JPS644501B2 - - Google Patents

Info

Publication number
JPS644501B2
JPS644501B2 JP58030886A JP3088683A JPS644501B2 JP S644501 B2 JPS644501 B2 JP S644501B2 JP 58030886 A JP58030886 A JP 58030886A JP 3088683 A JP3088683 A JP 3088683A JP S644501 B2 JPS644501 B2 JP S644501B2
Authority
JP
Japan
Prior art keywords
reaction
solvent
chlorodifluoromethane
toluene
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58030886A
Other languages
Japanese (ja)
Other versions
JPS59157041A (en
Inventor
Tatsuya Michibayashi
Hidejiro Yokoo
Haruaki Ito
Tetsuo Tsuruya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SDS Biotech Corp
Original Assignee
SDS Biotech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SDS Biotech Corp filed Critical SDS Biotech Corp
Priority to JP58030886A priority Critical patent/JPS59157041A/en
Publication of JPS59157041A publication Critical patent/JPS59157041A/en
Publication of JPS644501B2 publication Critical patent/JPS644501B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は一般式ArOH(式中Arは芳香族残基を
示す。)で示される芳香族フエノール類をクロロ
ジフルオルメタンと反応させて一般式ArOCHF2
(式中Arは前記と同じ)で示されるアリールジフ
ルオロメチルエーテル類を製造する方法に関し、
特に該反応を塩基性触媒の存在下に非プロトン性
の強極性溶媒中で行うことを特徴とする。 一般に、フエノール類をクロロジフルオルメタ
ンと反応させ、対応するアリールジフルオロメチ
ルエーテル類を製造する方法としては、フエノー
ル類を大過剰の濃アルカリ水に溶解させ、これに
溶媒としてジオキサンを加え、クロロジフルオロ
メタンを60〜90℃で導入する方法がとられてお
り、これについての詳細な報告は、例えば
Journal of Organic Chemistry.25巻(1966年)
2009頁−2012頁に記載されている。この反応には
大過剰の強アルカリ水溶液と溶媒としてジオキサ
ンの存在が必要であり、またクロロジフルオルメ
タンも強アルカリにより分解し、本来の反応に用
いられる以外の副反応もかなりな割合で起り、高
価なクロロジフルオルメタンの有効利用と言う意
味から、必ずしも有利な方法とは言えない。さら
に、この方法では、溶媒のジオキサンの回収も困
難である。 かかる事情のもとに、アリールジフルオロメチ
ルエーテル類の製造方法を種々検討した結果、芳
香族フエノール類とクロロジフルオルメタンとを
反応させ、目的のアリールジフルオロメチルエー
テル類を製造するのに大過剰の強塩基も必要な
く、しかもほぼ非水系でこの反応が極めて良好に
進行する方法を発明するに至つた。 すなわち、該反応に於いて溶媒として極性が大
きい非プロトン性(アプロテイツク)の溶媒を用
いると、等モルないしは小過剰の塩基性物質の共
存にて目的の反応が極めて良好に進行することを
見い出した。ここで言う極性の大きい非プロトン
性の溶媒とは誘電率(ε)が15以上、双極子能率
(μ)が2.5D以上であり、溶媒極性パラメーター
の1つであるET(30)値が40乃至47である溶媒を
意味する。これら溶媒の代表的なものを示せば、
例えば、ジメチルスルホキサイド(DMSO)、ジ
メチルホルムアミド(DMF)、ジエチルホルムア
ミド、ジメチルアセトアミド、ジエチルアセトア
ミド、プロピレンカーボネート、エチレンカーボ
ネート、アセトニトリル、スルホラン、ジメチル
スルホラン、ジメチルスルホン、アセトン、アセ
トフエノン、ニトロベンゼン、ベンゾニトリル、
1−メチル−2−ピロリジン、テトラメチル尿
素、等があげられる。これらの溶媒には少量の水
ないしは他の有機溶媒を多少含有していても大き
な影響はなく、通常50ないし100%含量のものを
用いることができる。塩基性物質としては、アル
カリ金属の水酸化物、炭酸塩、重炭酸塩が用いら
れる。例えば炭酸カリウム、炭酸ナトリウム、重
炭酸カリウム、重炭酸ナトリウムの如き比較的塩
基性の弱いものも使用可能であるし、苛性ソーダ
や苛性カリの如き強い塩基を用いることも出来
る。その使用量については必ずしも厳密な制限は
ないが、通常はフエノール類に対し1〜4モルの
塩基性物質を用いると良い。 クロロジフルオルメタンは上記の溶媒中、芳香
族フエノール類、塩基性物質の混合物中に直接吹
込んでも良く、オートクレーブ中に圧入しておい
て反応温度にまで高めて反応させても良く、連結
式反応槽を用いて反応させても良い。いずれの場
合もその使用量については特に制限はないが、フ
エノール類に対し1〜10倍モルのクロロジフルオ
ルメタンを用いることがで好ましい。 反応条件は用いる芳香族フエノール類、塩基性
物質の種類にもよるが、一般に室温ないしは150
℃の範囲で進行し、望ましくは、50℃ないしは
120℃の範囲で反応させることが適当である。 本発明の方法は非常に広範囲なアリールジフル
オロメチルエーテル類の製造に適用することがで
き、例えば、前記一般式中Arで示される芳香族
残基としては、フエニル基、ナフタレン基又はハ
ロゲン原子、ニトロ基、アルキル基、アルケニル
基、アルコキシ基、アルケニルオキシ基、アラル
キル基、アラルキルオキシ基、シアノ基、カルボ
キシル基、アルコキシカルボニル基若しくはカル
バモイル基よりなる1又は2の置換基によつて置
換されたフエニル基若しくはナフタレン基等があ
げられる。この製造方法を従来の製造方法と比較
する時、次のような利点があり、工業的に極めて
秀れた方法である。第1に非水系で反応が可能で
ある為、反応終了後溶媒を留去してそのまま再使
用が可能であり、高価な溶媒を効率よく使用出来
る。第2に過剰に用いたクロロジフルオルメタン
は殆んど副反応を起さず、過剰分の回収が極めて
容易であり、高価なクロロジフルオルメタンを有
効に使用し得る。第3に未反応の芳香族フエノー
ル類は塩基性物質と塩を形成し、一般の溶媒、例
えば、トルエン等に不溶な状態になる為に適当な
溶媒抽出により不溶性固体として容易に生成物と
分離が可能であり、分離精製工程におけるフエノ
ール性廃水の負担を著しく軽減出来る。 更に、塩基性物質の使用量が従来法と比較して
極めて少ないことも、経済性はもとより廃水処理
の負担を著しく軽減する。 以下に本発明の方法について代表的な実施例を
示し、本発明の方法について更に具体的に説明す
る。但し、これらの例は代表的なものについての
単なる例示であり、本発明の方法はこれらのみに
限定されないことは勿論であり、また、これらの
例によつて何ら制限されないことは言う迄もな
い。 実施例 1〜7 表−1に示したフエノール類0.1モルを
DMF200ml及び無水炭酸カリウム0.2モルの混合
液中に加えてオートクレーブに入れ、これにクロ
ロジフルオロメタン0.3モルを圧入した。その後
100℃で3時間反応させ、反応終了後常圧に戻し
て過剰のクロロジフルオロメタンを除き、減圧下
