JPS644484B2 - - Google Patents

Info

Publication number
JPS644484B2
JPS644484B2 JP8230283A JP8230283A JPS644484B2 JP S644484 B2 JPS644484 B2 JP S644484B2 JP 8230283 A JP8230283 A JP 8230283A JP 8230283 A JP8230283 A JP 8230283A JP S644484 B2 JPS644484 B2 JP S644484B2
Authority
JP
Japan
Prior art keywords
parts
added
mixing
water
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8230283A
Other languages
Japanese (ja)
Other versions
JPS59206302A (en
Inventor
Yoshinori Hirabayashi
Kyoichi Adachi
Akira Sakamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumiai Chemical Industry Co Ltd
Original Assignee
Kumiai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumiai Chemical Industry Co Ltd filed Critical Kumiai Chemical Industry Co Ltd
Priority to JP8230283A priority Critical patent/JPS59206302A/en
Publication of JPS59206302A publication Critical patent/JPS59206302A/en
Publication of JPS644484B2 publication Critical patent/JPS644484B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

〔発明の目的〕 本発明は、被芆型蟲園芞甚粒剀の補造法に関す
るものである。 〔埓来技術〕 近幎、蟲薬の散垃圢態ずしおは、ドリフトによ
る環境汚染の防止、所望の圃堎ぞの党量斜甚、散
垃の省力化、散垃者ぞの危害防止等の芳点より粒
状補剀の䜿甚が急増しおいる。これら、珟圚、䜿
甚されおいる蟲園芞甚粒剀の補造法を倧別するず
緎蟌み法、吞着法および被芆法の皮類になる。
しかし、それぞれの方法も欠点を有しおいる。 たず、「緎蟌み法」に぀いお 本方法は粒剀補造法ずしお䞻流であるが、造粒
埌也燥工皋を必芁ずし、熱に䞍安定な掻性成分や
毒性が高く揮散しやすい掻性成分には適さない。 たた、「吞着法」に぀いお 本方法は、掻性成分の物性によ぀おその適吊が
巊右される。䟋えば、固状の掻性成分の堎合には
高沞点の溶剀に溶解させるか、䜎沞点の溶剀に溶
解させお吞着させた埌、溶剀を回収しなければな
らず、コスト的に割高ずなり固状の掻性成分には
適さない。 これらの方法に比范し「被芆法」は、粒状担䜓
に掻性成分を結合剀等を甚いお付着被芆せしめる
ものであり、コスト的には比范的割安である。し
かし埓来の被芆法ではポリ゚チレングリコヌル、
ポリプロピレングリコヌル特公昭40−8920号、
ポリブテン特公昭47−1240号等の結合剀の粘
性により掻性成分を粒状担䜓に付着させおいるに
すぎず、貯蔵運搬時、散垃時等に掻性成分が粒状
担䜓より剥離しやすく、粒剀ずしおの本来の特性
を倱い安党性等に欠けるこずずなる。この剥離を
回避する為にポリビニルアルコヌル特公昭49−
24660号、アラビアガム特公昭42−28699号
などの匷力な結合剀を甚いれば良いが、これらの
堎合には氎溶液ずしお、あるいは有機溶剀に溶解
しお甚いる為也燥工皋又は溶剀回収工皋を必芁ず
し、緎蟌み法同様の制玄を受ける。これらの問題
を解決する為に各皮暹脂を甚いる方法が研究され
おいるが、実甚䞊満足される被芆型粒剀の補造法
は完成しおいない。暹脂を甚いた堎合補造時の䜜
業性が悪く、たた均䞀性のある被芆型粒剀を埗る
こずが困難である。さらに掻性成分の剥離防止ず
貯蔵時の固化団粒化防止は盞反するものであ
り双方を満足する補剀は埗られなか぀た。 本発明は粒状担䜓に蟲薬掻性成分を被芆せしめ
るに埓来法の各皮の問題点を解決すべく鋭意研究
を重ねた結果完成されたものである。 〔発明の構成〕 本発明は粒状担䜓に蟲薬掻性成分を被芆せしめ
るに、有機む゜シアネヌト及び䞀般匏 ROCH2CH2OoCONHX 〔匏䞭は炭玠原子〜個を有するアルキル基
を、は〜120の敎数を、は少なくずも個
の遊離む゜シアナト基を含有するゞ−又はポリ−
む゜シアネヌトの残基を瀺す。〕で衚わされる非
むオン界面掻性剀を含有する氎乳化型む゜シアネ
ヌト化合物䞊びに氎又は䜎粘床の氎酞基含有液䜓
化合物を䜿甚し、さらに芁すれば物理性改良剀、
安定化剀、着色剀、たたは界面掻性剀等の補助剀
を添加するこずによ぀おなる。 本発明の補造法には次の方法が採甚しうる。 (1) 混合機に粒状担䜓を投入し、混合し぀぀少量
の氎及びたたは䜎粘床の氎酞基含有液䜓化合
物、䟋えばメタノヌル、゚タノヌル、ポリ゚チ
レングリコヌルたたはポリプロピレングリコヌ
ル等を添加し均䞀化させた埌、所定量の氎乳化
型む゜シアネヌト化合物を添加し均䞀になるた
で十分混合する。さらに蟲薬掻性成分及び必芁
により補助剀を添加し混合する。 (2) 小型容噚に氎乳化型む゜シアネヌト化合物ず
氎たたは氎酞基含有液䜓化合物を入れ予め混合
し、混合機䞭の粒状担䜓に混合し぀぀添加す
る。均䞀になるたで十分混合した埌、蟲薬掻性
成分及び必芁により補助剀を添加し曎に混合す
る。本方法には埓来の蚭備、混合方法等が採り
埗る。 次に本発明で䜿甚する氎乳化型む゜シアネヌト
化合物、粒状担䜓及び蟲薬掻性成分に぀いお説明
する。 (1) 氎乳化型む゜シアネヌト化合物 有機む゜シアネヌト及び非むオン界面掻性よ
りなる。 (ã‚€) 有機む゜シアネヌト 本発明には任意の有機む゜シアネヌトを䜿
甚し埗るが、特に倚数のむ゜シアナト基を有
する有機む゜シアネヌトである堎合に䟡倀が
ある。以䞋に䟋瀺するが、それらは単独で
も、たた皮以䞊の混合物であ぀おも良い。 ヘキサメチレンゞむ゜シアネヌトの劂き脂
肪族む゜シアネヌト−プニレンゞむ゜
シアネヌト、−プニレンゞむ゜シアネヌ
ト、トリレン−−ゞむ゜シアネヌト、
トリレン−−ゞむ゜シアネヌト、ゞフ
゚ニルメタン−4′−ゞむ゜シアネヌト、
クロルプニレン−−ゞむ゜シアネヌ
ト、ナフタレン−−ゞむ゜シアネヌ
ト、ゞプニル−4′−ゞむ゜シアネヌ
ト、4′−ゞむ゜シアナト−3′−ゞメ
チルゞプニル、−メチル−ゞプニルメ
タン−4′−ゞむ゜シアネヌト及びゞプ
ニル゚ヌテルゞむ゜シアネヌトの劂き芳銙族
む゜シアネヌトシクロヘキサン−−
ゞむ゜シアネヌト、シクロヘキサン−
−ゞむ゜シアネヌト、−メチルシクロヘキ
シル−−ゞむ゜シアネヌト、−メチ
ルシクロヘキシル−−ゞむ゜シアネヌ
ト、ビスむ゜シアナトシクロヘキシル−
メタンの劂き脂環匏ゞむ゜シアネヌト
−トリむ゜シアナトトル゚ン、
4′−トリむ゜シアナトゞプニル゚ヌテ
ルの劂きトリむ゜シアネヌト䞀般匏 匏䞭は以䞊の敎数を瀺す。で瀺され
アニリンずホルムアルデヒドずの瞮合により
埗られるポリアミンの盞応する混合物をホス
ゲン化するこずにより生成されるメチレン架
橋ポリプニレンポリむ゜シアネヌト 䞊蚘のものが包含されるが、奜たしくは、
芳銙族ゞむ゜シアネヌトたたは高官胜性のホ
リむ゜シアネヌト、特にゞむ゜シアネヌト、
トリむ゜シアネヌト及び高官胜性ポリむ゜シ
アネヌトを含有するメチレン架橋ポリプニ
レンポリむ゜シアネヌトの粗補混合物であ
る。 (ロ) 非むオン界面掻性剀 䞀般匏 ROCH2CH2OoCONHX 匏䞭、は炭玠原子〜個を有するアル
キル基を瀺すが、特にメチル基の堎合が奜た
しい。は〜120の敎数を瀺し、奜たしく
は、〜25の範囲である。は少なくずも
