JPS644760B2 - - Google Patents

Info

Publication number
JPS644760B2
JPS644760B2 JP55186819A JP18681980A JPS644760B2 JP S644760 B2 JPS644760 B2 JP S644760B2 JP 55186819 A JP55186819 A JP 55186819A JP 18681980 A JP18681980 A JP 18681980A JP S644760 B2 JPS644760 B2 JP S644760B2
Authority
JP
Japan
Prior art keywords
spp
group
formula
ester
bacterial cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55186819A
Other languages
Japanese (ja)
Other versions
JPS57115184A (en
Inventor
Hamao Umezawa
Masaji Oono
Junzo Hasegawa
Shigeki Hamaguchi
Masahiro Ogura
Hajime Kawarada
Kyoshi Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP55186819A priority Critical patent/JPS57115184A/en
Priority to US06/328,696 priority patent/US4415657A/en
Priority to GB8137930A priority patent/GB2090592B/en
Priority to DE19813150810 priority patent/DE3150810A1/en
Priority to BE0/206941A priority patent/BE891632A/en
Priority to FR8124534A priority patent/FR2497230A1/en
Publication of JPS57115184A publication Critical patent/JPS57115184A/en
Publication of JPS644760B2 publication Critical patent/JPS644760B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、光学活性な(S)−β−アミノグル
タル酸モノアルキルエステルの製造法に関するも
のである。 光学活性な(S)−β−アミノグルタル酸モノ
アルキルエステルはチエナマイシン等の光学活性
を必要とするカルバペネムの合成原料として有用
な物質であり、この物質の容易かつ安価な製造法
の開発が待望されていた。大野等は有機合成によ
つて容易に得られる光学不活性なβ−ベンジルオ
キシカルボニルアミノグルタル酸ジメチルエステ
ル()をブタ肝臓由来のエステラーゼを用い、
一方のメチルエステル基を立体特異的に加水分解
して、光学活性な(S)−β−ベンジルオキシカ
ルボニルアミノグルタル酸モノメチルエステル
()を作り、更に接触還元によつてアミノ保護
基としてのベンジルオキシカルボニル基を脱離さ
せ、光学活性な(S)−β−アミノグルタル酸モ
ノメチルエステル()を作る方法を開発した。 (但し、Zは
The present invention relates to a method for producing optically active (S)-β-aminoglutaric acid monoalkyl ester. Optically active (S)-β-aminoglutarate monoalkyl ester is a substance useful as a raw material for the synthesis of carbapenems such as thienamycin that require optical activity, and the development of an easy and inexpensive method for producing this substance is eagerly awaited. was. Ohno et al. used esterase derived from pig liver to optically inactive β-benzyloxycarbonylaminoglutarate dimethyl ester (), which is easily obtained by organic synthesis.
One methyl ester group is stereospecifically hydrolyzed to produce optically active (S)-β-benzyloxycarbonylaminoglutarate monomethyl ester (), and further catalytic reduction is performed to convert benzyloxy as an amino-protecting group. We have developed a method for producing optically active (S)-β-aminoglutarate monomethyl ester () by removing the carbonyl group. (However, Z is