にDMFを留去した後トルエンを加えて、その有
機層をアルカリ水(5%苛性ソーダ水溶液)で洗
浄及び水洗してからトルエンを留去し、更に生成
物を減圧にして蒸留した。目的物の収率を表−1
に示した。 参考例に記した収率はJournal of Organic
Chemistry 25巻 2009頁〜2012頁(1960年)に
記載されている収率であつた。
In the present invention, aromatic phenols represented by the general formula ArOH (wherein Ar represents an aromatic residue) are reacted with chlorodifluoromethane to produce the general formula ArOCHF 2
Regarding the method for producing aryl difluoromethyl ethers represented by (wherein Ar is the same as above),
In particular, the reaction is carried out in an aprotic, strongly polar solvent in the presence of a basic catalyst. In general, the method for producing the corresponding aryl difluoromethyl ethers by reacting phenols with chlorodifluoromethane is to dissolve the phenols in a large excess of concentrated alkaline water, add dioxane as a solvent, and then react the phenols with chlorodifluoromethane. A method has been adopted in which methane is introduced at 60 to 90℃, and detailed reports on this can be found, for example.
Journal of Organic Chemistry.Volume 25 (1966)
Described on pages 2009-2012. This reaction requires the presence of a large excess of a strong alkaline aqueous solution and dioxane as a solvent, and chlorodifluoromethane is also decomposed by strong alkalis, and side reactions other than those used in the original reaction occur at a considerable rate. This is not necessarily an advantageous method in terms of effective use of expensive chlorodifluoromethane. Furthermore, with this method, it is difficult to recover dioxane as a solvent. Under these circumstances, we investigated various methods for producing aryl difluoromethyl ethers and found that aromatic phenols and chlorodifluoromethane were reacted to produce the desired aryl difluoromethyl ethers in large excess. They have now invented a method that does not require a strong base and allows this reaction to proceed extremely well in a substantially non-aqueous system. In other words, we have found that when a highly polar aprotic solvent is used as a solvent in the reaction, the desired reaction proceeds extremely well in the coexistence of an equimolar or small excess of a basic substance. . The highly polar aprotic solvent mentioned here has a dielectric constant (ε) of 15 or more, a dipole efficiency (μ) of 2.5D or more, and an E T (30) value, which is one of the solvent polarity parameters. 40 to 47. Typical examples of these solvents are:
For example, dimethylsulfoxide (DMSO), dimethylformamide (DMF), diethylformamide, dimethylacetamide, diethylacetamide, propylene carbonate, ethylene carbonate, acetonitrile, sulfolane, dimethylsulfolane, dimethylsulfone, acetone, acetophenone, nitrobenzene, benzonitrile,
Examples include 1-methyl-2-pyrrolidine, tetramethylurea, and the like. Even if these solvents contain a small amount of water or other organic solvents, it will not have a major effect, and usually 50 to 100% content can be used. As the basic substance, alkali metal hydroxides, carbonates, and bicarbonates are used. For example, relatively weak bases such as potassium carbonate, sodium carbonate, potassium bicarbonate, and sodium bicarbonate can be used, and strong bases such as caustic soda and caustic potash can also be used. Although there are no strict restrictions on the amount used, it is usually advisable to use 1 to 4 moles of the basic substance relative to the phenol. Chlorodifluoromethane may be directly blown into the above solvent, aromatic phenols, and a mixture of basic substances, or may be pressurized into an autoclave and raised to the reaction temperature for reaction. The reaction may be carried out using a reaction tank. In either case, the amount used is not particularly limited, but it is preferable to use chlorodifluoromethane in an amount of 1 to 10 times the mole of the phenol. The reaction conditions depend on the type of aromatic phenol and basic substance used, but are generally room temperature or 150℃.