個のむ゜シアナト基を有するポリむ゜シアナ
ト残基を瀺し、前述の有機む゜シアネヌト、
䟋えばゞむ゜シアネヌト、トリむ゜シアネヌ
ト、ポリむ゜シアネヌト類の残基であ぀おも
よい。トリレンゞむ゜シアネヌトの堎合に
は、は
[Object of the Invention] The present invention relates to a method for producing coated agricultural and horticultural granules. [Prior Art] In recent years, the use of granular formulations has rapidly increased as a method of spraying agricultural chemicals from the viewpoints of preventing environmental pollution due to drift, applying the entire amount to the desired field, saving labor in spraying, and preventing harm to the sprayer. ing. The manufacturing methods for agricultural and horticultural granules currently in use can be roughly divided into three types: kneading method, adsorption method, and coating method.
However, each method also has drawbacks. First, regarding the "kneading method": This method is the mainstream method for producing granules, but it requires a drying step after granulation, and is not suitable for active ingredients that are unstable to heat or active ingredients that are highly toxic and easily volatilized. do not have. Regarding the "adsorption method": The suitability of this method depends on the physical properties of the active ingredient. For example, in the case of a solid active ingredient, it must be dissolved in a high-boiling point solvent or dissolved in a low-boiling point solvent and adsorbed, and then the solvent must be recovered, which increases the cost. Not suitable for active ingredients. Compared to these methods, the "coating method" involves adhering and coating the active ingredient onto a granular carrier using a binder or the like, and is relatively inexpensive in terms of cost. However, conventional coating methods use polyethylene glycol,
Polypropylene glycol (Special Publication No. 40-8920),
The active ingredient is simply attached to the granular carrier due to the viscosity of the binder such as polybutene (Japanese Patent Publication No. 47-1240), and the active ingredient is more easily peeled off from the granular carrier during storage, transportation, and spraying. It loses its original characteristics and lacks safety. To avoid this peeling, polyvinyl alcohol
24660), gum arabic (Special Publication No. 28699, Showa 42)
However, in these cases, since they are used as an aqueous solution or dissolved in an organic solvent, a drying step or a solvent recovery step is required, and they are subject to the same restrictions as the kneading method. In order to solve these problems, methods using various resins have been studied, but a method for producing coated granules that is practically satisfactory has not yet been completed. When a resin is used, workability during production is poor and it is difficult to obtain coated granules with uniformity. Furthermore, prevention of peeling of the active ingredient and prevention of solidification (agglomeration) during storage are contradictory, and it has not been possible to obtain a formulation that satisfies both. The present invention was completed as a result of intensive research aimed at solving various problems of conventional methods for coating granular carriers with agricultural chemical active ingredients. [Configuration of the Invention] The present invention provides a method for coating a particulate carrier with an agrochemical active ingredient using an organic isocyanate and the general formula: RO(CH 2 CH 2 O) o CONHX [wherein R is an alkyl group having 1 to 4 carbon atoms]. , n is an integer from 1 to 120, and X is a di- or poly-containing group containing at least one free isocyanato group.
