JPS644040Y2 - - Google Patents

Info

Publication number
JPS644040Y2
JPS644040Y2 JP1982122691U JP12269182U JPS644040Y2 JP S644040 Y2 JPS644040 Y2 JP S644040Y2 JP 1982122691 U JP1982122691 U JP 1982122691U JP 12269182 U JP12269182 U JP 12269182U JP S644040 Y2 JPS644040 Y2 JP S644040Y2
Authority
JP
Japan
Prior art keywords
heat
switch
storage tank
solar
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982122691U
Other languages
Japanese (ja)
Other versions
JPS5926557U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1982122691U priority Critical patent/JPS5926557U/en
Publication of JPS5926557U publication Critical patent/JPS5926557U/en
Application granted granted Critical
Publication of JPS644040Y2 publication Critical patent/JPS644040Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

【考案の詳細な説明】 本考案は太陽熱集熱装置に関するものである。[Detailed explanation of the idea] The present invention relates to a solar heat collector.

真空に近く減圧された密閉容器内に蒸発しやす
い液体を封入して密閉容器の片端を熱源にさらす
と、その内部に封入されている液体は、熱源から
の熱を受けて蒸発し、気体となつて密閉容器の内
部空間を膨張的に移動し、密閉容器の他端の内壁
に触れてそこで凝縮して液体に戻る。この液体を
何らかの方法で密閉容器の熱源にさらされている
側に返してやると、また蒸発して膨張的に移動す
ることを繰返す。最近では上記の如く密閉容器の
熱源側が吸熱部、他端が放熱部となり、この吸熱
部から放熱部への熱の伝導率が銅の約100倍にも
達するといういわゆるヒートポンプと称されるも
のが太陽熱集熱装置に応用されるようになつてき
た。このヒートパイプは、熱の移動(伝導)が吸
熱部から放熱部への片方向、即ち熱のダイオード
特性を持つているため、これを太陽熱集熱装置に
応用した場合には、夜になつて日射がなくなつて
も、今まで太陽熱を集熱していた集熱器の吸熱部
が放熱部へと逆転しないので、蓄熱槽へ集熱した
熱を移動させるための循環ポンプは連続運転して
いても差し支えがない。
When a liquid that easily evaporates is sealed in a sealed container with a reduced pressure close to a vacuum and one end of the sealed container is exposed to a heat source, the liquid sealed inside receives heat from the heat source and evaporates, turning into a gas. The liquid then expands through the interior space of the sealed container, touches the inner wall at the other end of the sealed container, and condenses there, returning to liquid form. If this liquid is somehow returned to the side of the sealed container that is exposed to the heat source, it will evaporate and move in an expansive manner again. Recently, as mentioned above, the heat source side of the sealed container is the heat absorbing part, and the other end is the heat radiating part, and the heat conductivity from the heat absorbing part to the heat radiating part is about 100 times that of copper. It has come to be applied to solar heat collectors. This heat pipe has heat transfer (conduction) in one direction from the heat absorption part to the heat radiation part, that is, it has heat diode characteristics, so if it is applied to a solar heat collector, it will Even when there is no sunlight, the heat absorbing part of the heat collector, which used to collect solar heat, does not switch back to the heat radiating part, so the circulation pump that transfers the collected heat to the heat storage tank continues to operate. There is no problem.

しかし、ヒートパイプ式でない従来の太陽熱集
熱装置においては、夜間日射がなくなると集熱器
は完全に放熱器に変つてしまうため、熱媒体移動
用循環ポンプは、ぜひとも止める必要がある。し
たがつて循環ポンプを集熱に適した時だけ自動的
に運転できる集熱制御システムが採用されてお
り、現在一般的には差温サーモ式制御方法により
行なわれている。
However, in conventional solar heat collectors that do not use heat pipes, the heat collector completely turns into a radiator when there is no sunlight at night, so the circulation pump for moving the heat medium must be turned off. Therefore, a heat collection control system has been adopted in which the circulation pump can be automatically operated only when it is suitable for heat collection, and currently this is generally carried out by a differential temperature thermo control method.

