JPS6142241B2 - - Google Patents

Info

Publication number
JPS6142241B2
JPS6142241B2 JP56013482A JP1348281A JPS6142241B2 JP S6142241 B2 JPS6142241 B2 JP S6142241B2 JP 56013482 A JP56013482 A JP 56013482A JP 1348281 A JP1348281 A JP 1348281A JP S6142241 B2 JPS6142241 B2 JP S6142241B2
Authority
JP
Japan
Prior art keywords
liquid
substrate
monomer
refractive index
photomask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56013482A
Other languages
Japanese (ja)
Other versions
JPS57128301A (en
Inventor
Takashi Kurokawa
Shigeru Oikawa
Shigeo Nara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP56013482A priority Critical patent/JPS57128301A/en
Publication of JPS57128301A publication Critical patent/JPS57128301A/en
Publication of JPS6142241B2 publication Critical patent/JPS6142241B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/001Phase modulating patterns, e.g. refractive index patterns

Description

【発明の詳細な説明】 本発明は、高分子重合体を用いて、棒状の屈折
率が高い部分が多数配列された導光アレイいわゆ
るフアイバプレートもしくは自己集束レンズアレ
イの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a light guide array, so-called fiber plate or self-focusing lens array, in which a large number of rod-shaped portions having a high refractive index are arranged using a high molecular weight polymer.

従来、この種のフアイバプレートを製造するに
はガラス光フアイバの単心を製造し、次にこれを
数100本束ねて直径1〜5mmのマルチフアイバと
した後、さらにこのマルチフアイバを型内に集合
し高温、高圧で相互に溶着した後冷却してから型
から取り出し切断、研磨して製品化していた。こ
のようにして得られたフアイバプレートは十分気
密が保たれる程度にフアイバ相互の溶着が十分行
なわれる必要があるため、溶着の条件制御が面倒
であり、また以上の工程からわかるように、工程
数が多く、フアイバの配列や高温、高圧を必要と
する等、工程が複雑となる欠点があつた。また、
従来自己集束レンズアレイは二乗曲線の屈折率分
布を有するガラスロツド(通常、直径1〜5mm)
を多数配列集合して相互に接着した後、切断研磨
することによつて製造されていた。しかしながら
この方法では、ロツドを多数配列するの作業によ
り工程が複雑となる欠点があつた。またロツドア
レイのようなパターンを従来のフオトリソグラフ
イ技術によつて製作することは困難であつた。
Conventionally, to manufacture this type of fiber plate, a single core of glass optical fiber was manufactured, then several hundred of these were bundled to form a multi-fiber with a diameter of 1 to 5 mm, and then this multi-fiber was placed in a mold. They were assembled and welded together at high temperature and pressure, then cooled, taken out of the mold, cut, and polished to become products. In the fiber plate obtained in this way, the fibers must be sufficiently welded to each other to maintain a sufficient airtightness, so controlling the welding conditions is troublesome, and as can be seen from the above steps, the process is difficult. The drawback was that the process was complicated, such as the large number of fibers required, the arrangement of fibers, and the need for high temperature and pressure. Also,
Conventional self-focusing lens arrays consist of glass rods (typically 1 to 5 mm in diameter) with a square-curve refractive index distribution.
It was manufactured by arranging and assembling a large number of materials, gluing them together, and then cutting and polishing them. However, this method has the disadvantage that the process is complicated by the work of arranging a large number of rods. Furthermore, it has been difficult to produce patterns such as rod arrays using conventional photolithography techniques.

本発明はこれらの欠点を解決するため、光重合
をする単量体溶液内に基板を置き、紫外線による
マスク露光を行ないながら前記基板を徐々に下降
させ棒状のアレイを基板上に重合成長させた後、
未露光の単量体を除去して低屈折率のモノマで置
換して重合させて導光アレイを製造することにし
たもので、以下図面に基づいて説明する。
In order to solve these drawbacks, the present invention places a substrate in a monomer solution that undergoes photopolymerization, and gradually lowers the substrate while performing mask exposure with ultraviolet rays to polymerize and grow a rod-shaped array on the substrate. rear,
A light guide array was manufactured by removing unexposed monomers, replacing them with monomers having a low refractive index, and polymerizing them, which will be explained below based on the drawings.

