JPS645470B2 - - Google Patents

Info

Publication number
JPS645470B2
JPS645470B2 JP24769383A JP24769383A JPS645470B2 JP S645470 B2 JPS645470 B2 JP S645470B2 JP 24769383 A JP24769383 A JP 24769383A JP 24769383 A JP24769383 A JP 24769383A JP S645470 B2 JPS645470 B2 JP S645470B2
Authority
JP
Japan
Prior art keywords
radio wave
liquid
wave absorber
solid
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24769383A
Other languages
Japanese (ja)
Other versions
JPS60142550A (en
Inventor
Takafumi Ookubo
Toshuki Saito
Yoshiaki Kaneko
Yasuyuki Tokumitsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP24769383A priority Critical patent/JPS60142550A/en
Priority to CA000468677A priority patent/CA1230184A/en
Priority to DE8484114439T priority patent/DE3482527D1/en
Priority to EP84114439A priority patent/EP0144071B1/en
Publication of JPS60142550A publication Critical patent/JPS60142550A/en
Priority to US07/088,520 priority patent/US4796155A/en
Publication of JPS645470B2 publication Critical patent/JPS645470B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/44Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements the complete device being wholly immersed in a fluid other than air
    • H01L23/445Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements the complete device being wholly immersed in a fluid other than air the fluid being a liquefied gas, e.g. in a cryogenic vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap
    • H01L2924/1616Cavity shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Aerials With Secondary Devices (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

【発明の詳細な説明】 (イ) 発明の技術分野 本発明はマイクロ波、ミリ波用の高周波トラン
ジスタ、ダイオード等の発熱性半導体素子を用い
て形成した固体増幅器、発振器等の固体回路部品
を具備して構成される高周波固体装置に関し、特
に、冷却媒体として液体を用いた液冷型高周波固
体装置に関するものである。
[Detailed Description of the Invention] (a) Technical Field of the Invention The present invention includes solid-state circuit components such as solid-state amplifiers and oscillators formed using heat-generating semiconductor elements such as microwave and millimeter-wave high-frequency transistors and diodes. The present invention relates to a high-frequency solid-state device configured as a liquid-cooled high-frequency solid-state device that uses a liquid as a cooling medium.

(ロ) 技術の背景 前述したように、この種の高周波固体装置に
は、高周波トランジスタ、ダイオード等の発熱性
半導体素子が用いられているため、これら発熱性
半導体素子の発生熱を奪熱・放熱して、これらの
半導体素子をその機能保証温度以下に冷却して保
つ必要がある。
(b) Background of the technology As mentioned above, this type of high-frequency solid-state device uses heat-generating semiconductor elements such as high-frequency transistors and diodes. Therefore, it is necessary to cool and maintain these semiconductor elements below their functional guarantee temperature.

従来の高周波固体装置の冷却法としては、後述
するように、自然空冷法、強制空冷法があるが、
装置の小形化、高密度化によつて、効率的な冷却
が困難となつている。ところで、冷媒として液体
を用いて発熱体をこの液体中に浸漬し、液体の気
化と凝縮作用によつて冷却するという方法があ
る。この液冷方法は、空冷に比べて冷却効率を著
しく増大できるということが知られており、各技
術分野でその応用が進められている。本発明はこ
の液冷方法を応用して液冷型高周波固体装置を構
成したものである。
Conventional cooling methods for high-frequency solid-state devices include natural air cooling and forced air cooling, as described below.
As devices become smaller and more dense, efficient cooling is becoming difficult. By the way, there is a method of using a liquid as a refrigerant, immersing a heating element in this liquid, and cooling it by vaporization and condensation of the liquid. It is known that this liquid cooling method can significantly increase cooling efficiency compared to air cooling, and its application is progressing in various technical fields. The present invention applies this liquid cooling method to construct a liquid-cooled high-frequency solid-state device.

しかしながら、この液冷方法を高周波固体装置
に応用した場合、冷媒(液体)の比誘電率が空気
と異なるため、また、冷媒の沸騰によつて気泡が
生じ、これによつて冷媒の比誘電率が等価的に変
化するために、高周波特性の変化(振幅変調等)
が生ずるという問題があり、さらに冷媒の温度上
昇に伴つて冷媒の密度が変化するために、高周波
特性の温度依存性が増大する等の問題がある。従
つて、液冷型高周波固体装置としては、良好な冷
却機能を有し、上述の問題点を解消し得るもので
あることが要望される。
However, when this liquid cooling method is applied to a high-frequency solid-state device, the dielectric constant of the refrigerant (liquid) is different from that of air, and bubbles are generated due to boiling of the refrigerant, which causes the dielectric constant of the refrigerant to changes in high frequency characteristics (amplitude modulation, etc.)
Furthermore, since the density of the refrigerant changes as the temperature of the refrigerant increases, there is another problem that the temperature dependence of high frequency characteristics increases. Therefore, it is desired that a liquid-cooled high-frequency solid-state device has a good cooling function and can solve the above-mentioned problems.