ヒートパイプ式太陽熱集熱装置においては、前
述したように夜間日射がなくなつても集熱器が放
熱器に変換しないので循環ポンプは必ずしも止め
る必要性はない。しかし、日射がない時は原則的
に集熱もしないので、循環ポンプを連続運転して
おくと、ポンプ自体の消費エネルギーが集熱エネ
ルギーよりもいくら少ないといつてもやはり無駄
になるとともにポンプの寿命に影響する。そこで
前記の差温サーモ式制御方法をヒートパイプ式太
陽熱集熱装置の集熱制御システムにもちろん採用
してもかまわないが、差温サーモ式制御法は次の
ような問題点が指摘されるようになつてきた。
In the heat pipe type solar heat collector, as described above, even if there is no sunlight at night, the heat collector does not convert into a radiator, so there is no need to stop the circulation pump. However, in principle, when there is no sunlight, there is no heat collection, so if the circulation pump is operated continuously, no matter how much energy the pump itself consumes is less than the heat collection energy, it will still be wasted and the pump will Affects lifespan. Therefore, the above-mentioned temperature difference thermo control method may of course be adopted for the heat collection control system of the heat pipe type solar heat collector, but the following problems have been pointed out with the temperature difference thermo control method. I'm getting used to it.

すなわち差温サーモ式制御法は、集熱器側に設
けた温度センサーと蓄熱槽側に設けた温度センサ
ーとの二つのセンサーからの温度信号を比較し、
集熱器側が集熱して蓄熱槽側より温度が高くなつ
ているときに循環ポンプを運転するシステムとな
つている。ところが、集熱器側での集熱がなくな
り、蓄熱槽側との温度差がなくなつてポンプが停
止しているときでも、蓄熱槽側で今まで蓄熱して
いた熱を消費して蓄熱槽の温度が急に低下する
と、また集熱器側との差温が生じて循環ポンプが
運転を開始する。この現象は特に夏季の夜間に多
く発生し、夜間日射がないにもかかわらず装置が
運転を行なうのは感覚的に承知できないという利
用者の苦情が多く述べられるようになつてきた。
また装置の設置施工の面からも、センサーを二個
も使用するので制御器からの配線が四本となり、
特に集熱器側に取付けるセンサーへの配線が長く
なつて雷サージや誘導ノイズ、防水対策の点で煩
雑となり、コスト高の原因にもなつている。
In other words, the differential temperature thermo control method compares the temperature signals from two sensors: the temperature sensor installed on the heat collector side and the temperature sensor installed on the heat storage tank side.
The system operates the circulation pump when the heat collector side collects heat and the temperature is higher than the heat storage tank side. However, even when the heat collector side stops collecting heat and the temperature difference with the heat storage tank side disappears and the pump stops, the heat that was previously stored in the heat storage tank side is consumed and the heat storage tank When the temperature suddenly drops, a difference in temperature between the heat collector and the heat collector occurs, causing the circulation pump to start operating. This phenomenon occurs particularly often at night in summer, and many users have complained that they cannot intuitively understand that the device is operating even when there is no sunlight at night.
Also, in terms of installation and construction of the device, since two sensors are used, there are four wires from the controller.
In particular, the wiring to the sensor installed on the heat collector side becomes long, making it complicated to deal with lightning surges, induced noise, and waterproofing, which also causes high costs.

本考案は、上記に鑑み、熱媒体移動用循環ポン
プを駆動するモータを照度計又は日射計により制
御して夜間のポンプの駆動を防止し得る太陽熱集
熱装置を提供しようとするものである。
In view of the above, it is an object of the present invention to provide a solar heat collecting device that can prevent the pump from being driven at night by controlling the motor that drives the circulation pump for moving the heat medium using an illumination meter or a pyranometer.

以下に本考案の実施例を図面に基いて説明す
る。まず、第1図に示す本考案の第一実施例につ
いて説明すると、図中1は屋根2上に設置された
ヒートパイプ式太陽熱集熱器で、これは、流体状
の熱媒体が、吸熱部で蒸発し熱交換器3(放熱
側)で凝縮して流下又は毛管現象で吸熱側に戻る
よう第一循環回路Aが設けられている。4は地上
に設置された蓄熱槽で、この蓄熱槽4と前記集熱
器1の熱交換器3との間で前記第一熱媒体とは別
の第二熱媒体を循環させる第二循環回路5が設け
られている。そしてこの回路5には第二熱媒体を
循環させるための循環ポンプ6が介設され、該ポ
ンプを駆動するモータ7を制御するための日射光
センサー8a付スイツチ8が設けられ、該スイツ
チ8は、周知構造の照度計9からの照度大なる信
号又は周知構造の日射計10からの日射強度大な
る信号を日射光センサー8aで感知して動作する
よう構成されている。
Embodiments of the present invention will be described below with reference to the drawings. First, the first embodiment of the present invention shown in FIG. 1 will be explained. In the figure, 1 is a heat pipe type solar collector installed on a roof 2. The first circulation circuit A is provided so that the heat evaporates in the heat exchanger 3 (heat radiation side), condenses in the heat exchanger 3 (heat radiation side), and returns to the heat absorption side by flowing down or by capillary action. Reference numeral 4 denotes a heat storage tank installed on the ground, and a second circulation circuit that circulates a second heat medium different from the first heat medium between the heat storage tank 4 and the heat exchanger 3 of the heat collector 1. 5 is provided. A circulation pump 6 for circulating the second heat medium is interposed in this circuit 5, and a switch 8 with a solar radiation sensor 8a is provided for controlling a motor 7 that drives the pump. It is configured to operate when the solar radiation sensor 8a senses a signal indicating a large illuminance from an illuminance meter 9 having a well-known structure or a signal indicating a large solar radiation intensity from a pyranometer 10 having a well-known structure.