第1図は本発明の実施例の製造プロセスを示
す。容器14内に高屈折率の透明重合体の原料と
なる単量体、光増感剤および必要であれば架橋剤
と溶媒とを混合した液体11をみたしておく。ま
た基板15は図示しないモータと連動した送り機
構につながれた支持棒16によつて上下に移動さ
せられる状態で液体11内にある。またフオトマ
スク13は液体のすぐ上面にあり、平行な紫外光
17が上方から照射される構成になつている。
FIG. 1 shows the manufacturing process of an embodiment of the invention. A container 14 is filled with a liquid 11 containing a monomer as a raw material for a transparent polymer having a high refractive index, a photosensitizer, and, if necessary, a crosslinking agent and a solvent. Further, the substrate 15 is in the liquid 11 in a state where it is moved up and down by a support rod 16 connected to a feed mechanism that is linked to a motor (not shown). The photomask 13 is located directly above the liquid, and is configured to be irradiated with parallel ultraviolet light 17 from above.

最初の状態では、基板15は液体11の液面と
同一面上にセツトした状態にしておき、次に紫外
光17を照射しはじめると同時に一定速度で基板
を下降させはじめる。すると第1図のようにマス
クを通して露光された部分が紫外線によつて光重
合し、基板15の上に硬化しはじめる。このと
き、基板は徐々に下降していくので、常に液体の
表面近くで重合し、基板上に棒状体12が成長し
ていく。このときの基板の下降速度vは、単量体
が重合に要する飽和露光量をw1、紫外光の液面
での強度をi0とすれば、v<i/αwの条件を満た
す ようにゆつくり下げていけば、常に棒状体12が
成長していく。ここでαは液体の紫外線吸収係数
である。
In the initial state, the substrate 15 is set on the same level as the liquid 11, and then the substrate 15 starts to be lowered at a constant speed at the same time as the ultraviolet light 17 starts to be irradiated. Then, as shown in FIG. 1, the portions exposed through the mask are photopolymerized by the ultraviolet rays and begin to harden onto the substrate 15. At this time, since the substrate gradually descends, polymerization always occurs near the surface of the liquid, and rod-like bodies 12 grow on the substrate. The descending speed v of the substrate at this time satisfies the condition v<i 0 /αw 1 , where w 1 is the saturation exposure amount required for monomer polymerization, and i 0 is the intensity of ultraviolet light at the liquid surface. If you lower it slowly like this, the rod-shaped body 12 will always grow. Here, α is the ultraviolet absorption coefficient of the liquid.

このようにして透明な棒状体12が必要な長さ
となるまで第1図のプロセスで露光したのち基板
を液体中から取り出すと、第2図のようになる。
次にこれの周囲に第3図のよう壁19をつけて低
屈折率モノマ18を流し、高温で放置すると第4
図に示すようにモノマ18が重合し、棒状体12
が内部に並んだ透明な重合体の板29が形成され
る。最後に基板15をはがし、必要であれば面を
研磨することにより、導光アレイ20が第4図の
ように完成する。ここで棒状体12は周囲の重合
体板29よりも屈折率が高くなるため、長さ方向
に光が伝搬する導光体となり、フアイパプレート
と同じ機能を有する導光アレイ20が得られる。
When the transparent rod-shaped body 12 is thus exposed in the process shown in FIG. 1 until it reaches the required length, and the substrate is taken out from the liquid, it becomes as shown in FIG. 2.
Next, a wall 19 is attached around this as shown in FIG.
As shown in the figure, the monomer 18 is polymerized, and the rod-shaped body 12
A transparent polymeric plate 29 is formed with the inside thereof lined with. Finally, by peeling off the substrate 15 and polishing the surface if necessary, the light guide array 20 is completed as shown in FIG. 4. Here, since the rod-shaped body 12 has a higher refractive index than the surrounding polymer plate 29, it becomes a light guide in which light propagates in the length direction, and a light guide array 20 having the same function as a fiber plate is obtained.