(ハ) 従来技術と問題点 第1図は、固体回路部品の一例として、マイク
ロ波増幅器を備えた従来の高周波固体装置10を
示す図である。同図において、符号11は装置本
体、12は複数個の放熱フイン12aを有し装置
本体11に密着固定された放熱ブロツクをそれぞ
れ示す。装置本体11には、発熱性半導体素子で
ある電界効果トランジスタ(FET)13が搭載
され、このFET13の両側に整合回路14,1
5がそれぞれ形成され、これらのFET13と整
合回路14,15とが互に電気的に接続されてマ
イクロ波集積回路が形成されている。符号16は
一方の入力コネクタあるいは出力コネクタであつ
て整合回路15に電気的に接続されている。この
従来例10は、FET13の発生熱が本体11の
底板を通つて放熱ブロツク12に熱伝導し、次い
で放熱フイン12aを介して自然空冷又は強制空
冷によつて放熱されるように構成されている。し
かしながら、この従来例10は、自然空冷の場合
で、その冷却能力(放熱能力)が0.2W/cm2程度
であり、強制空冷の場合でも1W/cm2程度である
ため、FET13を多数個用いて実装密度を上げ
ると充分な冷却をすることができず、止むを得ず
FET13の相互間隔を広げる必要がある。この
ため、この従来例10は、FET13相互の接続ラ
インが長くなり、高周波損失が増大して高周波出
力が減少するという問題がある。
(C) Prior Art and Problems FIG. 1 is a diagram showing a conventional high frequency solid-state device 10 equipped with a microwave amplifier as an example of solid-state circuit components. In the figure, reference numeral 11 indicates a main body of the apparatus, and reference numeral 12 indicates a heat radiation block having a plurality of heat radiation fins 12a and closely fixed to the main body 11 of the apparatus. The device main body 11 is equipped with a field effect transistor (FET) 13 which is a heat generating semiconductor element, and matching circuits 14 and 1 are provided on both sides of the FET 13.
These FETs 13 and matching circuits 14 and 15 are electrically connected to each other to form a microwave integrated circuit. Reference numeral 16 denotes one input connector or output connector, which is electrically connected to the matching circuit 15. This conventional example 10 is configured such that the heat generated by the FET 13 is conducted to the heat radiation block 12 through the bottom plate of the main body 11, and then radiated through the heat radiation fins 12a by natural air cooling or forced air cooling. . However, in this conventional example 10, the cooling capacity (heat dissipation capacity) is about 0.2 W/cm 2 in the case of natural air cooling, and about 1 W/cm 2 even in the case of forced air cooling, so a large number of FETs 13 are used. If the packaging density is increased, sufficient cooling will not be possible, and this is unavoidable.
It is necessary to widen the mutual spacing between FETs 13. For this reason, this prior art example 10 has a problem in that the connection line between the FETs 13 becomes long, the high frequency loss increases, and the high frequency output decreases.

(ニ) 発明の目的 本発明の目的は、上記従来技術の問題点に鑑
み、液冷法を応用して構成したものであつて、放
熱効率が良好であり、発熱性半導体素子が高密度
に実装された場合でも充分に冷却することがで
き、高周波損失や高周波特性の変化(振幅変調
等)を低減化することができる液冷型高周波固体
装置を提供することにある。
(d) Purpose of the Invention In view of the above-mentioned problems of the prior art, the purpose of the present invention is to provide a device constructed by applying a liquid cooling method, which has good heat dissipation efficiency, and which has high density heat-generating semiconductor elements. An object of the present invention is to provide a liquid-cooled high-frequency solid-state device that can be sufficiently cooled even when mounted, and can reduce high-frequency loss and changes in high-frequency characteristics (amplitude modulation, etc.).

(ホ) 発明の構成 そして、上記目的を達成するために、本発明に
依れば、低沸点の冷却液を封入した密閉容器の少
くとも上方壁に冷却液蒸気の吸放熱手段を形成
し、上側に開口を有する凹形筐体の底壁上に高周
波トランジスタ、ダイオード等の発熱性半導体素
子と整合回路とを具備して形成された固体増幅
器、発振器等の固体回路部品を前記密閉容器の冷
却液中に浸漬して構成した液冷型高周波固体装置
において、前記上方壁と、発熱性半導体素子及び
整合回路との間に電波吸収体を配置したことを特
徴とする液冷型高周波固体装置が提供される。
(e) Structure of the invention In order to achieve the above object, according to the present invention, a heat absorbing and discharging means for cooling liquid vapor is formed at least on the upper wall of a closed container containing a low boiling point cooling liquid, Solid-state circuit components such as solid-state amplifiers and oscillators, which are formed on the bottom wall of a concave casing having an opening on the upper side and are equipped with heat-generating semiconductor elements such as high-frequency transistors and diodes and matching circuits, are cooled in the sealed container. A liquid-cooled high-frequency solid-state device configured by being immersed in a liquid, characterized in that a radio wave absorber is disposed between the upper wall, the heat-generating semiconductor element, and the matching circuit. provided.

(ヘ) 発明の実施例 以下、本発明の実施例を図面に基づいて詳細に
説明する。
(f) Embodiments of the invention Examples of the invention will be described in detail below with reference to the drawings.

第2図から第13図は本発明に依る液冷型高周
波固体装置の実施例を説明するための図である。
尚、これらの図において、同一部分又は相当する
部分は同一符号をもつて示されている。
FIGS. 2 to 13 are diagrams for explaining embodiments of the liquid-cooled high-frequency solid-state device according to the present invention.
In these figures, the same or corresponding parts are indicated by the same reference numerals.