Shows isocyanate residues. ] A water-emulsifiable isocyanate compound containing a nonionic surfactant represented by the above and water or a low-viscosity hydroxyl group-containing liquid compound are used, and if necessary, a physical property improver,
This is achieved by adding auxiliary agents such as stabilizers, colorants, or surfactants. The following method can be adopted as the manufacturing method of the present invention. (1) Put the granular carrier into a mixer, add a small amount of water and/or a low viscosity hydroxyl group-containing liquid compound, such as methanol, ethanol, polyethylene glycol or polypropylene glycol, etc. while mixing and homogenize it, and then Add a fixed amount of water-emulsified isocyanate compound and mix thoroughly until uniform. Further, agrochemical active ingredients and, if necessary, auxiliary agents are added and mixed. (2) A water emulsified isocyanate compound and water or a hydroxyl group-containing liquid compound are placed in a small container, mixed in advance, and added to the granular carrier in a mixer while being mixed. After thoroughly mixing until homogeneous, agrochemically active ingredients and, if necessary, auxiliary agents are added and further mixed. Conventional equipment, mixing methods, etc. can be used in this method. Next, the water-emulsifiable isocyanate compound, granular carrier, and agrochemical active ingredient used in the present invention will be explained. (1) Water emulsion type isocyanate compound Consists of organic isocyanate and nonionic surfactant. (a) Organic isocyanate: Any organic isocyanate can be used in the present invention, but organic isocyanates having a large number of isocyanate groups are particularly valuable. As illustrated below, they may be used alone or in a mixture of two or more. Aliphatic isocyanates such as hexamethylene diisocyanate; m-phenylene diisocyanate, p-phenylene diisocyanate, tolylene-2,4-diisocyanate,
Tolylene-2,6-diisocyanate, diphenylmethane-4,4'-diisocyanate,
Chlorphenylene-2,4-diisocyanate, naphthalene-1,5-diisocyanate, diphenyl-4,4'-diisocyanate, 4,4'-diisocyanato-3,3'-dimethyldiphenyl, 3-methyl-diphenylmethane-4,4 Aromatic isocyanates such as '-diisocyanate and diphenyl ether diisocyanate; cyclohexane-2,4-
Diisocyanate, cyclohexane-2,3
-Diisocyanate, 1-methylcyclohexyl-2,4-diisocyanate, 1-methylcyclohexyl-2,6-diisocyanate, bis(isocyanatocyclohexyl)-
Cycloaliphatic diisocyanates such as methane; 2,
4,6-triisocyanatotoluene, 2,
Triisocyanates such as 4,4'-triisocyanat diphenyl ether; general formula A methylene-crosslinked polyphenylene polyisocyanate produced by phosgenating a corresponding mixture of polyamines represented by the formula (wherein n represents an integer of 1 or more) obtained by condensation of aniline and formaldehyde. Included, but preferably,
aromatic diisocyanates or highly functional polyisocyanates, especially diisocyanates,
A crude mixture of methylene crosslinked polyphenylene polyisocyanates containing triisocyanates and highly functional polyisocyanates. (b) Nonionic surfactant General formula: RO(CH 2 CH 2 O) o CONHX (wherein, R represents an alkyl group having 1 to 4 carbon atoms, and is particularly preferably a methyl group. n is It represents an integer of 1 to 120, preferably in the range of 5 to 25.
represents a polyisocyanate residue having isocyanate groups, and the organic isocyanate described above,
For example, it may be a residue of diisocyanate, triisocyanate, or polyisocyanate. In the case of tolylene diisocyanate, X is