また以上の工程において、第5図のように紫外
線光源21からの紫外光でレンズ22を介して液
体上面にフオトマスク13のパターンの像23を
結像させるようにし、かつレンズとフオトマスク
とを連動して上下に移動できるようにすることも
できる。このときパターンの像を初期には大きく
徐々にズーム効果により小さくしていくならば、
第6図に示すようなテーパ棒状体24が得られ、
したがつて前述の工程で第7図に示すようなテー
パ状フアイバプレート25が得られる。このもの
では導光部分がテーパとなつているため像の拡大
あるいは縮少の機能を有する。
In the above steps, as shown in FIG. 5, an image 23 of the pattern of the photomask 13 is formed on the upper surface of the liquid through the lens 22 using ultraviolet light from the ultraviolet light source 21, and the lens and the photomask are linked. You can also move it up and down. At this time, if the pattern image is initially large and gradually made smaller by the zoom effect,
A tapered rod-shaped body 24 as shown in FIG. 6 is obtained,
Accordingly, a tapered fiber plate 25 as shown in FIG. 7 is obtained through the above-described steps. This device has a tapered light guiding portion, so it has the function of enlarging or reducing the image.

さらに、第3図の工程において、低屈折率モノ
マ18を流した後、長時間放置しておくと、モノ
マは棒状体12内部に拡散していく。このとき高
温で一定時間拡散させると棒状体内のモノマ量の
分布は第8図のようになる。このときのモノマ量
Mは棒状体の中心からの距りrに対してM∝r2
ようにすることができる。したがつてこのような
分布の状態でさらに高温にしてモノマを重合させ
ると棒状体内のモノマも同時に重合し、この分布
で固定される。したがつて、棒状体内の屈折率分
布は第9図に示すような形になり、棒状体の中心
から周囲にむかつて距りの2乗で屈折率が小さく
なる。このような屈折率分布を持つ棒状体はレン
ズ作用を持つことがよく知られており、したがつ
て第4図に示される板内の棒状体12はすべてこ
のような2乗屈折率分布を有し、かつレンズ作用
を有するようなレンズアレイを製作することがで
きる。
Further, in the process shown in FIG. 3, if the low refractive index monomer 18 is left for a long time after flowing, the monomer will diffuse into the rod-shaped body 12. At this time, if the monomer is diffused at a high temperature for a certain period of time, the distribution of the amount of monomer in the rod-shaped body becomes as shown in FIG. The monomer amount M at this time can be set as M∝r 2 with respect to the distance r from the center of the rod-shaped body. Therefore, when the monomer is polymerized by raising the temperature to a higher temperature in such a distributed state, the monomer inside the rod-shaped body is also polymerized at the same time, and is fixed in this distribution. Therefore, the refractive index distribution within the rod-shaped body takes the form shown in FIG. 9, and the refractive index decreases as the square of the distance from the center of the rod-shaped body to the periphery. It is well known that rod-shaped bodies with such a refractive index distribution have a lens effect, and therefore all the rod-shaped bodies 12 in the plate shown in FIG. 4 have such a squared refractive index distribution. In addition, a lens array having a lens function can be manufactured.