第2図は第1実施例20−1の側面断面図、第
3図は第2図のA−A′線断面図である。これら
の図において、密閉容器21は、上側に開口を有
する箱形状の容器本体22と、この本体22上に
密着固定された天蓋兼用の放熱ブロツク(上方
壁)23とから構成される。これら容器本体22
及び放熱ブロツク23は共に熱伝導率の良好な
銅、アルミニウム等の材料から形成されている。
放熱ブロツク23はその上面上に複数個の放熱フ
イン23aが一体状に設けられ、その下面23b
が吸熱部として形成されている。尚、放熱ブロツ
ク23の下面23b上に、必要に応じて、さらに
吸熱フインを一体状に設けて吸熱効果を高めるこ
とも容易に可能である(例えば、第8,9図の符
号23c参照)。冷媒としての冷却液24は、化
学的に不活性で電気絶縁性が優れている等の性質
を有するフレオン、ふつ化炭素等の低沸点液体が
用いられ、液面24a上に適宜な空隙を残して密
閉容器21内に封入されている。尚、この空隙部
は、通常は冷却液24の蒸気で満たされている。
固体回路部品25は、この場合は一例としてマイ
クロ波固体増幅器として形成されたもので、上側
に開口を有する箱形状の金属製凹形筐体26と、
該凹形筐体の底壁26a上に密着固定された誘電
体回路基板27と、該基板27上に実装された電
界効果トランジスタ(FET;発熱性半導体素子)
28及び該FET28の前後に隣接して設けられ
た入・出力整合回路29,30(共に具体的図示
なし)とを具備して構成されている。そして、固
体回路部品25は接続同軸ケーブル31と32を
介して、放熱ブロツク23上に装着された入力コ
ネクタ33と出力コネクタ34にそれぞれ接続さ
れると共に、冷却液24中に浸漬され適宜な支持
手段(図示なし)によつて保持されている。
FET28及び入・出力整合回路29,30の上
方部、すなわち固体回路部品25の上方部に、複
数個の電波吸収体35が支持具36を介して配置
固定されている。電波吸収体35はフエライト等
の材料から円錐体状に形成され、その尖端35a
がFET28及び入・出力整合回路29,30を
指向して配置され、その基端部35bが支持具3
6の下面上に固着されている。支持具36は、長
尺状に形成され、その前・後端部36a,36b
が容器本体22の前・後端壁22a,22bの内
側面上にそれぞれ止めねじ37によつて締結され
ることにより、密閉容器21の内部に固定され
る。このように支持具36を用いることにより、
電波吸収体35の配設位置を自由に加減できると
いう利点がある。尚、電波吸収体35は、この場
合前述の如く円錐体状に形成されているが、この
他の角錐体状、くさび体状等の尖鋭体に形成して
もよい。
FIG. 2 is a side sectional view of the first embodiment 20-1, and FIG. 3 is a sectional view taken along line A-A' in FIG. In these figures, the closed container 21 is composed of a box-shaped container main body 22 having an opening on the upper side, and a heat dissipation block (upper wall) 23 which also serves as a canopy and is tightly fixed onto the main body 22. These container bodies 22
Both the heat radiation block 23 and the heat radiation block 23 are made of a material having good thermal conductivity such as copper or aluminum.
The heat dissipation block 23 has a plurality of heat dissipation fins 23a integrally provided on its upper surface, and its lower surface 23b.
is formed as a heat absorbing part. Incidentally, if necessary, heat absorption fins can be further integrally provided on the lower surface 23b of the heat radiation block 23 to enhance the heat absorption effect (for example, see reference numeral 23c in FIGS. 8 and 9). The coolant 24 as a refrigerant is a low-boiling point liquid such as freon or carbon fluoride, which has properties such as chemical inertness and excellent electrical insulation, and leaves appropriate voids on the liquid surface 24a. It is enclosed in a closed container 21. Note that this cavity is normally filled with vapor of the cooling liquid 24.
The solid-state circuit component 25, in this case, is formed as a microwave solid-state amplifier as an example, and includes a box-shaped metal concave housing 26 having an opening on the upper side;
A dielectric circuit board 27 tightly fixed on the bottom wall 26a of the concave casing, and a field effect transistor (FET; exothermic semiconductor element) mounted on the board 27.
28 and input/output matching circuits 29 and 30 (both not specifically shown) provided adjacently before and after the FET 28. The solid circuit component 25 is connected to an input connector 33 and an output connector 34 mounted on the heat dissipation block 23 via connecting coaxial cables 31 and 32, respectively, and is immersed in the cooling liquid 24 and provided with suitable support means. (not shown).
A plurality of radio wave absorbers 35 are arranged and fixed via supports 36 above the FET 28 and the input/output matching circuits 29 and 30, that is, above the solid-state circuit component 25. The radio wave absorber 35 is formed from a material such as ferrite into a conical shape, and its tip 35a
is arranged to face the FET 28 and the input/output matching circuits 29, 30, and its base end 35b is connected to the support 3.
6 is fixed on the lower surface. The support 36 is formed into an elongated shape, and has front and rear ends 36a and 36b.
are fixed inside the closed container 21 by being fastened to the inner surfaces of the front and rear end walls 22a, 22b of the container body 22 with setscrews 37, respectively. By using the support 36 in this way,
There is an advantage that the arrangement position of the radio wave absorber 35 can be adjusted freely. In this case, the radio wave absorber 35 is formed in the shape of a cone as described above, but it may be formed in other sharp shapes such as a pyramid shape or a wedge shape.