℃ range, preferably 50℃ or
It is appropriate to carry out the reaction in the range of 120°C. The method of the present invention can be applied to the production of a very wide range of aryl difluoromethyl ethers. For example, the aromatic residue represented by Ar in the above general formula may include a phenyl group, a naphthalene group, a halogen atom, a nitro a phenyl group substituted with one or two substituents consisting of a group, an alkyl group, an alkenyl group, an alkoxy group, an alkenyloxy group, an aralkyl group, an aralkyloxy group, a cyano group, a carboxyl group, an alkoxycarbonyl group or a carbamoyl group Alternatively, a naphthalene group, etc. may be mentioned. When this manufacturing method is compared with conventional manufacturing methods, it has the following advantages and is an extremely superior method from an industrial perspective. First, since the reaction can be carried out in a non-aqueous system, the solvent can be distilled off after the reaction is completed and reused as is, allowing efficient use of expensive solvents. Second, chlorodifluoromethane used in excess hardly causes any side reactions, and recovery of the excess is extremely easy, making it possible to effectively use expensive chlorodifluoromethane. Third, unreacted aromatic phenols form salts with basic substances and become insoluble in common solvents such as toluene, so they can be easily separated from the product as insoluble solids by appropriate solvent extraction. It is possible to significantly reduce the burden of phenolic wastewater in the separation and purification process. Furthermore, the amount of basic substances used is extremely small compared to conventional methods, which not only improves economy but also significantly reduces the burden of wastewater treatment. Below, typical examples of the method of the present invention will be shown, and the method of the present invention will be explained in more detail. However, these examples are merely illustrative examples of typical ones, and it goes without saying that the method of the present invention is not limited to these only, and is not limited in any way by these examples. . Examples 1 to 7 0.1 mole of the phenols shown in Table-1
It was added to a mixed solution of 200 ml of DMF and 0.2 mol of anhydrous potassium carbonate, and placed in an autoclave, into which 0.3 mol of chlorodifluoromethane was pressurized. after that
The reaction was carried out at 100°C for 3 hours, and after the reaction was completed, the pressure was returned to normal to remove excess chlorodifluoromethane. After distilling off DMF under reduced pressure, toluene was added, and the organic layer was diluted with alkaline water (5% caustic soda aqueous solution). After washing with water and water, toluene was distilled off, and the product was further distilled under reduced pressure. Table 1 shows the yield of the target product.
It was shown to. The yields listed in the reference examples are from the Journal of Organic
The yield was as described in Chemistry, Vol. 25, pp. 2009-2012 (1960).