【式】MeはCH3であ る。) そして、大野等は動物酵素のみならず、工業的
規模で行なう場合、有利と思われる微生物由来の
酵素の使用も示唆している。そこで本発明者等は
大量生産可能な微生物を用い方法について研究を
行なつた結果、β−保護アミノグルタル酸ジアル
キルエステルの一方のエステル基のみを立体特異
的に加水分解し、(S)−β−保護アミノグルタル
酸モノアルキルエステルに変換しうる能力を有す
る微生物が多く存在することを見い出し本発明を
完成した。 即ち本発明は、次式 (式中、Rは炭素数1〜4のアルキル基、Aは接
触還元、または温和な加水分解で脱離できるアミ
ノ保護基である。) のβ−保護アミノグルタル酸ジアルキルエステル
に、一方のエステル基(R)のみを選択的に加水
分解する能力を有するキヤンデイダ属、ピキア
属、トリコスポロン属、ゲオトリカム属、アスペ
ルギルス属、アブシデイア属、アクテイノムコー
ル属、ヘリコステリウム属、ムコール属、モーテ
イエレラ属、ペシロミセス属、チゴリンカス属、
フザリウム属、アクレモテウム属、シルシネラ
属、カニングハメラ属、リゾツプス属、ペニシリ
ウム属、プロテウス属、ミクロコツカス属、ハフ
ニア属、ブレビバクテリウム属に属する微生物、
またはロードコツカス・ロードクロウスIFO3338
の培養液、菌体または菌体処理物を作用せしめ、
次いでアミノ保護基(A)を常法で脱離することを特
徴とする次式 (式中、Rは前記と同じ意味をもつ) の光学活性(S)−β−アミノグルタル酸モノア
ルキルエステルの製造法に関するものである。 本発明の出発化合物として用いられるβ−保護
アミノグルタル酸ジアルキルエステル()にお
けるアミノ保護基(A)は接触還元で脱離できるもの
であり、ベンジル基・ベンツヒドリル基の如きア
ラルキル基、ベンジルオキシカルボニル基の如き
アラルキルオキシカルボニル基が好ましいが、温
和な加水分解で脱離できるt−ブトキシカルボニ
ル基等であることもできる。また、Rは1〜4の
炭素をもつアルキル基であれば何れでもよいが、
加水分解の容易さからするとメチル基が最も好ま
しい。 本発明に使用されるβ−保護アミノグルタル酸
ジアルキルエステルの一方エステル基のみを選択
的に加水分解し、β−(S)−保護アミノグルタル
酸モノアルキルエステルに変換せしめる能力をも
つ微生物として、例えばキヤンデイダ・アルボレ
ア(Candida arborea)IAM4147(FERM BP−
1888)、キヤンデイダ・ルゴーザ(Candida
rugosa)IFO0750、ピキア・フアリノーサ
(Pichia farinosa)IFO0534、トリコスポロン・
ベイギエリイ(Trichosporon beigelii)
ATCC22310、トリコスポロン・ブラシイカエ
(Trichosporon brassicae)IFO1584、ゲオトリ
カム・バアンリアエ(Geotrichum vanryiae)
CBS439.64、アスベルギルス・ニガー
(Aspergillus niger)IAM3008、アブシデイア・
ハイアロスポラ(Absidia hyalospora)
HUT1025、アクテイノムコール・リペンス
(Actinomucor repens)HUT1049、ヘリコステ
イリウム・ニグリカンス(Helicostylum
nigricans)HUT1106、ムコール・アルターナン
ス(Mucor alternans)HUT1115、モーテイエ
レラ・イザベリナ(Mortierella isabellina)
HUT1110、ペシロミセス・バリオテイ
(Paecilomyces Varioti)HUT4018、チゴリン
カス・モエレリイ(Zygorhynchus moelleri)
HUT1305、フザリウム・メルスモイデス
(Fusarium merismoides)IFO30040、アクレモ
ニウム・バシイリスポルム(Acremonium
bacillisparum)IFO9387、シルシネラ・ムコロ
イデス(Circinella mucoroides)HUT1079、カ
ニングハメラ・エレガンス(Cunninghamella
elegans)HUT1098、ムコール・ジヤバニカス
(Mucor javanicus)HUT1155、リゾツプス・ジ
ヤバニカス(Rhizopus javanicus)HUT1252、
ペニシリウム・デイギタツム(Penicillium
digitatum)IFO9370、プロテウス・ミラビリス
(Proteus mirabilis)IFO3849、ミクロコツカ
ス・ルテウス(Micrococcus luteus)IFO12708、
ハフニア・アルベイ(Hafnia alvei)IRO3731、
ブレビバクテリウム・リネンス
(Brevibacterium linens)IFO12142、ロードコ
ツカス・ロードクロウス(Rhodococcus
rhodochrous)IFO3338を挙げることができる。 IAM:東京大学応用微生物研究所 IFO:財団法人発酵研究所 HUT:広島大学工学部発酵工学科 CBS:Centralbureau voor Schimmelcultures
Baarn これらの微生物の培養は通常液体培地で行なわ
れるが、固体表面培養によつても行なうことがで
きる。培地には通常資化しうる有機及び無機の炭
素源、窒素源およびビタミン、ミネラル等を適宜
配合したものを用い、培養温度は20〜50℃、PHは
3〜11の範囲が用いられる。また通気撹拌により
微生物の生育を促進させることもできる。 反応基質であるβ−保護アミノグルタル酸ジア
ルキルエステルの加水分解反応においては、培養
の開始時に培地中に反応基質を添加し、培養と並
行して加水分解反応を行なう方法、あるいは前記
のようにして得た培養液、菌体、または菌体処理
物と反応基質を接触させ加水分解を行う方法とが
ある。望ましくは、菌体を遠心分離等で濃縮後、
高濃度菌体液とし、このものに反応基質を添加す
る方法が、反応後の生産物の回収に好ましい。ま
た、菌体は取り扱いの便宜から凍結乾燥菌体とし
ても用いることが出来、更に菌体破砕物または菌
体抽出物としても用いることが来る。 反応基質であるβ−保護アミノグルタル酸ジア
ルキルエステルは反応液中での濃度は0.01%から
50%程度の高濃度まで用いることができる。 β−保護アミノグルタル酸ジアルキルエステル
の水に対する溶解度は一般に低いが、撹拌を行な
う事によつて菌体あるいは処理菌体との接触を充
分保つようにすれば、本反応にとつて支障とはな
らない。またアセトン等の親水性溶剤や界面活性
剤等を反応に支障とならない程度加えて行なえば
更によい。 加水分解反応を行なう際のPHは3〜11の範囲が
用いられるが、好ましくは6〜8の範囲である。
高濃度で反応させる場合、生成物であるβ−保護
アミノグルタル酸モノアルキルエステルが次第に
反応液中に蓄積してくるとPHが低下してくるの
で、適当な中和剤で最適PHを保持するのが好まし
い。加水分解反応は通常15〜50℃の範囲が用いら
れるが、使用する菌株に適した温度が採用され
る。 加水分解反応によつて生成したβ−保護アミル
グルタル酸モノアルキルエステルを反応液から単
離するには、一般的な方法を用いればよい。例え
ば、反応液より遠心分離によつて菌体等の不溶性
物質を除去したのち、反応液のPHを1に調整し、
酢酸エチルで抽出する。無水硫酸ナトリウムで脱
水後、濃縮すると油状の(S)−β−保護アミノ
グルタル酸モノアルキルエステルが得られる。こ
れをベンゼンで調製したシリカゲルでのカラムク
ロマトグラフイーを行ない精製し、溶剤を除去す
ると白色結晶として(S)−β−保護アミノグル
タル酸モノアルキルエステルが得られる。ついで
例えばメタノールに溶解し、パラジウム炭素触媒
下水素で還元する方法等の公知の接触還元法、あ
るいは保護基によつてはトリフルオロ酢酸等によ
る加水分解等で脱保護を行なうと旋光度(−)を
示す(S)−β−アミノグルタル酸モノアルキル
エステルが容易に得られる。 以下実施例によつて本発明を具体的に説明する
が、本発明はこれらの例のみに限定されるもので
はない。 実施例 1 下記の組成からなる栄養液体培地を調製し、2