このように電波吸収体35を配設することによ
り、入・出力整合回路29,30より漏洩した電
磁波を電波吸収体35によつて効率よく吸収する
ことができる。尚、電波吸収体35は、尖鋭体に
形成されることによつて、その尖端35aより電
波吸収作用を良好に行なうことができる。これに
対し、このような電波吸収体35が配設されない
場合は、漏洩電磁波は冷却液24中を上昇して液
面24aで反射される。また、冷却液24中に発
生した沸騰気泡38によつても漏洩電磁波は反射
される。ところが、この気泡38による液面24
aの変動や、気泡38の上昇移動等による冷却液
24の影響をうけて漏洩電磁波の反射波が時間的
に変動し、この結果、整合回路29,30の整合
条件が変えられて振幅変調が生ずることになる。
従つて、上述の如く電波吸収体35を設けて、漏
洩電磁波を吸収することにより、冷却液24の影
響を抑制することができ、このため振幅変調を最
少限に抑制することができる。尚、電波吸収体3
5をFET28及び整合回路29,30に接近さ
せるほど冷却後24の影響が小さくなることは当
然であるが、接近させすぎると高周波損失が大き
くなるので、これら両者間の距離は冷却液24の
影響が許容される範囲内で最大に設定することが
好ましい。
By arranging the radio wave absorber 35 in this manner, the electromagnetic waves leaked from the input/output matching circuits 29 and 30 can be efficiently absorbed by the radio wave absorber 35. By forming the radio wave absorber 35 into a sharp object, the radio wave absorber 35 can perform a radio wave absorbing effect better than the tip 35a. On the other hand, if such a radio wave absorber 35 is not provided, the leaked electromagnetic waves rise in the coolant 24 and are reflected at the liquid surface 24a. Further, the leaked electromagnetic waves are also reflected by the boiling bubbles 38 generated in the coolant 24. However, the liquid level 24 due to the bubbles 38
The reflected waves of the leaked electromagnetic waves fluctuate over time due to the influence of the coolant 24 due to fluctuations in a and the upward movement of the bubbles 38, and as a result, the matching conditions of the matching circuits 29 and 30 are changed, causing amplitude modulation. will occur.
Therefore, by providing the radio wave absorber 35 as described above to absorb leaked electromagnetic waves, the influence of the coolant 24 can be suppressed, and therefore amplitude modulation can be suppressed to a minimum. Furthermore, the radio wave absorber 3
It goes without saying that the closer 5 is to the FET 28 and the matching circuits 29 and 30, the less the influence of the coolant 24 will be. However, if it is brought too close, the high frequency loss will increase, so the distance between these two is determined by the influence of the coolant 24. It is preferable to set it to the maximum within an allowable range.

また、本実施例20−1の冷却作用(放熱作
用)は次のようにして行なわれる。FET28の
発生熱は、その一部が凹形筐体26に熱伝導する
ので、FET28の表面と凹形筐体26表面とか
ら冷却液24によつて吸熱される。冷却液24は
この吸熱によつてその一部が沸騰して気化され、
沸騰気泡38となつて冷却液24中を上昇する。
すなわち、このような冷却液24の気化熱によつ
てFET28の発生熱が奪熱され、FET28が効
率良く冷却される。さて、上昇した気泡38は液
面24aに達し、さらに液面24aから蒸気とな
つて放熱ブロツク23の下面23bに達し、この
下面23bによつて奪熱され、再び液化(凝縮)
されて冷却液24上に滴下する。一方、下面23
bに吸熱された熱は放熱フイン23aによつて外
部に効率良く放散される。このような吸熱及び放
熱作用により、冷却液24の気化及び液化(凝
縮)作用が連続的にくり返えされる。これによ
り、FET28は連続的に冷却され、その機能保
証温度以下に安定して保たれる。
Further, the cooling action (heat dissipation action) of Example 20-1 is performed as follows. A portion of the heat generated by the FET 28 is conducted to the concave casing 26, so that the heat is absorbed by the coolant 24 from the surface of the FET 28 and the surface of the concave casing 26. Due to this heat absorption, a part of the coolant 24 is boiled and vaporized,
The boiling bubbles 38 rise in the coolant 24 .
That is, the heat generated by the FET 28 is absorbed by the heat of vaporization of the coolant 24, and the FET 28 is efficiently cooled. Now, the bubbles 38 that have risen reach the liquid level 24a, and further turn into steam from the liquid level 24a, reach the lower surface 23b of the heat radiation block 23, are absorbed heat by this lower surface 23b, and are liquefied (condensed) again.
and drips onto the cooling liquid 24. On the other hand, the lower surface 23
The heat absorbed by b is efficiently dissipated to the outside by the heat dissipation fins 23a. Due to such heat absorption and heat dissipation actions, the vaporization and liquefaction (condensation) actions of the coolant 24 are continuously repeated. As a result, the FET 28 is continuously cooled and kept stably below its function guarantee temperature.