【表】 実施例 8〜12 パラニトロフエノール12.3g(0.1モル)を200
mlのDMFに溶解し各種塩基性物質を加え、100℃
でクロロジフルオロメタンを常圧で2時間導入し
て反応させた。反応終了後DMFを留去した後ト
ルエン300mlを加え、アルカリ水及び水で洗浄し
てからトルエンを留去し、生成物を105゜/
6minHgで減圧蒸留してパラジフルオロメトキシ
ニトロベンゼンを得た。結果を表−2に示した。
[Table] Examples 8 to 12 12.3 g (0.1 mol) of paranitrophenol was added to 200
Dissolve in ml of DMF, add various basic substances, and incubate at 100℃.
Then, chlorodifluoromethane was introduced at normal pressure for 2 hours to cause a reaction. After the reaction was completed, DMF was distilled off, 300 ml of toluene was added, the toluene was distilled off after washing with alkaline water and water, and the product was heated to 105°/
Paradifluoromethoxynitrobenzene was obtained by vacuum distillation at 6 minHg. The results are shown in Table-2.

【表】【table】

【表】 実施例 13 グラスオートクレーブにパラニトロフエノール
12.3g(0.1モル)、無水炭酸カリウム13.8g(0.1
モル)及びDMF220mlを入れ、クロロジフルオロ
メタン26g(0.3モル)を圧入した。これを充分
撹拌し、100℃で3時間保つて反応させた後常圧
に戻して過剰のクロロジフルオロメタンを除き、
更に室温に戻して不溶性物質を取し、液を減
圧濃縮してDMFを回収した。残渣にトルエン200
mlを加えた後5%苛性ソーダ50mlで2度洗浄し、
更に水50mlで洗浄後、トルエンを減圧にて除い
た。残渣を減圧蒸留すると、106゜/6mmHgにて
目的のパラジフルオロメトキシニトロベンゼンを
14.2g得た。収率は75%であつた。 実施例 14 オルト−〔N−(3,4−ジクロロフエニル)カ
ルバモイル〕−フエノール5g、炭酸カリウム2.4
g及びDMF50mlの混合物を100℃に加熱し、クロ
ロジフルオロメタンを4時間系内に導入して反応
させた。反応終了後DMFを留去してからトルエ
ンを加え、このトルエン層をアルカリ水で洗浄及
び水洗してからトルエンを留去し、残渣をベンゼ
ン及びヘキサン混合溶媒で再結晶すると3.8gの
N−(3,4−ジクロロフエニル)−オルトジクロ
ロメトキシを得た。収率59%であつた。 実施例 15 パラニトロフエノール14g(0.1mol)、炭酸カ
リウム28g(0.1mol)及びDMSO200mlの混合液
を100℃に加熱しクロロジフルオロメタンを3時
間導入して反応させた。反応終了後、溶媒を留去
してからトルエン200gを加え不溶物を取にて
除き、トルエン層をアルカリ水で洗浄及び水洗し
てからトルエンを留去し、更に減圧蒸留した所、
103〜106℃/6mmHgの留分としてパラジフルオ
ロメトキシニトロベンゼンを11.3g得た。収率
59.7%であつた。 同様の反応をDMSOのかわりに200mlのN,N
−ジメチルアセトアミドを用いて行つた所、単離
収率として67%のパラジフルオロメトキシニトロ
ベンゼンを得た。
[Table] Example 13 Paranitrophenol in a glass autoclave
12.3g (0.1 mol), anhydrous potassium carbonate 13.8g (0.1
mol) and 220 ml of DMF were added, and 26 g (0.3 mol) of chlorodifluoromethane was introduced under pressure. This was thoroughly stirred, kept at 100℃ for 3 hours to react, and then returned to normal pressure to remove excess chlorodifluoromethane.
Furthermore, the temperature was returned to room temperature, insoluble substances were removed, and the liquid was concentrated under reduced pressure to recover DMF. Toluene 200% to the residue
After adding ml, wash twice with 50ml of 5% caustic soda,
After further washing with 50 ml of water, toluene was removed under reduced pressure. Distilling the residue under reduced pressure yields the desired paradifluoromethoxynitrobenzene at 106°/6 mmHg.
Obtained 14.2g. The yield was 75%. Example 14 Ortho-[N-(3,4-dichlorophenyl)carbamoyl]-phenol 5 g, potassium carbonate 2.4