なお、本例では、循環ポンプ6及び電動モータ
7は、蓄熱槽4に近接した地上に配されている。
また照度計9は、可視光線のみを感知する比視感
度補正フイルターが付設されたものであり、日射
計10は、太陽光線の各色光に対する感度が一
率、即ち分光感度特性がフラツトなものである。
そして前記スイツチ8は、照度計9較正で8000ル
ツクス(lx)以上、又日射計10較正で500kcal/
m2h(約0.42mV)以上で動作するよう調整され
ている。また前記スイツチ8は、日影の位置で天
空に向かつて60度以上開放された蓄熱槽4の上部
に取付けられている。なお、前記スイツチの動作
点を上記の如き値に設定した理由を第2図〜第4
図に基いて説明する。
In this example, the circulation pump 6 and the electric motor 7 are arranged on the ground close to the heat storage tank 4.
The illumination meter 9 is equipped with a relative luminosity correction filter that senses only visible light, and the pyranometer 10 has a uniform sensitivity to each color of sunlight, that is, a flat spectral sensitivity characteristic. be.
The switch 8 is 8000 lux (lx) or more when the illumination meter 9 is calibrated, and 500 kcal/lx when the pyranometer 10 is calibrated.
It is adjusted to operate at m 2 h (approximately 0.42 mV) or higher. Further, the switch 8 is attached to the upper part of the heat storage tank 4, which is opened at 60 degrees or more toward the sky in a shaded position. The reason why the operating point of the switch is set to the above value is shown in Figures 2 to 4.
This will be explained based on the diagram.

第2図は太陽直射光の当らない日影における快
晴日の日影日射強度(散乱日射度合)の測定デー
タで、左側目盛による−・−は比視感度補正フイ
ルター付照度計9(以下照度計という)によるデ
ータ、右側目盛による−×−は分光感度特性がフ
ラツトな日射計10(以下ネオ日射計という)に
よるデータである。この測定データ(奈良県天理
市にて測定)でみるかぎり、空気の澄んだ雲ひと
つない全くの快晴日(散乱日射度合の少ない日)
でも照度計データで7700lx以上、ネオ日射計デー
タで50kcal/m2h以上であることがわかり、ほぼ
年間を通じて午前9時から午後3時までの集熱可
能時間帯においてスイツチ8の感度を照度計較正
で7700lx以上、ネオ日射計較正で50kcal/m2h以
上になると循環ポンプ6を運転するように調整し
ておけば、装置は有効に太陽熱を集熱することに
なる。
Figure 2 shows the measurement data of the shade solar radiation intensity (scattered solar radiation intensity) on a clear day in the shade without direct sunlight. ), and the -x- on the right scale is data from the pyranometer 10 (hereinafter referred to as the Neo pyranometer), which has flat spectral sensitivity characteristics. As far as we can see from this measurement data (measured in Tenri City, Nara Prefecture), it is a completely sunny day with clear air and no clouds (a day with low scattered solar radiation)
However, the illumination meter data showed that it was over 7,700 lx, and the neo pyranometer data showed that it was over 50 kcal/m 2 h, so we compared the sensitivity of Switch 8 with the illuminance meter during the heat collection time from 9 a.m. to 3 p.m. almost all year round. If the circulation pump 6 is adjusted to operate when the positive value is 7700lx or more and the neo pyranometer calibration is 50kcal/m 2 h or more, the device will effectively collect solar heat.

