JPS644150B2 - - Google Patents

Info

Publication number
JPS644150B2
JPS644150B2 JP2361480A JP2361480A JPS644150B2 JP S644150 B2 JPS644150 B2 JP S644150B2 JP 2361480 A JP2361480 A JP 2361480A JP 2361480 A JP2361480 A JP 2361480A JP S644150 B2 JPS644150 B2 JP S644150B2
Authority
JP
Japan
Prior art keywords
rotating shaft
dog
floating
detector
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2361480A
Other languages
Japanese (ja)
Other versions
JPS56119857A (en
Inventor
Fumio Kasagami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2361480A priority Critical patent/JPS56119857A/en
Publication of JPS56119857A publication Critical patent/JPS56119857A/en
Publication of JPS644150B2 publication Critical patent/JPS644150B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • G01P13/02Indicating direction only, e.g. by weather vane
    • G01P13/04Indicating positive or negative direction of a linear movement or clockwise or anti-clockwise direction of a rotational movement

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Description

【発明の詳細な説明】 本発明は加工具を支持して回動する回転軸の回
転方向教示機構に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rotational direction teaching mechanism for a rotating shaft that supports and rotates a processing tool.

一般に溶接用又は溶断用のトーチなどの加工具
を回転軸に支持し、この回転軸の最大回転角度が
例えば360+θ度である範囲内で適宜に回転軸を
回動させると共に支持機構により回転軸の位置を
X、YおよびZ軸方向に適宜に制御して任意の加
工が施されている。この場合、コンピユータを用
いたいわゆる工業用ロボツトにより加工が行なわ
れ、例えば第2図に示されるごとく、A点を基準
点即ち原点とし、例えば反時計方向および時計方
向に夫々180+θ/2度の範囲内で入力データー
に基いて回動される。ところで回転軸の現位置が
基準点Aに対して時計方向もしくは反時計方向の
いずれかの方向に何度回動した位置であるかは、
コンピユーターを使用するためそのプログラムの
作成次第では容易に認知し得ることができるが、
特別な手段を施さない限り停電後や、主電源を開
放後に再起動させても回転軸の現位置の認知が不
能になる。さらに、第2図において、例えばエア
センサー又はホトセンサー等の検知器を設けた場
合、回転軸が例えばBC⌒間の同じ位置に位置する
とき、回転軸の回転方向の如何に拘わらず上記検
知器より同一の検知信号が発生する。従つてこの
ままの状態で回転軸を基準点に復帰させるために
は回転軸をいずれの方向に回動させればよいかは
判別できない。勿論回転軸が基準点からいずれの
方向を経て現位置に到達したかを認知するための
プログラムを作成すれば、回転軸を復帰させるた
めの回転方向が判別されうるが、上記のごとく停
電後や主電源開放後に再起動させたときには上記
判別が不能となる。
Generally, a processing tool such as a torch for welding or fusing is supported on a rotating shaft, and the rotating shaft is rotated appropriately within a range where the maximum rotation angle of the rotating shaft is, for example, 360 + θ degrees, and a support mechanism is used to rotate the rotating shaft. Arbitrary processing is performed by appropriately controlling the position in the X, Y, and Z axis directions. In this case, the processing is performed by a so-called industrial robot using a computer, and as shown in FIG. It is rotated based on the input data within. By the way, how many degrees has the current position of the rotating shaft rotated in either the clockwise or counterclockwise direction with respect to the reference point A?
Since it uses a computer, it can be easily recognized depending on how the program is created, but
Unless special measures are taken, the current position of the rotating shaft will not be recognized even if the system is restarted after a power outage or after the main power is disconnected. Furthermore, in FIG. 2, if a detector such as an air sensor or a photo sensor is provided, and the rotating shaft is located at the same position between BC⌒, the detector will The same detection signal is generated. Therefore, it is impossible to determine in which direction the rotary shaft should be rotated in order to return the rotary shaft to the reference point in this state. Of course, if you create a program to recognize in which direction the rotating shaft has arrived at its current position from the reference point, you can determine the direction of rotation to return the rotating shaft, but as mentioned above, after a power outage or When the main power is turned off and then restarted, the above determination becomes impossible.