坂口フラスコに400mlずつ分注後、120℃15分殺
菌した。 〔培地組成〕 グルコース4%、イーストエキス
0.3%、肉エキス0.3%、ペプトン0.3%、
(NH42PO40.2%、KH2PO40.1%、PH7.0 これとは別に、同じ組成の培地にて、前培養を
した表1に示す微生物の種菌液10mlを、前記培養
培地に接種し、30℃、24時間振とう培養を行つ
た。各菌株について、夫々10本づつ培養し、各菌
培養液4ずつ得、これから遠心分離によつて菌
体を集めた。この菌体をM/15リン酸緩衝液(PH
7.0)1に懸濁し、30mlアセトンに溶解したβ
−ベンジルオキシカルボニルアミノグルタル酸ジ
メチルエステル3gを添加した。これを3容ミ
ニジヤーフアメンターに入れ撹拌下、30℃で6時
間反応させた。 反応後、遠心分離して得た上清を硫酸でPH1と
し、酢酸エチル2で抽出した。無水硫酸ナトリ
ウムで脱水したのち、減圧下溶剤を除去した。こ
れをベンゼンで懸濁調製したシリカゲルカラムに
負荷し、ベンゼン/アセトン(10:1)混液で溶
出した。β−ベンジルオキシカルボニルアミノグ
ルタル酸モノメチルエステル画分を集め減圧下溶
剤を除去すると、白色結晶のβ−ベンジルオキシ
カルボニルアミノグルタル酸モノメチルエステル
が得られた。NMRスペクトル、およびシリカゲ
ル薄層クロマトグラフイー(酢酸エチル:エタノ
ール:水=5:1:1)によるRf値は大野等の
方法によりブタ肝臓エステラーゼを用いて調製し
た標準品と一致した。またその旋光度を測定した
ところいずれも〔α〕25 D=+0.55〜0.71゜(C=6、
CHCl3)の範囲を示し、全て立体選択的に加水分
解を受けた(S)−β−ベンジルオキシカルボニ
ルアミノグルタル酸モノメチルエステルであつ
た。 上記の如く各微生物反応によつて得たモノメチ
ルエステル各200mgをメタノール20mlに溶解し、
10%パラジウム炭素40mgを添加し、水素気流下30
分間撹拌する。反応溶液を過後、濃縮すると
(S)−β−アミノグルタル酸モノメチルエステル
の白色結晶として75〜〜97mgが得られ、このもの
のNMRスペクトルは全て標品と一致した。また
これらの(S)−β−アミノグルタル酸モノメチ
ルエステルは〔α〕25 D=−5.40〜5.61゜(C=3.H2O)
を示した。
[Formula]Me is CH3 . Ohno et al. also suggested the use of not only animal enzymes but also enzymes derived from microorganisms, which would be advantageous on an industrial scale. Therefore, the present inventors conducted research on a method using microorganisms capable of mass production, and found that only one ester group of β-protected aminoglutarate dialkyl ester was stereospecifically hydrolyzed, and (S)-β -We have discovered that there are many microorganisms that have the ability to convert into protected aminoglutaric acid monoalkyl esters, and have completed the present invention. That is, the present invention is based on the following formula (In the formula, R is an alkyl group having 1 to 4 carbon atoms, and A is an amino-protecting group that can be removed by catalytic reduction or mild hydrolysis.) Candeida spp., Pichia spp., Trichosporon spp., Geotrichum spp., Aspergillus spp., Absidia spp., Acteinomucor spp., Helicosterium spp., Mucor spp., Morteierella spp., Pecilomyces spp. , Chigorhynchus spp.
Microorganisms belonging to the genus Fusarium, Acremotheum, Circinella, Cunninghamella, Rhizotpus, Penicillium, Proteus, Micrococcus, Hafnia, Brevibacterium,
or Lord Cotchus Lord Claws IFO3338
to act on the culture solution, bacterial cells or treated bacterial cells,
The following formula is characterized in that the amino protecting group (A) is then removed by a conventional method. The present invention relates to a method for producing an optically active (S)-β-aminoglutaric acid monoalkyl ester (wherein R has the same meaning as above). The amino protecting group (A) in the β-protected aminoglutarate dialkyl ester () used as the starting compound of the present invention can be removed by catalytic reduction, and can be removed by catalytic reduction, such as an aralkyl group such as a benzyl group or a benzhydryl group, or a benzyloxycarbonyl group. Aralkyloxycarbonyl groups such as the following are preferred, but t-butoxycarbonyl groups and the like which can be eliminated by mild hydrolysis may also be used. Further, R may be any alkyl group having 1 to 4 carbon atoms, but
From the viewpoint of ease of hydrolysis, methyl group is most preferred. Examples of microorganisms that have the ability to selectively hydrolyze only one ester group of the β-protected aminoglutarate dialkyl ester used in the present invention and convert it into β-(S)-protected aminoglutarate monoalkyl ester include: Candida arborea IAM4147 (FERM BP−
1888), Candida Rugoza
rugosa) IFO0750, Pichia farinosa (Pichia farinosa) IFO0534, Trichosporon