第3図は同じく曇りの日の日影日射強度(散乱
日射度合)の測定データであるが相当ばらついて
いる。しかし平均的には照度計データで15400lx、
ネオ日射計データで100kcal/m2hとなり快晴の
日よりも散乱日射度合が大きい。もちろんこの雲
りの日においてもヒートパイプ式では充分集熱が
可能である。なおデータでは日射計目盛で7700lx
以下、ネオ日射計目盛で50kcal/m2h以下の点も
含まれているが、このときは今にも雨が降り出し
そうな薄暗い空となつている。もちろん雨天の日
はほとんどが7700lx以下または50kcal/m2h以下
である。また第4図は照度計とネオ日射計(完全
快晴日)との対比データである。
Figure 3 shows measurement data of the solar radiation intensity (scattered solar radiation intensity) on a cloudy day, but it varies considerably. However, the average illumination meter data is 15400lx,
Neo pyranometer data shows 100 kcal/m 2 h, which is a higher degree of scattered solar radiation than on a clear day. Of course, even on cloudy days, heat pipes can collect sufficient heat. In addition, the data is 7700lx on the pyranometer scale.
The following points include points below 50 kcal/m 2 h on the neo pyranometer scale, but at this time the sky was so dark that it looked like it was about to rain. Of course, on rainy days most of the time it is less than 7700lx or less than 50kcal/m 2 h. Figure 4 shows comparison data between the illuminance meter and the neo-pyranometer (on a perfectly clear day).

上記の如く照度計9による較正で約8000lx(下
限値7700lx以上)、ネオ日射計10による較正で
約50kcal/m2hの自然光で動作するように調整さ
れた日射光センサー8aによるスイツチ8を日影
の位置で天空に向かつて60度以上開放された場所
に設置するだけで、きわめて有効に集熱制御をす
ることができ、従来のように日射のない夜間に
時々循環ポンプが運転されるという不都合がなく
なると共に、センサーも地上に置かれる蓄熱槽お
よび循環ポンプの近くに設置できて従来のように
配線が長くなることにより予測される種々なトラ
ブルも解消される。
As described above, the switch 8 is set by the solar light sensor 8a, which is adjusted to operate with natural light of about 8000 lx (lower limit 7700 lx or more) when calibrated using the illuminance meter 9, and about 50 kcal/m 2 h when calibrated using the neo pyranometer 10. By simply installing it in a shaded location facing the sky at an open area of 60 degrees or more, heat collection can be controlled extremely effectively, and the circulation pump is sometimes operated at night when there is no sunlight, unlike conventional systems. In addition to eliminating inconveniences, the sensor can also be installed near the above-ground heat storage tank and circulation pump, eliminating various problems that would otherwise occur due to long wiring.

なお本考案において日射光センサー8aの較正
を照度計9またはネオ日射計10で行なう必要が
あるのは、照度計9は人間の目が感じる明るさに
応じて規準化されているものであり、また日射計
10はあらゆる気象観測データをとる際の日射パ
ワー測定の規準計器になつているからである。
In addition, in the present invention, it is necessary to calibrate the solar radiation sensor 8a with the illumination meter 9 or the neo-pyranometer 10 because the illumination meter 9 is standardized according to the brightness perceived by the human eye. This is also because the pyranometer 10 serves as a standard instrument for measuring solar radiation power when collecting all kinds of meteorological observation data.

次に第5図に示す本考案の第二実施例について
説明すると、これは、熱媒体が集熱器11(吸熱
側)で蒸発し管路内の圧力差に応じて蓄熱槽4内
の熱交換器12に移動し、そこで凝縮液化し、循
環ポンプ6により集熱器11に戻されるいわゆる
二層流ヒートパイプ式太陽熱集熱装置であつて、
循環ポンプ6を駆動する電動モータ7、これを制
御する日射光センサー8a付スイツチ8、及び照
度計9又は日射計10は上記第一実施例と同様に
構成されている。なお図中13は集熱器11が集
熱しなくなつたときに熱媒体が液状で集熱器11
から流出するのを防止するためのフロート構造の
防止弁である。従つて、本実施例における作用、
効果も上記第一実施例と同様である。
Next, a second embodiment of the present invention shown in FIG. 5 will be explained. In this case, the heat medium evaporates in the heat collector 11 (endothermic side) and heats up in the heat storage tank 4 according to the pressure difference in the pipe. It is a so-called two-layer heat pipe type solar heat collecting device in which the heat is transferred to an exchanger 12, where it is condensed and liquefied, and returned to the heat collector 11 by a circulation pump 6.
The electric motor 7 that drives the circulation pump 6, the switch 8 with a solar radiation sensor 8a that controls it, and the illumination meter 9 or pyranometer 10 are constructed in the same manner as in the first embodiment. Note that 13 in the figure indicates that when the heat collector 11 stops collecting heat, the heat medium is in a liquid state and the heat collector 11
This is a prevention valve with a float structure to prevent water from flowing out. Therefore, the effect in this example,
The effect is also similar to that of the first embodiment.