〔発明の効果〕〔Effect of the invention〕

本発明によれば、補造工皋においお加熱を芁し
ないこずより、熱に䞍安定な掻性成分及び揮散性
の毒性に匱い掻性成分にも適甚でき、たた圓然加
熱凊理蚭備も䞍芁でコスト的にも有利である。氎
乳化型む゜シアネヌト化合物ず氎たたは䜎粘床氎
酞基含有液䜓化合物ずの反応によりポリりレタン
を圢成させ蟲薬掻性成分を粒状担䜓に匷固に付着
させるこずにより、貯蔵運搬時、散垃時に掻性成
分が粒状担䜓より剥離、飛散等をするこずがなく
䜜業者ぞの危害防止、環境汚染等の防止がなされ
る。たた被芆が均䞀になされるこずにより貯蔵時
における固化団粒化もなく蟲園芞甚粒剀ずし
お奜たしい物理性状を有する。さらに本発明によ
れば掻性成分の溶出が制埡された持続性粒剀ずな
るこず、怍物䜓に付着しにくいこずより接觊的な
薬害を軜枛する等の利点を有する。 次に詊隓䟋を挙げお本発明の効果を説明する。
尚、詊隓には次の薬剀を比范のために補造し䜿甚
した。 参考䟋  硅砂粒床16〜42メツシナ93郚を混合機
に投入し、混合しながらポリブテン平均分子量
310郚を添加する。十分に混合した埌ベン
ダむオカルブ郚を添加・混合しお被芆型粒
剀を埗る。 参考䟋  硅砂粒床16〜42メツシナ90郚を混合機
に投入し、混合しながらポリブテン平均分子量
310郚を添加する。十分に混合した埌、ホ
ワむトカヌボン郚ずベンダむオカルブ
郚を添加・混合しお被芆型粒剀を埗る。 参考䟋  硅砂粒床16〜42メツシナ93郚を混合機
に投入し、混合しながらポリ゚チレングリコヌル
平均分子量200郚を添加する。十分に混
合した埌、ベンダむオカルブ郚を添加・混
合しお被芆型粒剀を埗る。 参考䟋  硅砂粒床16〜42メツシナ95.7郚を混合
機に投入し、混合しながらアクリルポリオヌル
埌蚘1.2郚を添加する。十分に混合した埌
ゞプニルメタン−4′−ゞむ゜シアネヌト
0.1郚を添加する。十分に混合した埌カルボス
ルフアン郚を添加・混合しお被芆型粒剀を
埗る。 本䟋に䜿甚したアクリルポリオヌルは 匏 で瀺されるアクリル酞゚ステルの重合物重合床
は〜20、分子量は500〜2400、氎酞基䟡は24で
ある。である。 参考䟋  炭酞カルシりム粒床65〜250メツシナ97.5
郚を混合機に投入し、混合しながらポリプロピ
レングリコヌル平均分子量10000.5郚を添
加する。十分に混合した埌ゞプニル゚ヌテルゞ
む゜シアネヌト0.5郚を添加する。さらに十
分混合した埌メ゜ミル1.5郚を添加・混合し
お被芆型粒剀を埗る。 参考䟋  硅砂粒床16〜42メツシナ91.55郚を混合
機に投入し、混合しながら氎1.0郚を添加す
る。十分に混合した埌メチレン架橋ポリプニレ
ンポリむ゜シアネヌトの粗補混合物む゜シアネ
ヌト基30含有1.2郚を添加する。さらに十
分混合した埌CVMP80郚ずクレヌ20郚を
予め混合したもの6.25郚を添加・混合しお被
芆型粒剀を埗る。 参考䟋  クレヌ93郚ずベンダむオカルブ郚ず
リグニンスルホン酞ナトリりム郚を混合
し、氎を添加し造粒噚により造粒し粒剀を埗る。 詊隓䟋  蟲薬掻性成分の剥離詊隓 第図に瀺した枬定装眮を甚いる。詊料10を
秀り取りガラスフむルタヌ11−−䞭に移
す。詊料を平均化させた埌バルブを開き、颚量30
分の割合で正確に分間空気を通じる。ガラ
スフむルタヌ内に残぀た詊料を回収しお有効成分
含有率を枬定し、剥離埌有効成分含有率
ずする。剥離前の有効成分含有率ず
の比范により剥離率を求めた。結果を第
衚に瀺す。 剥離率剥離前有効成分含有率−剥離埌有効成分含有率
剥離前有効成分含有率×100
According to the present invention, since heating is not required in the manufacturing process, it can be applied to active ingredients that are unstable to heat and volatile active ingredients that are weak in toxicity, and of course, there is no need for heat treatment equipment, which is advantageous in terms of cost. It is. By reacting a water-emulsifiable isocyanate compound with water or a low-viscosity hydroxyl group-containing liquid compound to form polyurethane and firmly adhering the agricultural chemical active ingredient to the granular carrier, the active ingredient can be peeled off from the granular carrier during storage, transportation, and spraying. There is no scattering, which prevents harm to workers and environmental pollution. Furthermore, because the coating is uniform, there is no solidification (agglomeration) during storage, and the granules have physical properties suitable for agricultural and horticultural granules. Further, according to the present invention, it has the advantage that it becomes a long-lasting granule with controlled elution of the active ingredient, and that it is less likely to adhere to plants, thereby reducing contact damage. Next, the effects of the present invention will be explained with reference to test examples.
The following drugs were manufactured and used in the test for comparison. Reference example 1 Silica sand (particle size 16-42 mesh) (93 parts) was put into a mixer, and while mixing, polybutene (average molecular weight
310) (2 parts). After thorough mixing, bendiocarb (5 parts) is added and mixed to obtain coated granules. Reference example 2 Silica sand (particle size 16-42 mesh) (90 parts) was put into a mixer, and while mixing, polybutene (average molecular weight
310) (2 parts). After mixing thoroughly, add white carbon (3 parts) and bendiocarb (5 parts).
part) is added and mixed to obtain coated granules. Reference Example 3 Silica sand (particle size 16-42 mesh) (93 parts) is placed in a mixer, and while mixing, polyethylene glycol (average molecular weight 200) (2 parts) is added. After thorough mixing, bendiocarb (5 parts) is added and mixed to obtain coated granules. Reference Example 4 Silica sand (particle size 16-42 mesh) (95.7 parts) is put into a mixer, and while mixing, acrylic polyol (described later) (1.2 parts) is added. After thorough mixing, diphenylmethane-4,4'-diisocyanate (0.1 part) is added. After thorough mixing, carbosulfan (3 parts) is added and mixed to obtain coated granules. The acrylic polyol used in this example has the formula It is a polymer of acrylic ester shown by (polymerization degree is 4 to 20, molecular weight is 500 to 2,400, and hydroxyl value is 24). Reference example 5 Calcium carbonate (particle size 65-250 mesh) (97.5
part) into a mixer, and while mixing, add polypropylene glycol (average molecular weight 1000) (0.5 part). After thorough mixing, add diphenyl ether diisocyanate (0.5 part). After thorough mixing, methomyl (1.5 parts) is added and mixed to obtain coated granules. Reference Example 6 Silica sand (particle size 16-42 mesh) (91.55 parts) is placed in a mixer, and water (1.0 part) is added while mixing. After thorough mixing, a crude mixture of methylene-crosslinked polyphenylene polyisocyanate (containing 30% isocyanate groups) (1.2 parts) is added. After thorough mixing, a premixed mixture of CVMP (80 parts) and clay (20 parts) (6.25 parts) is added and mixed to obtain coated granules. Reference Example 7 Clay (93 parts), bendiocarb (5 parts), and sodium lignosulfonate (2 parts) are mixed, water is added, and the mixture is granulated using a granulator to obtain granules. Test Example 1 (Peeling Test of Pesticide Active Ingredients) The measuring device shown in Figure 1 was used. Weigh 10 g of the sample and transfer it into a glass filter (11-G-2). After averaging the sample, open the valve and increase the air flow to 30
Aerate for exactly 2 minutes at a rate of /min. The sample remaining in the glass filter is collected and the active ingredient content (%) is measured, which is defined as the active ingredient content (%) after peeling. The peeling rate (%) was determined by comparison with the active ingredient content (%) before peeling. Results first
Shown in the table. Peeling rate = Active ingredient content before peeling - Active ingredient content after peeling / Active ingredient content before peeling x 100