第4図は第2実施例20−2の側面断面図、第
5図は第4図のB−B′線断面図である。本実施
例20−2は、電波吸収体35の取付形態が前出
の第1実施例20−1と異なるのみで、他の構成
は第1実施例20−1と同様である。電波吸収体
35は、この場合くさび体状に形成され、一対の
支持具39の下面にそれぞれ固着されている。支
持具39は凹形筐体26の側壁の内側面上に止め
ねじ37によつて固定されている。このように電
波吸収体35の取付構造を形成することにより、
気泡38の発生が最も多いFET28に対して電
波吸収体35の配設位置を正確に決めることがで
き、効果的に振幅変調を低減できるという利点が
ある。そして、本実施例の他の作用、効果は前出
の第1実施例20−1と略同様である。尚、電波
吸収体35は第1実施例20−1の場合と同様に
他の形状のものに形成してもよい。
FIG. 4 is a side sectional view of the second embodiment 20-2, and FIG. 5 is a sectional view taken along the line B-B' in FIG. The present embodiment 20-2 differs from the above-described first embodiment 20-1 only in the mounting form of the radio wave absorber 35, and the other configurations are the same as the first embodiment 20-1. In this case, the radio wave absorber 35 is formed into a wedge shape, and is fixed to the lower surface of the pair of supports 39, respectively. The support 39 is fixed onto the inner surface of the side wall of the concave housing 26 by a set screw 37. By forming the mounting structure of the radio wave absorber 35 in this way,
There is an advantage that the placement position of the radio wave absorber 35 can be accurately determined for the FET 28 where the most bubbles 38 are generated, and amplitude modulation can be effectively reduced. Other functions and effects of this embodiment are substantially the same as those of the first embodiment 20-1 described above. Note that the radio wave absorber 35 may be formed in other shapes as in the case of the first embodiment 20-1.

第6図は第3実施例20−3の側面断面図、第
7図は第6図のC−C′線断面である。本実施例2
0−3は、電波吸収体35の取付形態と大きさが
前出の第1実施例20−1と異なるのみで、他の
構成は第1実施例20−1と同様である。この場
合、電波吸収体35は円錐体状にかつ長尺状に形
成され、放熱ブロツク23の下面23b上に固着
されている。このように電波吸収体35の取付構
造を形成することにより、吸収体支持機構が簡易
化され、製造コストを若干低減化できるという利
点がある。そして本実施例20−3の他の作用、
効果は前出の第1実施例20−1と略同様であ
る。尚、電波吸収体35は第1実施例20−1の
場合と同様に他の形状のものに形成してもよい。
FIG. 6 is a side sectional view of the third embodiment 20-3, and FIG. 7 is a sectional view taken along the line CC' in FIG. Example 2
0-3 differs from the aforementioned first embodiment 20-1 only in the mounting form and size of the radio wave absorber 35, and the other configurations are the same as the first embodiment 20-1. In this case, the radio wave absorber 35 is formed into a conical and elongated shape, and is fixed on the lower surface 23b of the heat dissipation block 23. By forming the mounting structure for the radio wave absorber 35 in this manner, there is an advantage that the absorber supporting mechanism can be simplified and manufacturing costs can be slightly reduced. And other effects of Example 20-3,
The effect is substantially the same as that of the first embodiment 20-1 described above. Note that the radio wave absorber 35 may be formed in other shapes as in the case of the first embodiment 20-1.

第8図は第4実施例20−4の側面断面図、第
9図は第8図のD−D′線断面図である。本実施
例20−4は、電波吸収体35の取付形態と放熱
ブロツク23の構造とが前出の第1実施例20−
1と異なるのみで、他の構成は第1実施例20−
1と同様である。放熱ブロツク23は、その下面
23b上に吸熱フイン23cが一体化されて形成
されている。そして、吸熱フイン23cの下端面
上に円錐体状の電波吸収体35が固着されてい
る。本実施例20−4は、放熱ブロツク23をこ
のように形成し、電波吸収体35を上述の如く取
付けることにより、吸放熱効率を高めることがで
きるという利点がある。そして、本実施例20−
4の他の作用、効果は前出の第1実施例20−1
と略同様である。尚、電波吸収体35は第1実施
例20−1の場合と同様に他の形状のものに形成
してもよい。
FIG. 8 is a side sectional view of the fourth embodiment 20-4, and FIG. 9 is a sectional view taken along line D-D' in FIG. In this embodiment 20-4, the mounting form of the radio wave absorber 35 and the structure of the heat dissipation block 23 are different from those in the first embodiment 20-4.
1, other configurations are the same as in the first embodiment 20-
It is the same as 1. The heat radiation block 23 has heat absorption fins 23c integrally formed on its lower surface 23b. A conical radio wave absorber 35 is fixed on the lower end surface of the heat absorbing fin 23c. Embodiment 20-4 has the advantage that heat absorption and radiation efficiency can be improved by forming the heat radiation block 23 in this manner and attaching the radio wave absorber 35 as described above. And this Example 20-
Other functions and effects of 4 are as in the above-mentioned first embodiment 20-1.
It is almost the same as. Note that the radio wave absorber 35 may be formed in other shapes as in the case of the first embodiment 20-1.