以上の説明から明らかな通り、本考案は、太陽
熱集熱器で蒸発し蓄熱槽で凝縮する熱媒体の循環
回路に、該熱媒体を循環させるための循環ポンプ
が介設され、該ポンプを駆動するモータが設けら
れ、該モータおよび蓄熱槽は地上に配され、前記
モータを制御するための日射光センサー付スイツ
チが設けられ、該スイツチは、日影の位置で天空
に向かつて60度以上に開放された状態で前記蓄熱
槽の上部に取付けられ、前記スイツチは、日影に
おける日射強度測定データにより決定された設定
値を基準として、それよりも照度計からの照度大
なる信号又は日射計からの日射強度大なる信号を
感知したときにモータを動作するよう構成された
ものである。
As is clear from the above description, in the present invention, a circulation pump for circulating the heat medium is interposed in the circulation circuit of the heat medium that evaporates in the solar heat collector and condenses in the heat storage tank, and the pump is driven. The motor and the heat storage tank are placed on the ground, and a switch with a solar radiation sensor is provided to control the motor. The switch is installed in the upper part of the heat storage tank in an open state, and the switch receives a signal from the illuminance meter or a pyranometer that is higher than the set value determined by the solar radiation intensity measurement data in the shade. The motor is configured to operate when a signal with high solar radiation intensity is detected.

従つて本考案によると、照度計又は日射計によ
り太陽熱集熱可能時間だけ駆動するため、従来の
差温制御方式の場合のように夜間に時々ポンプが
運転されるといつた不具合を解消できる。
Therefore, according to the present invention, the illumination meter or pyranometer is used to drive the pump only during the time when solar heat can be collected, which eliminates the problem of the pump being operated occasionally at night as in the case of the conventional differential temperature control system.

また、スイツチは、地上の蓄熱槽の上部に取付
けられているので、差温制御方式のようにセンサ
ーを屋根上の集熱器に取付ける必要がなく、配線
が短くて済み、雷サージや誘導ノイズ、防水の対
策も容易に行ない得、コストも安くし得る。
In addition, since the switch is installed above the above-ground heat storage tank, there is no need to install a sensor on the heat collector on the roof unlike in the differential temperature control method, and the wiring can be short, reducing lightning surge and induction noise. Also, waterproofing measures can be easily taken and costs can be reduced.