Trichosporon beigelii
ATCC22310, Trichosporon brassicae IFO1584, Geotrichum vanryiae
CBS439.64, Aspergillus niger IAM3008, Absidia
Hyalospora (Absidia hyalospora)
HUT1025, Actinomucor repens HUT1049, Helicostylum nigricans
nigricans) HUT1106, Mucor alternans HUT1115, Mortierella isabellina
HUT1110, Paecilomyces Varioti HUT4018, Zygorhynchus moelleri
HUT1305, Fusarium merismoides IFO30040, Acremonium basilisporum
bacillisparum IFO9387, Circinella mucoroides HUT1079, Cunninghamella elegans
elegans) HUT1098, Mucor javanicus HUT1155, Rhizopus javanicus HUT1252,
Penicillium daigitatum
digitatum) IFO9370, Proteus mirabilis (Proteus mirabilis) IFO3849, Micrococcus luteus (Micrococcus luteus) IFO12708,
Hafnia alvei IRO3731,
Brevibacterium linens IFO12142, Rhodococcus
rhodochrous) IFO3338. IAM: Institute of Applied Microbiology, The University of Tokyo IFO: Institute of Fermentation, HUT: Department of Fermentation Engineering, Faculty of Engineering, Hiroshima University CBS: Centralbureau voor Schimmelcultures
Baarn These microorganisms are usually cultured in liquid media, but can also be cultured on solid surfaces. The culture medium is appropriately blended with normally assimilated organic and inorganic carbon sources, nitrogen sources, vitamins, minerals, etc., and the culture temperature is 20 to 50°C and the pH is in the range of 3 to 11. Furthermore, the growth of microorganisms can be promoted by aeration and stirring. In the hydrolysis reaction of β-protected aminoglutarate dialkyl ester, which is a reaction substrate, the reaction substrate is added to the medium at the start of culture and the hydrolysis reaction is carried out in parallel with the culture, or as described above. There is a method in which the obtained culture solution, bacterial cells, or treated bacterial cells are brought into contact with a reaction substrate for hydrolysis. Preferably, after concentrating the bacterial cells by centrifugation,
A method in which the reaction substrate is added to a highly concentrated bacterial body fluid is preferable for recovering the product after the reaction. Furthermore, the cells can be used as freeze-dried cells for convenience in handling, and can also be used as crushed cells or cell extracts. The concentration of β-protected aminoglutaric acid dialkyl ester, which is a reaction substrate, in the reaction solution is from 0.01%.
It can be used at concentrations as high as 50%. The solubility of β-protected aminoglutarate dialkyl ester in water is generally low, but this does not interfere with this reaction as long as sufficient contact with the bacterial cells or treated bacterial cells is maintained by stirring. . It is even better if a hydrophilic solvent such as acetone or a surfactant is added to an extent that does not interfere with the reaction. The pH used for the hydrolysis reaction is in the range of 3 to 11, preferably in the range of 6 to 8.
When reacting at high concentrations, the product β-protected aminoglutaric acid monoalkyl ester gradually accumulates in the reaction solution and the pH decreases, so maintain the optimal pH with an appropriate neutralizing agent. is preferable. The hydrolysis reaction is usually carried out at a temperature in the range of 15 to 50°C, but a temperature suitable for the strain used is adopted. A common method may be used to isolate the β-protected amylglutaric acid monoalkyl ester produced by the hydrolysis reaction from the reaction solution. For example, after removing insoluble substances such as bacterial cells from the reaction solution by centrifugation, the pH of the reaction solution is adjusted to 1,