実施例 (1) メタクリル酸メチルモノマ100g、架橋剤とし
てNN′メチレンビスアクリルアミド10g、光増感
剤のベンゾインエチルエーテル0.5gを混合した
液体を容器内に入れ、50×50mmのガラス基板を液
面と同一面にセツトした。フオトマスクは第10
図に示すような直径0.4mmの円形が配列したもの
を使用し、500W超高圧水銀灯を紫外光源として
第1図に示すような製造装置を組立てた。次に露
光開始と同時に1mm/分の速度で基板を下げてい
き7分間露光したのち基板をとり出し最終的に7
mmの長さの棒状体アレイガ第2図のように得られ
た。次にアゾビスイソブチルニトリル0.5%を含
むフツ化アルキルメタクリレートモノマを流し70
℃で2時間窒素雰囲気内に放置し重合させた。最
後にこの板状重合体を基板からはずし、面を研磨
して、コア径0.4mm、配列ピツチ0.5mm、40×40×
6.5mmのフアイバプレートを得た。コアとクラツ
ドとの屈折率差は0.08であつた。
Example (1) A liquid mixture of 100 g of methyl methacrylate monomer, 10 g of NN' methylene bisacrylamide as a crosslinking agent, and 0.5 g of benzoin ethyl ether as a photosensitizer was placed in a container, and a 50 x 50 mm glass substrate was placed on the liquid surface. It was set on the same side. Photo mask is number 10
Using an array of circles with a diameter of 0.4 mm as shown in the figure, and using a 500W ultra-high pressure mercury lamp as the ultraviolet light source, we assembled the manufacturing equipment shown in Figure 1. Next, at the same time as the exposure started, the substrate was lowered at a speed of 1 mm/min, and after 7 minutes of exposure, the substrate was taken out and the final
A rod-shaped array with a length of mm was obtained as shown in FIG. Next, a fluorinated alkyl methacrylate monomer containing 0.5% of azobisisobutylnitrile was poured at 70°C.
C. for 2 hours in a nitrogen atmosphere to polymerize. Finally, this plate-like polymer was removed from the substrate, the surface was polished, and the core diameter was 0.4 mm, the array pitch was 0.5 mm, 40×40×
A 6.5 mm fiber plate was obtained. The refractive index difference between the core and the cladding was 0.08.

実施例 (2) スチレンモノマ100g、ジビニルベンゼン10
g、ベンゾインエチルエーテル0.5gの組成の液
体を使用し、第11図に示すような直径2.5mmの
円形パタンを有するフオトマスクを用いて実施例
(1)と同様な装置で露光した。このときの基板の移
動速度は0.5mm/分で約10分間露光した。この工
程により第2図に示すような円柱状アレイを作
り、次にこの周囲にアゾビスイソブチロンニトリ
ル0.5%を含むアクリル酸メチルモノマを流し、
40℃で約2時間放置した。次に70℃で2時間窒素
雰囲気に放置しアクリル酸メチルモノマを重合し
て、マイクロレンズアレイを製作した。このレン
ズアレイの屈折率分布はn=1.57(1−0.06/2r2
)で あつた。またレンズ直径2.5mm、厚さ4.0mm、配列
ピツチは2.7mmで、焦点距りは3.1mmであつた。
Example (2) 100g of styrene monomer, 10g of divinylbenzene
Examples were carried out using a photomask having a circular pattern with a diameter of 2.5 mm as shown in FIG.
Exposure was carried out using the same equipment as in (1). At this time, the substrate was moved at a speed of 0.5 mm/min and exposed for about 10 minutes. Through this process, a cylindrical array as shown in Figure 2 is created, and then methyl acrylate monomer containing 0.5% azobisisobutyronenitrile is poured around this.
It was left at 40°C for about 2 hours. Next, it was left in a nitrogen atmosphere at 70°C for 2 hours to polymerize the methyl acrylate monomer, producing a microlens array. The refractive index distribution of this lens array is n=1.57 (1-0.06/2r 2
). The lens diameter was 2.5mm, thickness was 4.0mm, array pitch was 2.7mm, and focal length was 3.1mm.

