of light intensity in a light-transmitting material depends on the wavelength, Fig. 2 is an external view of a preform rod made of a photopolymerized plastic material, and Fig. 3 is an illustration of the preform rod. An explanatory diagram when spinning a rod using a heated drawing device, Fig. 4 is an explanatory diagram showing the state of light irradiation to the preform member, and Fig. 5 is an explanatory diagram showing the refractive index distribution inside the preform member after light irradiation. , FIG. 6 is an explanatory diagram showing an example of light irradiation.

Claims (1)

【特許請求の範囲】[Claims] 1 重合が進むにしたがつて屈折率の減少する細
棒状の光重合プラスチツク材料からなるプリフオ
ーム部材に、該部材の中心軸と垂直な断面の外方
周囲から中心軸に向けて前記部材の感光波長域内
の異なる2種以上の波長の光を照射し、前記部材
の半径方向に屈折率分布を付与することを特徴と
する集束性光伝送体の製造方法。
1. A preform member made of a thin rod-shaped photopolymerized plastic material whose refractive index decreases as polymerization progresses, and the photosensitive wavelength of the member is applied from the outer periphery of a cross section perpendicular to the central axis of the member toward the central axis. 1. A method of manufacturing a convergent optical transmission body, comprising irradiating light of two or more different wavelengths within a range to impart a refractive index distribution in the radial direction of the member.
JP14302879A 1979-11-05 1979-11-05 Production of focusing type optical transmission body Granted JPS5666807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14302879A JPS5666807A (en) 1979-11-05 1979-11-05 Production of focusing type optical transmission body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14302879A JPS5666807A (en) 1979-11-05 1979-11-05 Production of focusing type optical transmission body

Publications (2)

Publication Number Publication Date
JPS5666807A JPS5666807A (en) 1981-06-05
JPS645681B2 true JPS645681B2 (en) 1989-01-31

Family

ID=15329221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14302879A Granted JPS5666807A (en) 1979-11-05 1979-11-05 Production of focusing type optical transmission body

Country Status (1)

Country Link
JP (1) JPS5666807A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0485501A (en) * 1990-07-30 1992-03-18 Alps Electric Co Ltd Lens and its manufacture
US5614253A (en) * 1993-06-16 1997-03-25 Sumitomo Electric Industries, Ltd. Plastic optical fiber preform, and process and apparatus for producing the same
US5639512A (en) * 1993-06-18 1997-06-17 Sumitomo Electric Industries, Ltd. Plastic optical fiber preform, and process and apparatus for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5430301B2 (en) * 1975-01-27 1979-09-29
JPS5321937A (en) * 1976-08-12 1978-02-28 Mitsubishi Electric Corp Preparation of synthetic resin material for optical transmission

Also Published As

Publication number Publication date
JPS5666807A (en) 1981-06-05

Similar Documents

Publication Publication Date Title
US5807906A (en) Process for obtaining a transparent article with a refractive index gradient
US5269867A (en) Method for producing optical device
CA2202308A1 (en) Optical waveguide grating and production method therefor
JP2004509361A5 (en)
EP0260742A1 (en) Optical transmission fibre having a tapered end portion provided with a lens
US3574582A (en) Method for making fiber optical image-conducting devices embodying stray light-absorbing means
JPS645681B2 (en)
JPS6142241B2 (en)
CN1181363C (en) A method for making long period optical fibre grating
US20020003315A1 (en) Method and device to control polymerization
JPH0971439A (en) Aspheric optical element and its production
JPH0675105A (en) Lens array plate and its production
US20020020825A1 (en) Pre-treatment of molds
JPH01316710A (en) Novel optical device
JPH02196201A (en) Production of microlens array
US20050018985A1 (en) Method for controlling numerical aperture of graded index plastic optical fiber through end rounding treatment thereof
CA2325528A1 (en) Process for the production of graded-index profiles in polymeric optical fibres
JPH0843678A (en) Optical fiber lens and its production
JP2000167939A (en) Method for optical molding
RU2132662C1 (en) Method of manufacturing artificial eye lens
RU2097194C1 (en) Method of manufacturing polymer elements
JPH0233104A (en) Manufacture of plastic optical transmission body
JP3066865B2 (en) Method for manufacturing plastic optical transmission body
JPH06174944A (en) Method for grinding outer peripheral part of plastic fiber
JPS5670506A (en) Manufacture of focusing light transmitter