Extract with ethyl acetate. After dehydration with anhydrous sodium sulfate and concentration, an oily (S)-β-protected aminoglutaric acid monoalkyl ester is obtained. This is purified by column chromatography on silica gel prepared with benzene, and when the solvent is removed, (S)-β-protected aminoglutaric acid monoalkyl ester is obtained as white crystals. Then, deprotection is performed by a known catalytic reduction method such as dissolving in methanol and reducing with hydrogen under a palladium carbon catalyst, or depending on the protecting group, hydrolysis with trifluoroacetic acid etc., the optical rotation (-) A (S)-β-aminoglutaric acid monoalkyl ester having the following formula can be easily obtained. The present invention will be specifically explained below with reference to Examples, but the present invention is not limited to these Examples. Example 1 A nutrient liquid medium consisting of the following composition was prepared, and 2
After dispensing 400ml each into Sakaguchi flasks, the mixture was sterilized at 120°C for 15 minutes. [Medium composition] Glucose 4%, yeast extract
0.3%, meat extract 0.3%, peptone 0.3%,
(NH 4 ) 2 PO 4 0.2%, KH 2 PO 4 0.1%, PH 7.0 Separately, 10 ml of the inoculum of the microorganism shown in Table 1, which had been precultured in a medium with the same composition, was added to the culture medium. and cultured with shaking at 30°C for 24 hours. Ten strains of each strain were cultured to obtain four culture fluids of each strain, from which bacterial bodies were collected by centrifugation. The bacterial cells were dissolved in M/15 phosphate buffer (PH).
7.0) β suspended in 1 and dissolved in 30 ml acetone
- 3 g of benzyloxycarbonylaminoglutarate dimethyl ester were added. This was placed in a 3-volume mini-jar fermenter and reacted at 30°C for 6 hours with stirring. After the reaction, the supernatant obtained by centrifugation was adjusted to pH 1 with sulfuric acid, and extracted with 2 portions of ethyl acetate. After dehydration with anhydrous sodium sulfate, the solvent was removed under reduced pressure. This was loaded onto a silica gel column prepared by suspending it in benzene, and eluted with a benzene/acetone (10:1) mixture. The β-benzyloxycarbonylaminoglutarate monomethyl ester fractions were collected and the solvent was removed under reduced pressure to obtain white crystals of β-benzyloxycarbonylaminoglutarate monomethyl ester. The Rf value determined by NMR spectrum and silica gel thin layer chromatography (ethyl acetate: ethanol: water = 5:1:1) was consistent with the standard product prepared using pig liver esterase by the method of Ohno et al. Furthermore, when we measured the optical rotation angle, we found that [α] 25 D = +0.55 to 0.71° (C = 6,
CHCl 3 ), all of which were stereoselectively hydrolyzed (S)-β-benzyloxycarbonylaminoglutarate monomethyl ester. 200 mg of each monomethyl ester obtained by each microbial reaction as described above was dissolved in 20 ml of methanol,
Add 40 mg of 10% palladium on carbon and incubate for 30 minutes under a hydrogen stream.
Stir for a minute. When the reaction solution was filtered and concentrated, 75 to 97 mg of white crystals of (S)-β-aminoglutaric acid monomethyl ester were obtained, and the NMR spectrum of this product was entirely consistent with that of the authentic product. In addition, these (S)-β-aminoglutarate monomethyl esters are [α] 25 D = −5.40 to 5.61° (C = 3.H 2 O)
showed that.