第10図は第5実施例20−5の側面断面図、
第11図は第10図のE−E′線断面図である。本
実施例20−5は、電波吸収体35の形状と、放
熱ブロツク23の構造とが前出の第1実施例20
−1と異なるのみで、他の構成は第1実施例20
−1と同様である。放熱ブロツク23は、前出の
第4実施例20−4(第8,9図)の場合と同様
に、その下面23b上に吸熱フイン23cが一体
化されて形成されている。電波吸収体35は、こ
の場合、円柱状(又は角柱状)に形成され、吸熱
フイン23cの下端面上に固着されている。本実
施例20−5は、電波吸収体35をこのような簡
単な形状に設定することにより、電波吸収体35
の加工が容易化され、製造コストを若干低減化で
きるという利点があるが、その反面電波吸収効果
が若干低減化される。そして、本実施例20−5
の他の作用、効果は前出の第1実施例20−1と
略同様である。
FIG. 10 is a side sectional view of the fifth embodiment 20-5;
FIG. 11 is a sectional view taken along the line E-E' in FIG. 10. In this embodiment 20-5, the shape of the radio wave absorber 35 and the structure of the heat dissipation block 23 are different from those in the first embodiment 20-5.
-1, the other configuration is the first embodiment 20.
-1 is the same. The heat radiation block 23 has heat absorption fins 23c integrally formed on its lower surface 23b, as in the case of the fourth embodiment 20-4 (FIGS. 8 and 9). In this case, the radio wave absorber 35 is formed in a cylindrical (or prismatic) shape and is fixed on the lower end surface of the heat absorption fin 23c. In this embodiment 20-5, by setting the radio wave absorber 35 in such a simple shape, the radio wave absorber 35
This has the advantage that the processing becomes easier and the manufacturing cost can be slightly reduced, but on the other hand, the radio wave absorption effect is slightly reduced. And this example 20-5
Other functions and effects are substantially the same as those of the first embodiment 20-1 described above.

第12図は第6実施例20−6の側面断面図、
第13図は第12図のF−F′線断面図である。本
実施例20−6は、電波吸収体35の形状及び取
付形態と、放熱ブロツク23の構造とが前出の第
1実施例20−1と異なるのみで、他の構成は第
1実施例20−1と同様である。放熱ブロツク2
3は前出の第5実施例20−5の場合とほぼ同様
に形成されたもので、その下面23b上に吸熱フ
イン23cが一体化されて形成されている。電波
吸収体35は、この場合は、板状に形成され、放
熱ブロツク23の下面23b及び吸熱フイン23
c双方の全面を覆う形態で密着配置されている。
本実施例20−6は、電波吸収体35をこのよう
な形態で密着配置することにより、電波吸収体3
5を放熱ブロツク23に強固に取付けられるとい
う利点があるが、その反面、電波吸収体35の熱
伝導率が放熱ブロツク23の熱伝導率よりも一般
に低いため、吸放熱効果が若干低減化される。そ
して、本実施例20−6の他の作用、効果は前出
の第1実施例20−1と略同様である。
FIG. 12 is a side sectional view of the sixth embodiment 20-6;
FIG. 13 is a sectional view taken along the line FF' in FIG. 12. This embodiment 20-6 differs from the first embodiment 20-1 only in the shape and mounting form of the radio wave absorber 35 and the structure of the heat dissipation block 23, and the other configurations are the same as those in the first embodiment 20-1. -1 is the same. Heat dissipation block 2
Reference numeral 3 is formed substantially in the same manner as in the case of the fifth embodiment 20-5 described above, and heat absorbing fins 23c are integrally formed on the lower surface 23b. In this case, the radio wave absorber 35 is formed into a plate shape, and includes the lower surface 23b of the heat radiation block 23 and the heat absorption fin 23.
c They are placed in close contact with each other so as to cover the entire surface of both sides.
In this embodiment 20-6, the radio wave absorbers 35 are arranged in close contact with each other in this manner, so that the radio wave absorbers 3
5 can be firmly attached to the heat radiation block 23, but on the other hand, since the thermal conductivity of the radio wave absorber 35 is generally lower than that of the heat radiation block 23, the heat absorption and radiation effect is slightly reduced. . Other functions and effects of this embodiment 20-6 are substantially the same as those of the first embodiment 20-1 described above.

尚、上記各実施例では、電波吸収体35の全体
又は一部、あるいは吸熱フイン23cの一部が冷
却液24中に浸漬された場合に示したが、本発明
はこれに限定されるものではない。要するに、電
波吸収体35は、究極的にはFET28、整合回
路29,30との離間距離が最適距離に配置され
ることが先づ第1に重要である。但し、吸熱フイ
ン23cはその一部が冷却液24中に浸漬された
方が、吸放熱作用の観点からみて好ましい。
In each of the above embodiments, the whole or part of the radio wave absorber 35 or a part of the heat absorbing fin 23c is immersed in the cooling liquid 24, but the present invention is not limited to this. do not have. In short, it is ultimately important that the radio wave absorber 35 is placed at an optimum distance from the FET 28 and the matching circuits 29, 30. However, it is preferable that a portion of the heat absorbing fins 23c be immersed in the cooling liquid 24 from the viewpoint of heat absorption and radiation.

また、本発明は上記実施例に限定されるもので
はなく、本発明の主旨を逸脱しない範囲における
種々の変形例にも勿論適用するとが可能である。
Further, the present invention is not limited to the above embodiments, and can of course be applied to various modifications without departing from the spirit of the present invention.