以上説明したように本発明によれば、フオトマ
スクのパターンを変えるだけで円、矩形等の任意
の断面でかつ任意寸法の口径、ピツチのフアイバ
プレートあるいはテーパ状フアイバプレートを、
従来の技術に比較して簡単な工程で製造でき経済
的にも有利となる。また、同様にして自己集束レ
ンズ機能を持つマイクロレンズアレイを簡単な工
程で安価に製造できる利点がある。このようにし
て製造されるフアイバプレートは撮像管の窓材料
や線走査型記録管に適用でき、また、マイクロレ
ンズアレイは、複写機の光学系に適用できる。
As explained above, according to the present invention, a fiber plate or a tapered fiber plate with an arbitrary cross section such as a circle or a rectangle, and with an arbitrary diameter and pitch can be produced by simply changing the pattern of the photomask.
Compared to conventional techniques, it can be manufactured through a simpler process and is economically advantageous. Further, there is an advantage that a microlens array having a self-focusing lens function can be manufactured in a similar manner at a low cost through a simple process. The fiber plate manufactured in this way can be applied to a window material for an image pickup tube or a line scanning type recording tube, and the microlens array can be applied to an optical system of a copying machine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明の一実施例の工程図、
第4図は上記工程によつて得られた本発明の導光
アレイの斜視図、第5図〜第7図は本発明の他の
実施例の工程図、第8図および第9図はそれぞれ
モノマ量分布、屈折率分布の図、第10図は実施
例(1)で使用したフオトマスクのパターン、第11
図は実施例(2)で使用したパターンを示す。 11……感光性液体、12……棒状重合体、1
3……フオトマスク、14……容器、15……基
板、16……支持棒、17……紫外光、18……
低屈折率モノマ、29……低屈折率重合体。
1 to 3 are process diagrams of an embodiment of the present invention,
FIG. 4 is a perspective view of the light guide array of the present invention obtained by the above process, FIGS. 5 to 7 are process diagrams of other embodiments of the present invention, and FIGS. 8 and 9 are respectively Diagrams of monomer amount distribution and refractive index distribution, Figure 10 is the pattern of the photomask used in Example (1), Figure 11 is
The figure shows the pattern used in Example (2). 11... Photosensitive liquid, 12... Rod-shaped polymer, 1
3...Photomask, 14...Container, 15...Substrate, 16...Support rod, 17...Ultraviolet light, 18...
Low refractive index monomer, 29...Low refractive index polymer.

Claims (1)

【特許請求の範囲】 1 単量体および光増感剤を含有する感光性液体
中に上下に移動可能な基板を置き、かつ前記液体
の上面にフオトマスクを配置した状態で、マスク
上面から紫外線を照射しながら前記基板を連続的
に徐々に前記液体中に沈めていくことにより、光
の照射された部分の単量体を硬化させて重合体ア
レイを基板上に形成する工程;未露光部分に残存
している未硬化の前記液体を除去して、代わりに
前記単量体よりも屈折率の低い単量体で置換し、
この低屈折率の単量体を重合させる工程;前記基
板、前記重合体アレイ、および低屈折率重合体か
ら成る接合物から前記基板を剥離する工程を具備
する導光アレイの製造方法。 2 前記感光性液体の上面と紫外線光源との間に
円形あるいは矩形等の窓を配列させたパターンを
有するフオトマスクとレンズ系を配置してフオト
マスクのパターンを前記液体上面の位置に結像さ
せ、かつ前記基板を連続的に前記液体中に沈めて
いくと同時に、フオトマスクとレンズ系の位置を
連接的に変えて液体上面におけるフオトマスクの
パターンをズーミングによりに徐々に縮少してい
くことにより、前記基板上にテーパ状の屈折率が
高い重合体アレイを形成する工程が前記重合体ア
レイの形成工程の代りに採用される特許請求の範
囲第1項記載の導光アレイの製造方法。
[Scope of Claims] 1. A vertically movable substrate is placed in a photosensitive liquid containing a monomer and a photosensitizer, and a photomask is placed on the top of the liquid, and ultraviolet rays are irradiated from the top of the mask. forming a polymer array on the substrate by curing the monomers in the irradiated areas by continuously and gradually submerging the substrate into the liquid while irradiating; removing the remaining uncured liquid and replacing it with a monomer having a lower refractive index than the monomer;
A method for manufacturing a light guide array, comprising the steps of polymerizing the low refractive index monomer; and peeling the substrate from a bonded product consisting of the substrate, the polymer array, and the low refractive index polymer. 2. A photomask having a pattern of circular or rectangular windows arranged between the upper surface of the photosensitive liquid and the ultraviolet light source and a lens system are arranged to image the pattern of the photomask at a position on the upper surface of the liquid, and While the substrate is continuously submerged in the liquid, the positions of the photomask and the lens system are sequentially changed to gradually reduce the pattern of the photomask on the upper surface of the liquid by zooming. 2. The method of manufacturing a light guide array according to claim 1, wherein the step of forming a tapered polymer array having a high refractive index is adopted in place of the step of forming the polymer array.
JP56013482A 1981-01-31 1981-01-31 Manufacture for light conducting array Granted JPS57128301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56013482A JPS57128301A (en) 1981-01-31 1981-01-31 Manufacture for light conducting array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56013482A JPS57128301A (en) 1981-01-31 1981-01-31 Manufacture for light conducting array