【表】【table】

【表】 アミノグルタル酸モノメチルエステルの量を示した

実施例 2 キヤンデイダ・アルボレアIAM4147(FERM
BP−1888)、ピキア・フアリノーサIFO0534、ゲ
オトリカム・バンリアエCBS439.64を実施例1と
同様に培養し、菌体懸濁液を調製した。各々菌体
懸濁液1にβ−t−ブトキシカルボニルアミノ
グルタル酸ジメチルエステルを3gずつ添加し、
3容ミニジヤーフアメンター中で撹拌下、30℃
で6時間反応させた。 反応後、実施例1と同様な手順で抽出精製、更
にトリフルオロ酢酸を用いて脱保護の後、イオン
交換クロマトグラフイーで単離精製を行ない、表
2に示すような量の各々(S)−β−アミノグル
タル酸モノメチルエステルが白色結晶として得ら
れた。これらのNMRスペクトルは全て標品と一
致し、更に旋光度は〔α〕25 D=−5.50〜5.61(C=
3.H2O)を示し、生成物はβ−(S)−アミノグル
タル酸モノメチルエステルであることが確認され
た。
[Table] The amount of aminoglutarate monomethyl ester is shown.
Example 2 Candeida Arborea IAM4147 (FERM
BP-1888), Pichia falinosa IFO0534, and Geotrichum vanliae CBS439.64 were cultured in the same manner as in Example 1 to prepare a bacterial cell suspension. Add 3 g of β-t-butoxycarbonylaminoglutarate dimethyl ester to each bacterial cell suspension 1,
30°C under stirring in a 3 volume mini-jar fermenter
The mixture was allowed to react for 6 hours. After the reaction, extraction and purification were carried out in the same manner as in Example 1, further deprotection was performed using trifluoroacetic acid, and isolation and purification was performed using ion exchange chromatography. -β-aminoglutarate monomethyl ester was obtained as white crystals. These NMR spectra all match those of the standard specimen, and the optical rotation is [α] 25 D = -5.50 to 5.61 (C =
3.H 2 O), and the product was confirmed to be β-(S)-aminoglutarate monomethyl ester.