【衚】【table】

【衚】【table】

【衚】 詊隓䟋  加圧貯蔵詊隓固化詊隓 詊料玄100を、ガラス板䞊においた盎埄cm
の鉄補円柱容噚底なしに入れ、25cm2にな
るよう鉄補重しを重せ加圧する。これを50℃の恒
枩槜䞭に日間貯蔵した埌、宀枩に日攟眮し、
円柱容噚をはずし固化状態を芳察する。次の刀定
基準により芋た結果を第衚に瀺す。 刀定基準 −固粒化なく良奜な流動性を有す。 䞀郚に団粒化が認められる。 党䜓に団粒化が認められ流動性を倱なう。
[Table] Test example 2 (Pressure storage test = solidification test) Approximately 100 g of sample was placed on a glass plate with a diameter of 5 cm.
Place it in a cylindrical iron container (bottomless) and pressurize it with iron weights to make it 25g/cm 2 . After storing this in a constant temperature bath at 50℃ for 2 days, it was left at room temperature for 1 day.
Remove the cylindrical container and observe the solidification state. Table 2 shows the results based on the following criteria. Judgment criteria -: Good fluidity without solidification. +: Agglomeration is observed in some parts. : Agglomeration is observed throughout and fluidity is lost.

【衚】【table】

【衚】【table】

【衚】 詊隓䟋  むネミズゟりムシ幌虫を甚いた残効性詊隓 5000分のアヌルのワグネルポツトを䜿甚し、
所定日に2.5葉期のむネを本株ずし、その株
元に所定量の粒剀を凊理し移怍した。移怍埌、ポ
ツトは屋根付圃堎内に保存し氎深をcmずした。
幌虫の接皮はあらかじめ枩宀内のコンテナヌで成
虫を産卵させ、むネを補怍しながら飌育したもの
を甚いた。ポツト圓り各10頭攟飌した。調査は
幌虫の接皮週間埌に、むネ根郚を氎掗し幌虫数
を調べた。結果を第衚に瀺す。
[Table] Test Example 3 (Residual efficacy test using rice weevil larvae) Using a Wagner pot of 1/5000 are,
On a given day, 5 rice plants at the 2.5 leaf stage were each treated with a given amount of granules at the base of each plant and transplanted. After transplanting, the pots were stored in a covered field with a water depth of 3 cm.
For inoculation of larvae, adult larvae were spawned in advance in a container in a greenhouse and reared while supplemented with rice. Ten animals of each type were released per pot. In the investigation, one week after inoculating the larvae, the roots of the rice plants were washed with water and the number of larvae was determined. The results are shown in Table 3.