A mixture of g and 50 ml of DMF was heated to 100°C, and chlorodifluoromethane was introduced into the system for 4 hours to cause a reaction. After the completion of the reaction, DMF was distilled off, toluene was added, this toluene layer was washed with alkaline water and water, and then toluene was distilled off. The residue was recrystallized with a mixed solvent of benzene and hexane to obtain 3.8 g of N-( 3,4-dichlorophenyl)-orthodichloromethoxy was obtained. The yield was 59%. Example 15 A mixed solution of 14 g (0.1 mol) of paranitrophenol, 28 g (0.1 mol) of potassium carbonate, and 200 ml of DMSO was heated to 100° C., and chlorodifluoromethane was introduced for 3 hours to cause a reaction. After the reaction was completed, the solvent was distilled off, 200 g of toluene was added, the insoluble matter was removed, the toluene layer was washed with alkaline water and water, the toluene was distilled off, and further distilled under reduced pressure.
11.3g of paradifluoromethoxynitrobenzene was obtained as a fraction of 103-106°C/6mmHg. yield
It was 59.7%. Similar reaction was carried out using 200ml of N,N instead of DMSO.
- Dimethylacetamide was used to obtain paradifluoromethoxynitrobenzene with an isolated yield of 67%.

Claims (1)

【特許請求の範囲】 1 一般式ArOH(式中Arは芳香族残基を示す)
で示される芳香族フエノール類を塩基性触媒の存
在下に非プロトン性の強極性溶媒中でクロロジフ
ルオロメタンと反応させることを特徴とする一般
式ArOCHF2(式中Arは上記と同じ)で示される
アリールジフルオロメチルエーテルの製造法。 2 非プロトン性の強極性溶媒が、融電率(ε)
15以上、双極子能率(μ)2.5D以上、溶媒極性
パラメーターの1つであるET(30)値が40乃至47
を有する溶媒である特許請求の範囲第1項の製造
法。 3 塩基性触媒がアルカリ金属の水酸化物、炭酸
塩、重炭酸塩の少くとも1種である特許請求の範
囲第1項の製造法。
[Claims] 1. General formula ArOH (in the formula, Ar represents an aromatic residue)
The aromatic phenol represented by is reacted with chlorodifluoromethane in an aprotic strongly polar solvent in the presence of a basic catalyst . A method for producing aryl difluoromethyl ether. 2 The aprotic strong polar solvent has a melting rate (ε)
15 or more, dipole efficiency (μ) 2.5D or more, E T (30) value, which is one of the solvent polarity parameters, is 40 to 47.
The manufacturing method according to claim 1, wherein the solvent has the following. 3. The production method according to claim 1, wherein the basic catalyst is at least one of alkali metal hydroxides, carbonates, and bicarbonates.
JP58030886A 1983-02-28 1983-02-28 Production of aryl difluoromethyl ether Granted JPS59157041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58030886A JPS59157041A (en) 1983-02-28 1983-02-28 Production of aryl difluoromethyl ether