またセンサーも地上に設置される蓄熱槽及びモ
ータの近くに設置したが、スイツチは、天空に向
かつて60度以上に開放された状態で取付けられて
いるので、日射強度の感知も充分行なうことがで
き、さらにスイツチは、日影における日射強度測
定データにより決定された設定値を基準として、
動作するので、太陽熱の集熱が可能なときのみ正
確に作動し得るといつた優れた効果がある。
The sensor was also installed near the heat storage tank and motor installed on the ground, but since the switch was installed facing the sky with an open angle of more than 60 degrees, it was able to sufficiently sense the solar radiation intensity. Furthermore, the switch can set the setting value determined by the solar irradiance measurement data in the shade as a reference.
It has an excellent effect in that it can only operate accurately when it is possible to collect solar heat.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の第一実施例を示す構成図、第
2図は快晴の日の散乱日射度合の測定データ図、
第3図は曇天の日の散乱日射度合の測定データ
図、第4図は照度計と日射計との測定データ対比
図、第5図は本考案の第二実施例を示す構成図で
ある。 1……ヒートパイプ式太陽熱集熱器、2……屋
根、3……熱交換器、4……蓄熱槽、5……第二
循環回路、6……循環ポンプ、7……モータ、8
……スイツチ、9……照度計、10……日射計、
11……集熱器、12……熱交換器。
Fig. 1 is a configuration diagram showing the first embodiment of the present invention, Fig. 2 is a measurement data diagram of the degree of scattered solar radiation on a clear day,
FIG. 3 is a diagram showing measurement data of the degree of scattered solar radiation on a cloudy day, FIG. 4 is a comparison diagram of measurement data between an illumination meter and a pyranometer, and FIG. 5 is a configuration diagram showing a second embodiment of the present invention. 1... Heat pipe type solar heat collector, 2... Roof, 3... Heat exchanger, 4... Heat storage tank, 5... Second circulation circuit, 6... Circulation pump, 7... Motor, 8
...Switch, 9...Luminance meter, 10...Pyranometer,
11... Heat collector, 12... Heat exchanger.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 太陽熱集熱器で蒸発し蓄熱槽で凝縮する熱媒体
の循環回路に、該熱媒体を循環させるための循環
ポンプが介設され、該ポンプを駆動するモータが
設けられ、該モータおよび蓄熱槽は地上に配さ
れ、前記モータを制御するための日射光センサー
付スイツチが設けられ、該スイツチが日影の位置
で天空に向かつて60度以上に開放された状態で前
記蓄熱槽の上部に取付けられ、前記スイツチは、
日影における日射強度測定データにより決定され
た設定値を基準として、それよりも照度計からの
照度大なる信号又は日射計からの日射強度大なる
信号を感知したときにモータを動作するよう構成
されたことを特徴とする太陽熱集熱装置。
A circulation pump for circulating the heat medium is interposed in a circulation circuit for the heat medium that evaporates in the solar heat collector and condenses in the heat storage tank, and a motor for driving the pump is provided, and the motor and the heat storage tank are connected to each other. A switch with a solar radiation sensor is disposed on the ground to control the motor, and the switch is mounted on the top of the heat storage tank in a position in the shade with the switch facing the sky and opening at 60 degrees or more. , the switch is
The motor is configured to operate when a signal from an illuminance meter or a pyranometer that has a higher illuminance than the set value determined by the solar radiation intensity measurement data in the shade is detected. A solar heat collection device characterized by:
JP1982122691U 1982-08-11 1982-08-11 solar heat collector Granted JPS5926557U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1982122691U JPS5926557U (en) 1982-08-11 1982-08-11 solar heat collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1982122691U JPS5926557U (en) 1982-08-11 1982-08-11 solar heat collector

Publications (2)

Publication Number Publication Date
JPS5926557U JPS5926557U (en) 1984-02-18
JPS644040Y2 true JPS644040Y2 (en) 1989-02-02

Family

ID=30280342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1982122691U Granted JPS5926557U (en) 1982-08-11 1982-08-11 solar heat collector

Country Status (1)

Country Link
JP (1) JPS5926557U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63233217A (en) * 1987-03-20 1988-09-28 Matsushita Electric Ind Co Ltd Heat-cooking apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50128242A (en) * 1974-03-27 1975-10-09
JPS5674557A (en) * 1979-11-21 1981-06-20 Chugoku Electric Power Co Ltd:The Construction of hot water supplyer utilizing solar energy with freezing proof function

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50128242A (en) * 1974-03-27 1975-10-09
JPS5674557A (en) * 1979-11-21 1981-06-20 Chugoku Electric Power Co Ltd:The Construction of hot water supplyer utilizing solar energy with freezing proof function

Also Published As

Publication number Publication date
JPS5926557U (en) 1984-02-18

Similar Documents

Publication Publication Date Title
JP5829708B2 (en) Solar energy conversion
US4620771A (en) Combined solar tracking reflector and photovoltaic panel
US4429952A (en) Tracking reflector assembly for a skylight
US6827445B2 (en) Sun-tracking daylighting apparatus
EP2183481B1 (en) Shadow control of wind turbines
CN108663941B (en) Intelligent energy-saving control system
JP2003240356A (en) Sun tracking system
WO2013170563A1 (en) Real-time solar energy tracking system
TWI665539B (en) Intelligent energy-saving control system
JP2002222015A (en) Sun tracking device
JP3315108B1 (en) Seesaw type solar power generation water heater system
CN102707750B (en) Highly-adaptive high-precision sun tracking device
JPS644040Y2 (en)
CN108824254A (en) A kind of adjustable reflective road lens device
US4063545A (en) Solar collector thermostat
CN102080432A (en) Outside-sunshade and solar-tracking parabolic-reflector solar thermal collector integrated with building
CN103455047B (en) Sun tracker and tracking
CN210221290U (en) Solar total radiation meter
JPS60205151A (en) Sun tracking device
CN201173599Y (en) Solar thermal collection system with solar irradiation degree collecting device
CN214670257U (en) Sunlight intensity tracker
CN212324047U (en) Photovoltaic support and photovoltaic system day by day
JP2000082307A (en) Daylighting device
CN113951652B (en) Multifunctional garden outdoor seat and control mode
JP2019090554A (en) Energy management system and energy management method