【衚】 衚䞭䟋えば21日のデヌタは、薬剀凊理埌21日目
に幌虫を接皮し、その週間埌に幌虫数を調べた
ものである。 以䞊の結果より、本発明の粒剀は参考䟋に比し
残効性においお優れるこずが刀る。 詊隓䟋  むネに察する薬害詊隓 培土ずしおパヌルマツト号を充填した20×
28.5×cmのプラスチツク育苗箱䞭の2.5葉期の
むネ品皮晎々にクミテンクミアむ化孊工
業株匏䌚瀟補展着剀の3000倍垌釈液をむネ葉面
に十分に散垃した。その埌、粒剀100を凊理し15
分埌に粒剀を払い萜ずし、200mlの氎を䞊郚より
朅氎した。〜時間埌に田怍機を䜿甚しお育苗
箱のむネ苗を切断し、むネ本株のものを10×
10cmのプラスチツク角鉢に移怍した。詊隓は枩宀
内で行ない移怍埌所定日に薬害、草䞈を調査し
た。結果を第衚に瀺す。 薬害刀定基準 −無害 䞭害 埮害 匷害 軜害 〓〓枯死
[Table] For example, the data on the 21st day in the table indicates that larvae were inoculated on the 21st day after the drug treatment, and the number of larvae was examined one week later. From the above results, it can be seen that the granules of the present invention are superior in residual effect compared to the reference examples. Test example 4 (Pyrotoxicity test on rice) 20× filled with Pearl Mats No. 1 as the soil
A 3000-fold diluted solution of Kumiten (spreading agent manufactured by Kumiai Chemical Industry Co., Ltd.) was sufficiently sprayed on the leaf surfaces of rice plants (variety: Haremoe) at the 2.5 leaf stage in a 28.5 x 3 cm plastic seedling box. Then process the granules 100 and 15
After a few minutes, the granules were shaken off and 200 ml of water was sprinkled from the top. After 2 to 3 hours, cut the rice seedlings in the nursery box using a rice transplanter, and divide 5 rice plants into 10×
Transplanted into a 10cm square plastic pot. The test was conducted in a greenhouse, and chemical damage and plant height were investigated on a designated day after transplantation. The results are shown in Table 4. Chemical damage determination criteria -: Harmless: Moderate damage +: Slight damage: Severe damage: Light damage 〓〓: Withering