即ち、第2図において、回転軸が基準点Aより
反時計方向に回動してBC⌒間の点Dに位置すると
きに回転軸の復帰時に間違つて回転軸が更に反時
計方向に回動して基準点Aに到達した場合、回転
軸は実際の基準位置より360度余分に回転した状
態となる。このように1回転余分に回転した位置
を基準点として回転軸が回動する場合、外部より
回転軸側に連結される各種ケーブル類が回転軸に
巻きついて、各種ケーブル類が損傷されて切断さ
れる虞れがあり、かつ各種ケーブル類が回転軸な
どに巻きつくと回転軸の回動が阻害され、このた
め高精度な加工が要求される工業用ロボツトには
適さなかつた。
That is, in Fig. 2, when the rotating shaft rotates counterclockwise from reference point A and is located at point D between BC⌒, when the rotating shaft returns, the rotating shaft rotates further counterclockwise by mistake. When the rotary shaft moves and reaches the reference point A, the rotating shaft is rotated 360 degrees more than the actual reference position. When the rotating shaft rotates using the position rotated one rotation as the reference point in this way, various cables connected to the rotating shaft from the outside may become wrapped around the rotating shaft, causing damage to the various cables and causing them to be cut. Moreover, if various cables are wrapped around the rotating shaft, the rotation of the rotating shaft is obstructed, and therefore it is not suitable for industrial robots that require high-precision machining.

本発明の目的は、加工具を支持する回転軸がオ
ーバーラツプするよう回動しつつ加工するときの
復帰時における回転軸の回転方向教示機構を提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a mechanism for teaching the rotational direction of a rotary shaft when returning to a machine when the rotary shafts supporting the processing tools are rotated so as to overlap with each other during machining.

以下図示の実施例により本発明を詳細に説明す
る。
The present invention will be explained in detail below with reference to the illustrated embodiments.

第3図および第4図において、1は図示しない
駆動機により回動される回転軸で、加工具例えば
溶接用トーチTを支持している。2は適宜の弧状
突出部201を有するフローテイングドグで、ス
ラストリング3およびブツシユ4を介して回転軸
1に対して回転自在に支持されている。5は略半
円弧状突出部501を有するドグで回転軸1と一
体となるよう支持されている。6はドグ5に一体
的に支持されたバネ支持部材、7,7はフローテ
イングドグ2に立設されたバネ支持部材、8,8
はバネ支持部材6および7により支持された例え
ばコイルバネで、回転軸1が回動したときにフロ
ーテイングドグ2が略同期して回動するよう構成
されている。9はストツパーでフローテイングド
グ2が時計方向又は反時計方向に夫々所定量回動
したときにフローテイングドグ2の突出面202
又は203がストツパー9に当接するよう構成さ
れている。11乃至13は夫々検知器で、例えば
夫々光電式検知器が用いられ、検知器11および
12はフローテイングドグの弧状突出部に対応
し、検知器13はドグ5の略半円弧状突出部に対
応するよう配設されている。
In FIGS. 3 and 4, reference numeral 1 denotes a rotating shaft rotated by a drive machine (not shown), which supports a processing tool such as a welding torch T. 2 is a floating dog having a suitable arc-shaped protrusion 201, and is rotatably supported with respect to the rotating shaft 1 via a thrust ring 3 and a bush 4. Reference numeral 5 denotes a dog having a substantially semicircular arc-shaped protrusion 501 and is supported integrally with the rotating shaft 1 . 6 is a spring support member integrally supported by the dog 5, 7, 7 is a spring support member installed upright on the floating dog 2, 8, 8
are, for example, coil springs supported by spring support members 6 and 7, and are configured so that when the rotating shaft 1 rotates, the floating dog 2 rotates substantially synchronously. Reference numeral 9 denotes a stopper which is used to stop the floating dog 2 from projecting from the surface 202 when the floating dog 2 rotates by a predetermined amount clockwise or counterclockwise, respectively.
Or 203 is configured to abut against the stopper 9. 11 to 13 are respective detectors, for example, photoelectric detectors are used respectively, the detectors 11 and 12 correspond to the arcuate protrusion of the floating dog, and the detector 13 corresponds to the approximately semicircular arcuate protrusion of the dog 5. It is arranged to correspond.