【表】 実施例 3 キヤンデイダ・アルボレアIAM4147(FERM
BP−1888)、ピキア・フアリノサIFO0534、ゲオ
トリカム・バンリアエCBS439.64を実施例1と同
様に培養し、菌体懸濁液を各菌株につき2づつ
調製した。各々菌体懸濁液を2等分し、一方には
β−ベンジルオキシカルボニルグルタル酸ジエチ
ルエステル3g、他方にはβ−t−ブトキシカル
ボニルアミノグルタル酸ジエチルエステル3gを
添加し、PH7.0、30℃でミニジヤー中で撹拌下24
時間反応させた。反応後、実施例1および2と同
様な手順で抽出精製、脱保護を行なつた結果、
各々反応液から油状の物質が得られた(表3)。
このNMRスペクトルは標品のβ−アミノグルタ
ル酸モノエチルエステルと一致した。これらの旋
光度を測定した結果、〔α〕25 D=−3.80〜3.85゜(C
=4、H2O)を示し、(S)−β−アミノグルタ
ル酸モノエチルエステルであることが確認され
た。
[Table] Example 3 Candeida Arborea IAM4147 (FERM
BP-1888), Pichia falinosa IFO0534, and Geotrichum vanliae CBS439.64 were cultured in the same manner as in Example 1, and two cell suspensions were prepared for each strain. Each bacterial cell suspension was divided into two equal parts, 3 g of β-benzyloxycarbonylglutarate diethyl ester was added to one, and 3 g of β-t-butoxycarbonylaminoglutarate diethyl ester was added to the other. Under stirring in a mini jar at 24 °C
Allowed time to react. After the reaction, extraction and purification and deprotection were performed in the same manner as in Examples 1 and 2, resulting in
An oily substance was obtained from each reaction solution (Table 3).
This NMR spectrum matched that of the standard β-aminoglutarate monoethyl ester. As a result of measuring these optical rotations, [α] 25 D = −3.80 to 3.85° (C
= 4, H 2 O), and it was confirmed that it was (S)-β-aminoglutarate monoethyl ester.

【表】【table】

Claims (1)

【特許請求の範囲】 1 次式() (式中、Rは炭素数1〜4のアルキル基、Aは接
触還元で、又は温和な加水分解で脱離できるアミ
ノ保護基である) のβ−保護アミノグルタル酸ジアルキルエステル
に、一方のエステル基(R)のみを選択的に加水
分解する能力を有するキヤンデイダ属、ピキア
属、トリコスポロン属、ゲオトリカム属、アスペ
ルギルス属、アブシデイア属、アクテイノムコー
ル属、ヘリコステリウム属、ムコール属、モーテ
イエレラ属、ペシロミセス属、チゴリンカス属、
フザリウム属、アクレモテウム属、シルシネラ
属、カニングハメラ属、リゾツプス属、ペニシリ
ウム属、プロテウス属、ミクロコツカス属、ハフ
ニア属、ブレビバクテリウム属に属する微生物、
またはロードコツカス・ロードクロウスIFO3338
の培養液、菌体または菌体処理物を作用せしめ、
次いでアミノ保護基(A)を常法で脱離することを特
徴とする次式() (式中、Rは前記と同じ意味をもつ) の光学活性(S)−β−アミノグルタル酸モノア
ルキルエステルの製造法。 2 式()における、Aがベンジルオキシカル
ボニル基であり、Rがメチル基またはエチル基で
ある特許請求の範囲第1項記載の製造法。 3 式()における、Aがt−ブトキシカルボ
ニル基であり、Rがメチル基またはエチル基であ
る特許請求の範囲第1項記載の製造法。
[Claims] Linear formula () (In the formula, R is an alkyl group having 1 to 4 carbon atoms, and A is an amino-protecting group that can be removed by catalytic reduction or mild hydrolysis.) Candeida spp., Pichia spp., Trichosporon spp., Geotrichum spp., Aspergillus spp., Absidia spp., Acteinomucor spp., Helicosterium spp., Mucor spp., Morteierella spp., Pecilomyces spp. , Chigorhynchus spp.
Microorganisms belonging to the genus Fusarium, Acremotheum, Circinella, Cunninghamella, Rhizotpus, Penicillium, Proteus, Micrococcus, Hafnia, Brevibacterium,
or Lord Cotchus Lord Claws IFO3338
to act on the culture solution, bacterial cells or treated bacterial cells,
The following formula () is characterized in that the amino protecting group (A) is then removed by a conventional method. (wherein R has the same meaning as above) A method for producing an optically active (S)-β-aminoglutaric acid monoalkyl ester. 2. The manufacturing method according to claim 1, wherein in formula (), A is a benzyloxycarbonyl group and R is a methyl group or an ethyl group. 3. The manufacturing method according to claim 1, wherein in formula (), A is a t-butoxycarbonyl group and R is a methyl group or an ethyl group.
JP55186819A 1980-12-30 1980-12-30 Preparation of optical active (s)-beta-aminoglutaric acid monoalkyl ester Granted JPS57115184A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP55186819A JPS57115184A (en) 1980-12-30 1980-12-30 Preparation of optical active (s)-beta-aminoglutaric acid monoalkyl ester
US06/328,696 US4415657A (en) 1980-12-30 1981-12-08 Process for preparation of an optically active monoalkyl ester of β-(S)-aminoglutaric acid
GB8137930A GB2090592B (en) 1980-12-30 1981-12-16 Process for preparation of an optically active monoalkyl ester of b-(s)-aminoglutaric acid
DE19813150810 DE3150810A1 (en) 1980-12-30 1981-12-22 METHOD FOR PRODUCING AN OPTICAL ACTIVE MONOALKYLESTER OF SS (S) AMINOGLUTAR ACID
BE0/206941A BE891632A (en) 1980-12-30 1981-12-28 PROCESS FOR THE PREPARATION OF OPTICALLY ACTIVE MONOALKYL ESTERS OF ??? - (S) -AMINOGLUTARIC ACID
FR8124534A FR2497230A1 (en) 1980-12-30 1981-12-30 PROCESS FOR THE PREPARATION OF OPTICALLY ACTIVE MONOALKYL ESTERS OF B- (S) -AMINOGLUTARIC ACID