〔実斜䟋〕〔Example〕

以䞋に実斜䟋を瀺しお本発明をさらに詳しく説
明する。なお実斜䟋における郚たたははすべお
重量郚たたは重量を瀺す。 実斜䟋  硅砂粒床16〜42メツシナ93.4郚を混合
機に投入し、混合しながら氎0.7郚を添加す
る。十分に混合した埌、埌蚘氎乳化型む゜シアネ
ヌト化合物0.9郚を添加する。さらに十分混
合した埌ベンダむオカルブ郚を添加・混合
しお被芆型粒剀を埗る。 実斜䟋  炭酞カルシナりム粒床65〜250メツシナ
97.6郚を混合機に投入し、混合しながらポリ
゚チレングリコヌル平均分子量2000.4郚
を添加する。十分に混合した埌、埌蚘氎乳化型む
゜シアネヌト化合物0.5郚を添加する。さら
に十分混合した埌メ゜ミル1.5郚を添加・混
合しお被芆型粒剀を埗る。 実斜䟋  硅砂粒床16〜32メツシナ94.4郚を混合
機に投入し、混合しながら、予め小型容噚で混合
した氎0.7郚ず埌蚘氎乳化型む゜シアネヌト
化合物0.9郚を添加する。十分に混合した埌
ダむアゞノン郚をメ゜ミル郚を添
加・混合しお被芆型粒剀を埗る。 実斜䟋  尿玠粒床65〜250メツシナ95.7郚を混合
機に投入し、混合しながらポリ゚チレングリコヌ
ル平均分子量2000.6郚を添加する。十分
に混合した埌、埌蚘氎乳化型む゜シアネヌト化合
物0.7郚を添加する。さらに十分混合した埌
カルボスルフアン郚を添加・混合しお被芆
型粒剀を埗る。 実斜䟋  硅砂粒床16〜42メツシナ91.55郚を混合
機に投入し、混合しながら氎1.0郚を添加す
る。十分に混合した埌、埌蚘氎乳化型む゜シアネ
ヌト化合物1.2郚を添加する。さらに十分混
した埌CVMP80郚ずクレヌ20郚を予め混
合したもの6.25郚を添加・混合しお被芆型粒
剀を埗る。 実斜䟋  硅砂粒床65〜250メツシナ90.3郚を混合
機に投入し、混合しながら予め小型容噚で混合た
氎1.3郚ず埌蚘氎乳化型む゜シアネヌト化合
物1.4郚を添加する。十分に混合した埌ベン
ダむオカルブ郚ずトリシクラゟヌル
郚を添加・混合しお被芆型粒剀ずする。 実斜䟋  炭酞カルシナりム粒床16〜32メツシナ
93.4郚を混合機に投入し、混合しながら氎
0.3郚ずポリプロピレングリコヌル平均分子
量10000.4郚を添加する。十分に混合した
埌、埌蚘氎乳化型む゜シアネヌト化合物0.9
郚を添加する。さらに十分混合した埌ナプロア
ニリド郚、CNP郚、リグニンスルホン
酞ナトリりム郚ず着色剀郚を添加・
混合しお被芆型粒剀を埗る。 実斜䟋  硅砂粒床65〜250メツシナ97郚を混合機
に投入し、混合しながら、氎0.4郚を添加す
る。十分に混合した埌、埌蚘氎乳化型む゜シアネ
ヌト化合物0.6郚を添加する。さらに、十分
混合した埌、MPMC郚を添加・混合しお被
芆型粒剀を埗る。 実斜䟋  造粒基剀粒床16〜32メツシナ92.3郚を
混合機に投入し、混合しながら、予め小型容噚で
混合した氎1.3郚を埌蚘氎乳化型む゜シアネ
ヌト化合物1.4郚を添加する。十分に混合し
た埌、MIPC郚を添加混合しお被芆型粒剀
を埗る。 実斜䟋 10 硅砂粒床65〜250メツシナ94.6郚を混合
機に投入し、混合しながら、予め小型容噚で混合
した氎0.5郚ず埌蚘氎乳化型む゜シアネヌト
化合物0.7郚を添加する。十分に混合した
埌、MAF10郚をクレヌ90郚ず予め混合し
たもの郚を添加混合し、さらに十分に混合した
埌、ポリプロピレングリコヌル平均分子量
10000.2郚を添加混合しお被芆型粒剀を埗
る。 次に䞊蚘実斜䟋においお甚いた氎乳化型む゜シ
アネヌト化合物に぀いお第衚に蚘す。尚非むオ
ン界面掻性剀は前述の䞀般匏で衚わされる。
The present invention will be explained in more detail by showing examples below. In addition, all parts or % in the examples indicate parts by weight or % by weight. Example 1 Silica sand (particle size 16-42 mesh) (93.4 parts) is placed in a mixer, and water (0.7 parts) is added while mixing. After thorough mixing, water emulsion type isocyanate compound A (0.9 parts) described later is added. After thorough mixing, bendiocarb (5 parts) is added and mixed to obtain coated granules. Example 2 Calcium carbonate (particle size 65-250 mesh)
(97.6 parts) into a mixer, and while mixing, polyethylene glycol (average molecular weight 200) (0.4 parts)
Add. After thorough mixing, water emulsion type isocyanate compound B (0.5 part), which will be described later, is added. After thorough mixing, methomyl (1.5 parts) is added and mixed to obtain coated granules. Example 3 Silica sand (particle size 16 to 32 mesh) (94.4 parts) was put into a mixer, and while mixing, water (0.7 parts) previously mixed in a small container and water emulsified isocyanate compound C (0.9 parts) described below were added. Added. After thorough mixing, diazinon (3 parts) and methomyl (1 part) are added and mixed to obtain coated granules. Example 4 Urea (particle size 65-250 mesh) (95.7 parts) is placed in a mixer, and while mixing, polyethylene glycol (average molecular weight 200) (0.6 parts) is added. After thorough mixing, water emulsion type isocyanate compound C (0.7 parts) described later is added. After thorough mixing, carbosulfan (3 parts) is added and mixed to obtain coated granules. Example 5 Put silica sand (particle size 16-42 mesh (91.55 parts) into a mixer, and add water (1.0 parts) while mixing. After thorough mixing, add water emulsion type isocyanate compound D (1.2 parts) described below. After mixing thoroughly, a premixed mixture of CVMP (80 parts) and clay (20 parts) (6.25 parts) is added and mixed to obtain coated granules. Example 6 Silica sand (particle size 65~ 250 mesh) (90.3 parts) into a mixer, and while mixing, add water (1.3 parts) previously mixed in a small container and water emulsion type isocyanate compound B (1.4 parts) described below.After mixing thoroughly, put into a bender. Iocarb (5 parts) and tricyclazole (2 parts)
part) is added and mixed to form coated granules. Example 7 Calcium carbonate (particle size 16-32 mesh)
(93.4 parts) into a mixer, and while mixing, add water (0.3 parts) and polypropylene glycol (average molecular weight 1000) (0.4 parts). After thoroughly mixing, add water emulsion type isocyanate compound E (0.9
part). After further mixing thoroughly, naproanilide (2 parts), CNP (1 part), sodium ligninsulfonate (1 part) and colorant (1 part) were added.
Mix to obtain coated granules. Example 8 Silica sand (particle size 65-250 mesh) (97 parts) is placed in a mixer, and while mixing, water (0.4 parts) is added. After thorough mixing, water emulsion type isocyanate compound F (0.6 part), which will be described later, is added. Furthermore, after thorough mixing, MPMC (2 parts) is added and mixed to obtain coated granules. Example 9 Granulation base (particle size 16-32 mesh) (92.3 parts) was put into a mixer, and while mixing, water (1.3 parts) previously mixed in a small container was added to water emulsion type isocyanate compound G (1.4 parts) described below. part). After thorough mixing, MIPC (5 parts) is added and mixed to obtain coated granules. Example 10 Silica sand (particle size 65 to 250 mesh) (94.6 parts) was put into a mixer, and while mixing, water (0.5 parts), which had been mixed in advance in a small container, and water emulsion type isocyanate compound H (0.7 parts) described below were added. Added. After thorough mixing, 4 parts of MAF (10 parts) and clay (90 parts) were added and mixed, and after further mixing, polypropylene glycol (average molecular weight
1000) (0.2 parts) to obtain coated granules. Next, Table 5 shows the water emulsion type isocyanate compounds used in the above examples. The nonionic surfactant is represented by the above-mentioned general formula.