Publications (2)

Publication Number Publication Date
JPS57128301A JPS57128301A (en) 1982-08-09
JPS6142241B2 true JPS6142241B2 (en) 1986-09-19

Family

ID=11834331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56013482A Granted JPS57128301A (en) 1981-01-31 1981-01-31 Manufacture for light conducting array

Country Status (1)

Country Link
JP (1) JPS57128301A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2820682B2 (en) * 1986-07-08 1998-11-05 ルーミナイト インターナショナル コーポレイション Plastic optical transmitter
US5462700A (en) * 1993-11-08 1995-10-31 Alliedsignal Inc. Process for making an array of tapered photopolymerized waveguides
JP3444352B2 (en) * 1999-03-29 2003-09-08 株式会社豊田中央研究所 Optical transmission line manufacturing method
US6703188B1 (en) 1999-03-29 2004-03-09 Kabushiki Kaisha Toyota Chuo Kenkyusho Method of fabricating optical waveguide structure
JP4169238B2 (en) * 2000-06-30 2008-10-22 株式会社リコー Two-dimensional enlargement / reduction optical device and manufacturing method thereof
JP2002048924A (en) * 2000-08-02 2002-02-15 Ricoh Co Ltd Picture magnifying/reducing optical device, its manufacturing method, picture magnifying display and picture reducing/reading device
JP2002328247A (en) * 2001-05-01 2002-11-15 Ibiden Co Ltd Method for forming optical waveguide
JP4480307B2 (en) * 2001-09-21 2010-06-16 イビデン株式会社 Optical waveguide and method for forming optical waveguide
JP4142568B2 (en) * 2003-12-19 2008-09-03 インターナショナル・ビジネス・マシーンズ・コーポレーション OPTICAL ELEMENT AND COLOR DISPLAY DEVICE USING THE OPTICAL ELEMENT

Also Published As

Publication number Publication date
JPS57128301A (en) 1982-08-09

Similar Documents

Publication Publication Date Title
US5696865A (en) Optical waveguide having two or more refractive indices and method of manufacturing same
JP2704047B2 (en) Method of fabricating an array of tapered photopolymerized waveguides
US5807906A (en) Process for obtaining a transparent article with a refractive index gradient
JP3836127B2 (en) Polymer microstructures that facilitate the coupling of optical fibers to waveguides
EP0258994B1 (en) Process for the production of optical elements
JPH0541411B2 (en)
JPS6142241B2 (en)
JPH03288102A (en) Manufacture of light beam shape converting element
JPS5971830A (en) Manufacture of lens of refractive index distribution type
JPS59223408A (en) Manufacture of high polymer photoconductive path
JPH0675105A (en) Lens array plate and its production
US20050042387A1 (en) Filament coating process and apparatus
JPS59131430A (en) Fabrication of self-condensing lens
JPS59223403A (en) Production of high polymer photoconductive
JPH0720670B2 (en) Method and apparatus for manufacturing plastic lens
JP3490732B2 (en) Manufacturing method of plastic aspherical microlens
JPH063506A (en) Production of lens and production of lens array plate
JPH0233296B2 (en)
RU2097194C1 (en) Method of manufacturing polymer elements
JPS645681B2 (en)
JPS617801A (en) Method and device for producing distributed index lens
JPH0429043B2 (en)
JPH0224124A (en) Optical shaping method
JPH06160608A (en) Aspherical microlens made of plastic and its production
JP3494672B2 (en) Method for manufacturing plastic aspheric cylindrical lens