(ト) 発明の効果 以上、詳細に説明したように、本発明の液冷型
高周波固体装置は、密閉容器の吸放熱手段を有す
る上方壁と、発熱性半導体素子及び整合回路との
間に電波吸収体を介在配置することにより、放熱
効率が良好で発熱性半導体素子を高密度に実装し
た場合でも充分に冷却してその機能保証温度以下
に安定して保つことができ、しかも振幅変調及び
高周波損失を低減化できるといつた効果大なるも
のがあり、性能の向上、信頼性の向上に寄与する
ものである。
(G) Effects of the Invention As explained above in detail, the liquid-cooled high-frequency solid-state device of the present invention transmits radio waves between the upper wall of the closed container having heat absorption and dissipation means, the heat-generating semiconductor element, and the matching circuit. By interposing the absorber, heat dissipation efficiency is good, and even when heat-generating semiconductor elements are mounted in high density, they can be sufficiently cooled and kept stably below their functional guarantee temperature. It has the great effect of reducing loss, and contributes to improved performance and reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の高周波固体装置を示す図、第2
図は本発明に依る液冷型高周波固体装置の第1実
施例20−1の側面断面図、第3図は第2図のA
−A′線断面図、第4図は本発明の第2実施例2
0−2の側面断面図、第5図は第4図のB−
B′線断面図、第6図は本発明の第3実施例20
−3の側面断面図、第7図は第6図のC−C′線断
面図、第8図は本発明の第4実施例20−4の側
面断面図、第9図は第8図のD−D′線断面図、
第10図は本発明の第5実施例20−5の側面断
面図、第11図は第10図のE−E′線断面図、第
12図は本発明の第6実施例20−6の側面断面
図、第13図は第12図のF−F′線断面図であ
る。 20−1,20−2,20−3,20−4,2
0−5,20−6……それぞれ本発明の第1,
2,3,4,5,6実施例、21……密閉容器、
22……容器本体、23……天蓋兼用放熱ブロツ
ク(上方壁)、23a……放熱フイン(放熱手
段)、23b……下面(吸熱手段)、23c……吸
熱フイン(吸熱手段)、24……冷却液、24a
……液面、25……固体回路部品、26……凹形
筐体、26a……底壁、27……誘電体回路基
板、28……電界効果トランジスタ(FET:発
熱性半導体素子)、29……入力整合回路、30
……出力整合回路、35……電波吸収体、35a
……尖端、35b……基端部、36,39……支
持具、38……沸騰気泡。
Figure 1 shows a conventional high-frequency solid-state device, Figure 2
The figure is a side cross-sectional view of the first embodiment 20-1 of the liquid-cooled high-frequency solid-state device according to the present invention, and FIG. 3 is A of FIG.
-A' line sectional view, FIG. 4 is the second embodiment of the present invention.
0-2 side sectional view, Figure 5 is B- in Figure 4.
A sectional view taken along the line B', FIG. 6 is a 20th embodiment of the third embodiment of the present invention.
7 is a sectional view taken along line C-C' in FIG. 6, FIG. 8 is a side sectional view of the fourth embodiment 20-4 of the present invention, and FIG. D-D′ line sectional view,
10 is a side sectional view of the fifth embodiment 20-5 of the present invention, FIG. 11 is a sectional view taken along the line E-E' in FIG. 10, and FIG. 12 is a sectional view of the sixth embodiment 20-6 of the present invention. The side sectional view, FIG. 13, is a sectional view taken along the line F-F' in FIG. 12. 20-1, 20-2, 20-3, 20-4, 2
0-5, 20-6...the first of the present invention, respectively
2, 3, 4, 5, 6 Examples, 21... Sealed container,
22... Container main body, 23... Heat radiation block serving as canopy (upper wall), 23a... Heat radiation fin (heat radiation means), 23b... Lower surface (heat absorption means), 23c... Heat absorption fin (heat absorption means), 24... Coolant, 24a
... Liquid surface, 25 ... Solid circuit component, 26 ... Concave casing, 26a ... Bottom wall, 27 ... Dielectric circuit board, 28 ... Field effect transistor (FET: exothermic semiconductor element), 29 ...Input matching circuit, 30
... Output matching circuit, 35 ... Radio wave absorber, 35a
... Point, 35b... Base end, 36, 39... Support, 38... Boiling bubble.

Claims (1)