【衚】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第図は詊隓䟋で䜿甚した枬定装眮を瀺す。 図䞭 は詊料、はガラスフむルタヌ、は
流量蚈、はバルブ、はコンプレツサヌであ
る。
FIG. 1 shows the measuring device used in Test Example 1. In the figure, 1 is a sample, 2 is a glass filter, 3 is a flow meter, 4 is a valve, and 5 is a compressor.

Claims (1)

【特蚱請求の範囲】  粒状担䜓に蟲薬掻性成分を被芆せしめるの
に、有機む゜シアネヌト及び䞀般匏 ROCH2CH2OoCONHX 〔匏䞭は炭玠原子〜個を有するアルキル基
を、は〜120の敎数を、は少なくずも個
の遊離む゜シアナト基を含有するゞ−又はポリ−
む゜シアネヌトの残基を瀺す。〕で衚わされる非
むオン界面掻性剀を含有する氎乳化型む゜シアネ
ヌト化合物を䜿甚するこずを特城ずする被芆型蟲
園芞甚粒剀の補造法。
[Scope of Claims] 1. Organic isocyanate and general formula: RO(CH 2 CH 2 O) o CONHX [wherein R is an alkyl group having 1 to 4 carbon atoms] , n is an integer from 1 to 120, and X is a di- or poly-containing group containing at least one free isocyanato group.
Shows isocyanate residues. A method for producing coated agricultural and horticultural granules, which comprises using a water-emulsifiable isocyanate compound containing a nonionic surfactant represented by the following.
JP8230283A 1983-05-11 1983-05-11 Production of coated agricultural and horticultural granule Granted JPS59206302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8230283A JPS59206302A (en) 1983-05-11 1983-05-11 Production of coated agricultural and horticultural granule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8230283A JPS59206302A (en) 1983-05-11 1983-05-11 Production of coated agricultural and horticultural granule

Publications (2)

Publication Number Publication Date
JPS59206302A JPS59206302A (en) 1984-11-22
JPS644484B2 true JPS644484B2 (en) 1989-01-25

Family

ID=13770751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8230283A Granted JPS59206302A (en) 1983-05-11 1983-05-11 Production of coated agricultural and horticultural granule

Country Status (1)

Country Link
JP (1) JPS59206302A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3761649B2 (en) * 1996-12-11 2006-03-29 䜏友化孊株匏䌚瀟 Method for producing granular agrochemical composition
US5851261A (en) * 1996-12-30 1998-12-22 Bayer Corporation Process for the production of polyurea encapsulated fertilizer particles and the encapsulated fertilizer particles produced by this process
JP3808637B2 (en) * 1998-09-11 2006-08-16 䜏友化孊株匏䌚瀟 Agrochemical granules
US6623555B1 (en) * 2000-06-01 2003-09-23 Jukka P. Haverinen Composite precipitated calcium carbonate/silicon compound pigment and method of making same
JP2004224609A (en) * 2003-01-21 2004-08-12 Chisso Corp Coated biologically active substance particle
AU2006229012B8 (en) 2005-03-28 2011-04-14 Sumitomo Chemical Company, Limited Pesticidal composition

Also Published As

Publication number Publication date
JPS59206302A (en) 1984-11-22

Similar Documents

Publication Publication Date Title
US4223070A (en) Impregnated porous granules with slow release pore membranes and process therefor
US3889417A (en) Method for preparing horticultural foam structures
US4772490A (en) Method for producing a water-permeable covering on granular water-soluble substances
CA2873651C (en) Encapsulated particle
US3812619A (en) Horticultural foam structures and method
US4339550A (en) Foam products
US3812618A (en) Seed-foam-fabric composite
US3920436A (en) Artificial protective environment for plants
MXPA06013643A (en) An encapsulated particle.
EP0008207A2 (en) Insecticidal compositions, and preparation and use thereof
JPS644484B2 (en)
JP2011178650A (en) Method for producing coated granular water-soluble substance
EP0523198B1 (en) Impregnated porous granules for controlled release of liquid material and process therefor
CA1122425A (en) Process for the manufacture of biologically active granules
JPS644483B2 (en)
PT96469A (en) PROCESS FOR THE PREPARATION OF CONTROLLED LIBERATION GRANULES
KR840002324B1 (en) Composition of agrichemical
KR820002243B1 (en) Imregnated porous granules with slow release pore membranes
JP2003183104A (en) Coated biologically active substance
JPH0818925B2 (en) Coated granules for agricultural and horticultural use and method for producing the same
JPS58181782A (en) Manufacture of granulated fertilizer or agricultural drug
JPS58140005A (en) Production of fungicidal composition for agricultural and horticultural purposes
US4493727A (en) Plant growth regulating method
JPS58205536A (en) Granulating method of agricultural chemical or fertilizer
JPH01287002A (en) Granular pesticide composition