上記の構成において、回転軸1が基準位置にあ
るときのドグ5およびフローテイングドグ2の状
態が例えば第3図に示される状態であり、この状
態より回転軸1が時計方向に角度;αだけ回動す
れば、回転軸1と共に一体的に構成されたバネ支
持部材6も回動し、これによりバネ802が引張
られるためフローテイングドグ2も回動する。即
ち第5図に示されるごとく回動軸1が回動したと
きにフローテイングドグ2は略同期して回動す
る。この後、更に回転軸1が時計方向に回動すれ
ば、フローテイングドグ2の突出面202がスト
ツパー9に当接し、この後は回転軸1、ドグ5お
よびバネ支持部材6のみが時計方向に回動する。
第6図はフローテイングドグ2がストツパー9に
当接した後、更に回転軸1が時計方向に或る角度
回動した状態を示す図である。第3図に示される
状態から回転軸1が反時計方向に回動する場合、
フローテイングドグ2は所定角度までは回転軸1
と共に回動し、ストツパー9に当接した後は、回
転軸1、ドグ5およびバネ支持部材6のみが反時
計方向に回動する。
In the above configuration, the state of the dog 5 and the floating dog 2 when the rotating shaft 1 is at the reference position is, for example, the state shown in FIG. 3, and from this state the rotating shaft 1 is moved clockwise by an angle α When the rotating shaft 1 rotates, the spring support member 6 integrally formed with the rotating shaft 1 also rotates, and as a result, the spring 802 is pulled, so that the floating dog 2 also rotates. That is, as shown in FIG. 5, when the rotation shaft 1 rotates, the floating dog 2 rotates substantially synchronously. After this, if the rotating shaft 1 further rotates clockwise, the protruding surface 202 of the floating dog 2 will come into contact with the stopper 9, and after this, only the rotating shaft 1, dog 5, and spring support member 6 will rotate clockwise. Rotate.
FIG. 6 shows a state in which the rotating shaft 1 has further rotated a certain angle clockwise after the floating dog 2 has come into contact with the stopper 9. When the rotating shaft 1 rotates counterclockwise from the state shown in FIG.
The floating dog 2 rotates around the rotation axis 1 up to a certain angle.
After the rotation shaft 1, the dog 5, and the spring support member 6 rotate in the counterclockwise direction, only the rotation shaft 1, the dog 5, and the spring support member 6 rotate in the counterclockwise direction.

次に検知器11乃至13の検知状態について説
明すると、第3図に示されるごとく回転軸1が基
準位置にあるとき、11乃至13の検知器は夫々
光のさえぎられていない第1の検知状態にある。
この状態から、例えば回転軸1が時計方向に回動
すれば、ドグ5の突出部により検知器13は光の
さえぎられた第2の検知状態となる。その後さら
に回転軸1が時計方向に回動して、フローテイン
グドグ2がストツパー9に接近又は当接したとき
に検知器12は光のさえぎられた第2の検知状態
となり、しかもこの後回転軸1が更に時計方向に
回転しても検知器12は第2の検知状態を持続す
る。一方、第3図に示される状態から回転軸1が
反時計方向に回動する場合、所定角度以上回転軸
1が回動すれば検知器11は光のさえぎられた第
2の検知状態となる。第2図において、回転軸1
がA点より時計方向に回動する場合、点Bより点
C側の範囲にまで回動しているときに検知器12
が第2の検知状態となり、回転軸1を復帰させる
場合、図示しない駆動機により回転軸1が反時計
方向に回動される。又回転軸1がA点より反時計
方向に回動する場合、点Cより点B側の範囲にま
で回動しているときに検知器11が第2の検知状
態となり、この場合上記とは逆に回転軸1が時計
方向に回動される。なお、第2図において、回転
軸1がラツプしない範囲即ちAC⌒間又はAB⌒間に
位置するとき検知器13又は2以上の適宜の検知
器により検知して回転軸1の正確な復帰を行なわ
せることができる。
Next, the detection states of the detectors 11 to 13 will be explained. When the rotating shaft 1 is at the reference position as shown in FIG. 3, the detectors 11 to 13 are in the first detection state where light is not blocked. It is in.
For example, if the rotating shaft 1 rotates clockwise from this state, the detector 13 enters a second detection state in which light is blocked by the protrusion of the dog 5. After that, when the rotating shaft 1 further rotates clockwise and the floating dog 2 approaches or contacts the stopper 9, the detector 12 enters the second detection state where the light is blocked, and after this, the rotating shaft 1 further rotates clockwise, the detector 12 maintains the second detection state. On the other hand, when the rotating shaft 1 rotates counterclockwise from the state shown in FIG. 3, if the rotating shaft 1 rotates by a predetermined angle or more, the detector 11 enters the second detection state where the light is blocked. . In Figure 2, the rotation axis 1
When the detector 12 rotates clockwise from point A, the detector 12 rotates from point B to point C.
becomes the second detection state and when the rotating shaft 1 is to be returned, the rotating shaft 1 is rotated counterclockwise by a drive machine (not shown). Also, when the rotating shaft 1 rotates counterclockwise from point A, the detector 11 enters the second detection state when it rotates from point C to the point B side, and in this case, the above is different. Conversely, the rotating shaft 1 is rotated clockwise. In addition, in FIG. 2, when the rotating shaft 1 is located in a range where it does not wrap, that is, between AC⌒ or AB⌒, the detector 13 or two or more appropriate detectors detects this, and the rotating shaft 1 is accurately returned. can be set.