【特許請求の範囲】 1 低沸点の冷却液を封入した密閉容器の少くと
も上方壁に冷却液蒸気の吸放熱手段を形成し、上
側に開口を有する凹形筐体の底壁上に高周波トラ
ンジスタ、ダイオード等の発熱性半導体素子と整
合回路とを具備して形成された固体増幅器、発振
器等の固体回路部品を前記密閉容器の冷却液中に
浸漬して構成した液冷型高周波固体装置におい
て、前記上方壁と、発熱性半導体素子及び整合回
路との間に電波吸収体を配置したことを特徴とす
る液冷型高周波固体装置。 2 前記電波吸収体が、前記密閉容器に固定され
た支持具を介して、前記発熱性半導体素子及び整
合回路上方部に配置固定された特許請求の範囲第
1項に記範の液冷型高周波固体装置。 3 前記電波吸収体が、前記凹形筐体に固定され
た支持具を介して、前記発熱性半導体素子及び整
合回路上方部に配置固定された特許請求の範囲第
1項に記範の液冷型高周波固体装置。 4 前記電波吸収体が、前記密閉容器の上方壁下
面に固定された特許請求の範囲第1項に記載の液
冷型高周波固体装置。 5 前記電波吸収体が、前記密閉容器の上方壁下
面上に形成された吸熱フインの下端面上に固定さ
れた特許請求の範囲第1項に記載の液冷型高周波
固体装置。 6 前記電波吸収体が、板状に形成され、前記密
閉容器の上方壁下面及び該下面上に形成された吸
熱フイン双方の全面を覆う形態で密着配置された
特許請求の範囲第1項に記載の液冷型高周波固体
装置。 7 前記電波吸収体が、円錐体状、角錐体状、く
さび体状等の尖鋭体に形成され、かつその尖端が
前記発熱性半導体素子及び整合回路を指向して配
置された特許請求の範囲第1項から第5項のいず
れかに記載の液冷型高周波固体装置。
[Scope of Claims] 1. A heat absorption/dissipation means for cooling liquid vapor is formed on at least the upper wall of a closed container filled with a low boiling point cooling liquid, and a high frequency transistor is formed on the bottom wall of a concave casing having an opening on the upper side. , a liquid-cooled high-frequency solid-state device constructed by immersing solid-state circuit components such as a solid-state amplifier and an oscillator in a cooling liquid in the airtight container, which is formed by including a heat-generating semiconductor element such as a diode and a matching circuit, A liquid-cooled high-frequency solid-state device, characterized in that a radio wave absorber is disposed between the upper wall, the heat-generating semiconductor element, and the matching circuit. 2. The liquid-cooled high frequency radio wave absorber as set forth in claim 1, wherein the radio wave absorber is arranged and fixed above the heat generating semiconductor element and the matching circuit via a support fixed to the airtight container. solid state equipment. 3. The liquid cooling device as set forth in claim 1, wherein the radio wave absorber is arranged and fixed above the heat generating semiconductor element and the matching circuit via a support fixed to the concave casing. type high frequency solid state device. 4. The liquid-cooled high-frequency solid-state device according to claim 1, wherein the radio wave absorber is fixed to a lower surface of an upper wall of the closed container. 5. The liquid-cooled high-frequency solid-state device according to claim 1, wherein the radio wave absorber is fixed on the lower end surface of a heat absorption fin formed on the lower surface of the upper wall of the closed container. 6. Claim 1, wherein the radio wave absorber is formed into a plate shape and is disposed in close contact with the entire surface of both the lower surface of the upper wall of the closed container and the heat absorption fins formed on the lower surface. liquid-cooled high-frequency solid-state device. 7. Claim No. 7, wherein the radio wave absorber is formed into a sharp object such as a cone shape, a pyramid shape, a wedge shape, etc., and the pointed end thereof is arranged to face the heat generating semiconductor element and the matching circuit. The liquid-cooled high-frequency solid-state device according to any one of items 1 to 5.
JP24769383A 1983-11-29 1983-12-29 Liquid-cooling type high frequency solid-state device Granted JPS60142550A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP24769383A JPS60142550A (en) 1983-12-29 1983-12-29 Liquid-cooling type high frequency solid-state device
CA000468677A CA1230184A (en) 1983-11-29 1984-11-27 Liquid cooling type high frequency solid state device
DE8484114439T DE3482527D1 (en) 1983-11-29 1984-11-29 DEVICE OF THE LIQUID COOLING TYPE OF A HIGH-FREQUENCY FIXED SOLID ARRANGEMENT.
EP84114439A EP0144071B1 (en) 1983-11-29 1984-11-29 Liquid cooling type high frequency solid state device arrangement
US07/088,520 US4796155A (en) 1983-11-29 1987-08-20 Liquid cooling type high frequency solid state device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24769383A JPS60142550A (en) 1983-12-29 1983-12-29 Liquid-cooling type high frequency solid-state device

Publications (2)

Publication Number Publication Date
JPS60142550A JPS60142550A (en) 1985-07-27
JPS645470B2 true JPS645470B2 (en) 1989-01-30

Family

ID=17167236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24769383A Granted JPS60142550A (en) 1983-11-29 1983-12-29 Liquid-cooling type high frequency solid-state device

Country Status (1)

Country Link
JP (1) JPS60142550A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0333590Y2 (en) * 1985-09-02 1991-07-16

Also Published As

Publication number Publication date
JPS60142550A (en) 1985-07-27

Similar Documents

Publication Publication Date Title
US5508884A (en) System for dissipating heat energy generated by an electronic component and sealed enclosure used in a system of this kind
US5331510A (en) Electronic equipment and computer with heat pipe
US4796155A (en) Liquid cooling type high frequency solid state device
US6064572A (en) Thermosyphon-powered jet-impingement cooling device
US5864466A (en) Thermosyphon-powered jet-impingement cooling device
US6059020A (en) Apparatus for acoustic cooling automotive electronics
US6178088B1 (en) Electronic apparatus
CN111836513A (en) Heat sink assembly, method of manufacturing heat sink assembly, and electrical device
WO2013005622A1 (en) Cooling device and method for manufacturing same
KR20140147132A (en) Structure for connecting cooling apparatus, cooling apparatus, and method for connecting cooling apparatus
JPS645470B2 (en)
CN210671094U (en) Electronic device
GB2342152A (en) Plate type heat pipe and its installation structure
JPH11101585A (en) Plate-type heat pump and its packaging structure
JPS60133743A (en) Liquid-cooled type high frequency solid-state device
JPS6285449A (en) Cooling structure for semiconductor device
JPS60138946A (en) Liquid cooled high frequency solid-state device
JPS61131553A (en) Immersion liquid cooling apparatus
JPS60116155A (en) Liquid-cooled high frequency solid state device
JPS64815B2 (en)
JPS644343B2 (en)
WO2018179162A1 (en) Cooling apparatus
JPS6332270B2 (en)
JPH0140520B2 (en)
JPS61110883A (en) Heat pipe