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58030886A JPS59157041A (en) 1983-02-28 1983-02-28 Production of aryl difluoromethyl ether

Publications (2)

Publication Number Publication Date
JPS59157041A JPS59157041A (en) 1984-09-06
JPS644501B2 true JPS644501B2 (en) 1989-01-25

Family

ID=12316207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58030886A Granted JPS59157041A (en) 1983-02-28 1983-02-28 Production of aryl difluoromethyl ether

Country Status (1)

Country Link
JP (1) JPS59157041A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60188316A (en) * 1984-03-07 1985-09-25 Biiburando Medeikoo Dentaru:Kk Anti-inflammatory for oral cavity
JPS62145047A (en) * 1985-12-17 1987-06-29 New Japan Chem Co Ltd Production of dinitrophenyl ethers
US4960884A (en) * 1989-03-02 1990-10-02 Fmc Corporation Pesticidal 2-fluoroethyl ethers
KR100287364B1 (en) * 1998-09-25 2001-04-16 박호군 Method for producing difluoromethylmethyl ether

Also Published As

Publication number Publication date
JPS59157041A (en) 1984-09-06

Similar Documents

Publication Publication Date Title
Faigl et al. A one-pot synthesis of ibuprofene involving three consecutive steps of superbase metalation
CA1111864A (en) Selective monoetherification of pyrocatechol
JPS644501B2 (en)
JP5588130B2 (en) Method for producing methylenebis (benzotriazolylphenol) compound
JP3663229B2 (en) Process for producing 4-halo-2'-nitrobutyrophenone compound
RU2237054C2 (en) Method for preparing compounds of 4,4'-dichloro-ortho-hydroxydiphenyl ester
US4377712A (en) Preparation of meta-substituted diaryl ethers
JP3836541B2 (en) Method for producing 4,4'-bis (chloromethyl) biphenyl
Ishikawa et al. REACTIONS OF PERFLUORO-2-METHYLPENTENE-2 WITH AROMATIC NUCLEOPHILES
US4430510A (en) Process for the preparation of 2-(2,4-dichlorophenoxy)-phenylacetic acid
JP3962531B2 (en) Method for producing 1,3-di (2-p-hydroxyphenyl-2-propyl) benzene
JP4127017B2 (en) Method for producing benzylcarbazate compound
US3709939A (en) 3,5-dihalo-4-amido-alkoxy phenols
EP1061061B1 (en) Process for the production of alpha,alpha'-bis (4-p-hydroxyphenyl)-1,3-diisopropylbenzene
JPS61200935A (en) Production of p,p'-biphenol
JP2533565B2 (en) Process for producing 3- (4-hydroxyphenyl) -cyclohexanecarboxylic acid and 4'-hydroxybiphenyl-3-carboxylic acid
JPH0588700B2 (en)
JPH0227972B2 (en) JIFURUOROMECHIRUCHIOEETERURUINOSEIZOHO
SU1057494A1 (en) Process for preparing 4,4-bis-(4-nitrophenylthio)-arylene
US4739116A (en) Preparation of arylsulfonamides
Bao et al. CuI/L-proline potassium salt catalysed synthesis of vinyl sulfones via coupling reaction of vinyl bromides with sulfinic acid salts in ionic liquid
JPS6312469B2 (en)
US4982010A (en) Method of producing 4-biphenyl p-tolyl ether
JPH0987214A (en) Production of 4,4'-bis(chloromethyl)biphenyl
JPH0735364B2 (en) Manufacturing method of alkali metal benzenesulfinate