上記のごとく回転軸1がラツプする区間即ち
BC⌒間に位置するとき検知器11又は12が第2
の検知状態となり、これにより回転軸の復帰は正
確に行なわれる。しかもBC⌒間に回転軸が位置す
るときの回転軸の復帰操作前に停電したり又は誤
つて主電源が開放の状態になつた後、再起動して
も検知器11又は12により回転軸の復帰回転方
向が明確であるため、従来のごとく回転軸が基準
位置に対して360度余分に回転した位置まで回動
することはない。
As mentioned above, the area where the rotation axis 1 wraps, that is,
BC⌒When the detector 11 or 12 is located between
The rotational axis is returned accurately. Moreover, even if the power is interrupted or the main power supply is accidentally turned off before the rotation axis is reset when the rotation axis is located between BC⌒, the detector 11 or 12 detects that the rotation axis is Since the direction of return rotation is clear, the rotating shaft does not rotate to a position that is an extra 360 degrees relative to the reference position as in the conventional case.

上記説明のうちフローテイングドグに当接する
ストツパーは左回転用および右回転用として夫々
別々にしかも周方向の位置が調整自在となるよう
に構成すればフローテイングドグの検知角度を適
宜に調整することができる。また検知器を固定
し、フローテイングドグを回動自在に構成すれば
検知器の連結線が固定状態となるため好ましいが
検知器を可動にし、この検知器を作動させる操作
部材を固定とすることができる。
In the above description, if the stopper that comes into contact with the floating dog is configured for left rotation and right rotation separately, and the position in the circumferential direction can be adjusted, the detection angle of the floating dog can be adjusted appropriately. I can do it. Furthermore, it is preferable to fix the detector and make the floating dog rotatable because the connecting line of the detector will be in a fixed state, but it is preferable to make the detector movable and to make the operating member that operates the detector fixed. I can do it.

さらに検知器は光電式のものであればコンパク
トになるため好ましいが磁界又は圧力などを利用
した任意の検知器とすることができる。またバネ
支持部材6は回転軸1に支持することもできる。
この場合回転軸に対してバネ支持部材6の基部を
割クランプにて狭着するように構成すれば回転軸
に対するフローテイングドグ2の相対位置を自在
に調整することができる。
Further, it is preferable that the detector be a photoelectric type because it is compact, but any detector that uses a magnetic field or pressure can be used. Further, the spring support member 6 can also be supported on the rotating shaft 1.
In this case, if the base of the spring support member 6 is clamped to the rotating shaft using a split clamp, the relative position of the floating dog 2 to the rotating shaft can be freely adjusted.

以上のように本発明によれば、構造が簡単であ
つて、回転軸の復帰回転方向が機械的に明確に判
別されるから、操作の途中で一担主電源が開放さ
れても何ら影響がなく、しかも回転軸の復帰が正
確に行なわれるために、従来のごとく回転軸が1
回転余分に回転した位置を基準位置とすることは
なく、従つて各種ケーブル類が損傷されて切断さ
れるという従来の問題点が生起することは全くな
く、かつ必要以上に各種ケーブル類が回転軸など
に巻きつくことはないため高精度の加工を行なう
回転装置を備えた工業用ロボツトに用いればより
有益である。
As described above, according to the present invention, the structure is simple and the direction of return rotation of the rotary shaft is clearly determined mechanically, so there is no effect even if the main power supply is disconnected during operation. Moreover, because the rotational axis returns accurately, the rotational axis is
The position rotated by an extra rotation is not used as the reference position, so the conventional problem of various cables being damaged and cut does not occur, and the various cables are not connected to the rotation axis more than necessary. Since it does not wrap around objects, it is more useful if it is used in industrial robots equipped with rotating devices that perform high-precision machining.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る教示機構を用いるに好適
な回転装置を示す正面図、第2図は第1図の平面
図、第3図は本発明の実施例を示す要部平面図、
第4図は第3図の縦断面図、第5図および第6図
は夫々第3図の動作説明図である。 1……回転軸、2……フローテイングドグ、8
……バネ、9……ストツパー、11〜13……検
知器。
FIG. 1 is a front view showing a rotating device suitable for using the teaching mechanism according to the present invention, FIG. 2 is a plan view of FIG. 1, and FIG. 3 is a plan view of essential parts showing an embodiment of the present invention.
4 is a longitudinal sectional view of FIG. 3, and FIGS. 5 and 6 are explanatory diagrams of the operation of FIG. 3, respectively. 1...Rotating shaft, 2...Floating dog, 8
... Spring, 9 ... Stopper, 11-13 ... Detector.