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55186819A JPS57115184A (en) 1980-12-30 1980-12-30 Preparation of optical active (s)-beta-aminoglutaric acid monoalkyl ester

Publications (2)

Publication Number Publication Date
JPS57115184A JPS57115184A (en) 1982-07-17
JPS644760B2 true JPS644760B2 (en) 1989-01-26

Family

ID=16195147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55186819A Granted JPS57115184A (en) 1980-12-30 1980-12-30 Preparation of optical active (s)-beta-aminoglutaric acid monoalkyl ester

Country Status (1)

Country Link
JP (1) JPS57115184A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59205989A (en) * 1983-05-09 1984-11-21 Sumitomo Chem Co Ltd Biochemical preparation of optically active alcohol compound

Also Published As

Publication number Publication date
JPS57115184A (en) 1982-07-17

Similar Documents

Publication Publication Date Title
EP0197474B1 (en) Process for preparing optically active indoline-2-carboxylic acid
EP0130752B1 (en) Process for preparing optically active carboxylic acids and antipode esters thereof
US4415657A (en) Process for preparation of an optically active monoalkyl ester of β-(S)-aminoglutaric acid
WO1994020635A1 (en) Enantioselective hydrolysis of ketoprofen esters by beauveria bassiana and enzymes derived therefrom
JPS644760B2 (en)
JPS63245694A (en) Production of optically active sulfur-containing carboxylic acid and antipodal ester thereof
EP0289804A2 (en) Process for preparing optically active mercapto compound
JPH0242477B2 (en)
JP2964163B2 (en) Method for producing R (-)-1,3-butanediol
JP2005117905A (en) Method for producing optically active 1-benzyl-3-pyrrolidinol
JPS6012992A (en) Production of optically active carboxylic acid
JP2007117034A (en) Method for producing optically active nipecotic acid compound
US5861304A (en) Process for the enzymatic separation of enantiomers of rac-2-oxotricyclo 2.2.1.0 3,5! heptane-7-carboxylic acid and of rac-2-oxotricyclo 2.2.1.0 3,5! heptane-7-carboxylic esters
JP3218772B2 (en) Method for producing acetylene alcohols
JP2639651B2 (en) Process for producing optically active carboxylic acid and its enantiomer ester
JP3679819B2 (en) Process for producing (S) -3- (2-thienylthio) butanoic acid
JPS6094091A (en) Production of optically active carboxylic acid ester
JP3217301B2 (en) Method for producing optically active glycidic acid ester and optically active glyceric acid ester
JP3893721B2 (en) Method for producing optically active compound
JPH0573396B2 (en)
JPH04252189A (en) Production of benzenedicarboxlic monoester or derivative thereof
EP0783039A1 (en) Process for producing optically active 2-alkoxycyclohexanol derivatives
JPS5942888A (en) Preparation of ester-bond hydrolase by microorganism
JP3126063B2 (en) Method for producing D-pantolactone
JP3024361B2 (en) Method for producing optically active pyrrolidines