Claims (1)

【特許請求の範囲】[Claims] 1 回転軸の左右回転により相互にオーバラツプ
するように回転される回転軸と、該回転軸に対し
て回動自在に配設されたフローテイングドグと、
回転軸と一体的に支持されたバネ支持部材と、両
端がフローテイングドグとバネ支持部材とに支持
されてフローテイングドグを右方向と左方向とに
夫々付勢する一対のバネ部材と、回転軸がオーバ
ラツプするように回転されてもフローテイングド
グがオーバラツプすることのないようにフローテ
イングドグの左右回転位置を夫々所定位置に規制
するストツパーと、前記ストツパーにより規制さ
れる右回転および左回転のフローテイングドグを
夫々検知する第1の検知器と、前記回転軸のオー
バラツプしない回転位置の状態を検知するための
ドグおよび第2の検知器とを配設してなる回転軸
の回転方向教示機構。
1. A rotating shaft that is rotated so as to overlap with each other due to left and right rotation of the rotating shaft, and a floating dog that is rotatably disposed with respect to the rotating shaft;
a spring support member integrally supported with the rotating shaft; a pair of spring members whose ends are supported by the floating dog and the spring support member to bias the floating dog in the rightward and leftward directions, respectively; A stopper restricts the left and right rotational positions of the floating dog to respective predetermined positions so that the floating dogs do not overlap even when the shafts are rotated so as to overlap, and a rightward rotation and a leftward rotation controlled by the stopper are provided. A rotational direction teaching mechanism for a rotating shaft, comprising a first detector for respectively detecting a floating dog, and a dog and a second detector for detecting a non-overlapping rotational position state of the rotating shaft. .
JP2361480A 1980-02-26 1980-02-26 Instructing mechanism for rotating direction of rotational shaft Granted JPS56119857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2361480A JPS56119857A (en) 1980-02-26 1980-02-26 Instructing mechanism for rotating direction of rotational shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2361480A JPS56119857A (en) 1980-02-26 1980-02-26 Instructing mechanism for rotating direction of rotational shaft

Publications (2)

Publication Number Publication Date
JPS56119857A JPS56119857A (en) 1981-09-19
JPS644150B2 true JPS644150B2 (en) 1989-01-24

Family

ID=12115479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2361480A Granted JPS56119857A (en) 1980-02-26 1980-02-26 Instructing mechanism for rotating direction of rotational shaft

Country Status (1)

Country Link
JP (1) JPS56119857A (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4920485U (en) * 1972-05-26 1974-02-21
JPS527776A (en) * 1975-07-09 1977-01-21 Toshiba Corp Rotating direction detecting device
JPS5354075A (en) * 1976-10-27 1978-05-17 Sansui Electric Co Rotational direction detector

Also Published As

Publication number Publication date
JPS56119857A (en) 1981-09-19

Similar Documents

Publication Publication Date Title
JPS601891Y2 (en) sensor
EP0111565B1 (en) Industrial robot
KR102105580B1 (en) Board conveying device and teaching method of board conveying robot
CA1214852A (en) Combination photodetector array/mask positioning system
JPH05169387A (en) Robot hand
JPS644150B2 (en)
JP2580757B2 (en) Wafer transfer device and origin return method thereof
JP3136816B2 (en) Robot arm with torque sensor
JPH10100091A (en) Rotary shaft stopper mechanism
JPH06297379A (en) Overtravel detecting device for industrial robot
JPH0653355B2 (en) Industrial robot
JPH0150546B2 (en)
JPH0630385Y2 (en) Rotating shaft stopper device
JPS6219709A (en) Position detector for body of rotation
JPS6344471B2 (en)
JPH0221358B2 (en)
JPH11333776A (en) Assembly hand
JP2812762B2 (en) Mechanical stopper mechanism
JPH08132383A (en) Handling device
JPH11156768A (en) Conveying device and its control method
JPH0250455A (en) Semiconductor wafer carrier
JPH06278071A (en) Robot original point detecting device
JPH0327732Y2 (en)
JPS58165001A (en) Three-dimensional detector
JPH1015859A (en) Multipoint positioning robot