JPS643080B2 - - Google Patents

Info

Publication number
JPS643080B2
JPS643080B2 JP11220979A JP11220979A JPS643080B2 JP S643080 B2 JPS643080 B2 JP S643080B2 JP 11220979 A JP11220979 A JP 11220979A JP 11220979 A JP11220979 A JP 11220979A JP S643080 B2 JPS643080 B2 JP S643080B2
Authority
JP
Japan
Prior art keywords
resin
resin plate
composite
printed wiring
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11220979A
Other languages
Japanese (ja)
Other versions
JPS5636191A (en
Inventor
Keiji Ueno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP11220979A priority Critical patent/JPS5636191A/en
Publication of JPS5636191A publication Critical patent/JPS5636191A/en
Publication of JPS643080B2 publication Critical patent/JPS643080B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Printed Wiring (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、耐ハンダ性に優れ、誘電率の小さい
印刷配線用硬質板の製造方法に係る。 近年、各種音響機器、産業機器、電話交換機等
の内部配線として、小型軽量化、配線レイアウト
の単純化、配線作業の簡素化、信頼性の向上等の
目的で印刷配線板が多く利用されるようになつて
きている。 印刷配線板は、絶縁基板の片面又は両面に銅な
どの金属箔を貼合わせて成る印刷配線用硬質基板
を用い、回路設計に基づいた配線図形に従つて、
金属箔をエツチング等の方法により部分的に除去
して、所定の電気回路を形成して製造される。 印刷配線板は、配線作業工程でハンダ処理され
るので、250〜300℃のハンダ浴に10〜20秒程度浸
漬しても変形、構成材料の剥離、割れなどの損傷
を受けないという高度の耐ハンダ性が必要とされ
る。 従来、印刷配線用硬質基板を製造する方法とし
ては、絶縁基体として例えばエポキシ樹脂、フエ
ノール樹脂、トリアジン樹脂等の熱硬化性樹脂液
を不織布又は織布に含浸させて成る複合体を用い
この絶縁基体を接着剤を介し金属箔と貼合わせる
か、熱硬化性樹脂液を硬化せしめる前に複合体と
金属箔を密着せしめ、これを一体に硬化する等の
方法が採られている。 然るに、前述の如き従来の製造方法に基づいて
製造された印刷配線用硬質基板は、電気的特性、
価格等の必要条件を全て満足しているとは言い難
い。例えば、電気的特性、特に誘電率は配線基板
の性能を決める重要な特性であり、その値が小さ
い程配線基板の配線密度を高めることができ、ク
ロストーク性も良好となるが、エポキシ樹脂4.6
〜4.8程度、フエノール樹脂4.8〜5.0、トリアジン
樹脂4.1〜4.2といずれも誘電率は4を越えてい
る。絶縁基体としてポリオレフイン系樹脂を使用
することにより誘電率を2.2〜3.0と従来の樹脂を
用いた印刷配線用基板に比べ著しく向上せしめる
ことが出来る。しかしポリオレフイン系樹脂と金
属箔を直接加熱加圧して密着せしめると、得られ
る貼合わせ基板は彎曲し、実用に耐えないもので
ある。 本発明は、上述の問題点を解消すべく成された
もので、その目的は絶縁基板と金属箔を加熱加圧
して密着させても彎曲することがなく、ハンダ浸
漬しても変形、構成材料の剥離、割れなどの損傷
を全く受けない誘電率の小さな印刷配線用硬質基
板の製造方法を提供するものである。本発明の要
旨とするところは、不織布又は織布に液状ポリブ
タジエン系樹脂を含浸し、半硬化して成る複合体
を二枚のポリオレフイン系樹脂板の間と、前記樹
脂板の少なくとも一枚と金属箔との間にそれぞれ
挾み、加熱加圧した後、電子線を照射して前記樹
脂板を架橋することを特徴とする印刷配線用硬質
基板の製造方法にある。 本発明に於て用いるポリオレフイン系樹脂板は
オレフインの単一重合体、オレフインの共重合
体、オレフインとビニル系化合物との共重合体、
或はこれらのハロゲン化物などの誘導体等のポリ
オレフイン系樹脂で、かかるポリマーの1種又は
2種以上に必要に応じて加工助剤、安定剤、難燃
剤、充填剤等を添加した組成物を基板化したもの
である。 又、上記ポリオレフイン系樹脂には、不織布又
は織布に液状ポリブタジエン系樹脂を含浸して成
る複合体との接着性をより良くする為に必要に応
じて液状ポリブタジエン系樹脂と相溶性のよいポ
リマー、例えばポリブタジエン樹脂を配合するこ
とも成し得る。 本発明に係る複合体に用いる不織布又は織布は
ガラス繊維の如き絶縁性で且つ耐熱性の高い繊維
より成る厚さ5〜100μmの繊維布状品である。 本発明に於て、不織布又は織布に含浸する液状
ポリブタジエン系樹脂は、ブタジエンの単一重合
体、他の官能性化合物との共重合体、或はこれら
の変性体等の低分子量乃至中分子量の液状ポリマ
ーで、分子の主鎖或は側鎖中に不飽和結合や官能
基を有し、過酸化物等の架橋助剤を添加すること
により又は必要に応じて加熱等の硬化手段を行う
ことにより硬化し得るものである。 本発明に係る複合体の形成する方法について詳
述すると、例えば、液体ポリブタジエン系樹脂に
架橋助剤及び必要に応じて難燃剤、安定剤等の補
助材料を添加した組成物を溶剤で稀釈しこれを不
織布、織布に含浸し、溶剤を揮散、乾燥させた後
必要に応じて加熱等の手段により半硬化を行なう
ことによつて作成される。 上記複合体を二枚のポリオレフイン系樹脂板間
とこの二枚の樹脂板の少なくとも一枚と該樹脂板
の外側面に存在する金属箔との間にそれぞれ挾む
順序は先に上記二枚の樹脂板に挾み加圧して絶縁
基板とし、次いでこの絶縁基板と金属箔との間に
複合体を挾み加熱加圧してもよく、又は同時に挾
んでから加熱加圧を一度に行なつてもよく、挾む
順序によつて本発明の効果が特に異なるものでは
ない。 上記ポリオレフイン系樹脂板、複合体及び金属
箔を互に密着させ加熱加圧して接着せしめるため
の温度及び圧力条件は使用するポリオレフイン系
樹脂が溶融する温度で、且つ液状ポリブタジエン
系樹脂が硬化する温度以上に加熱し、各材料の界
面に気泡等の欠陥を残さない程度の圧力を掛ける
ことが必要である。 電子線照射によりポリオレフイン系樹脂を架橋
せしめるための照射条件は使用するポリオレフイ
ン系樹脂の架橋反応特性に基づいて決められるが
普通電子線の照射線量は0.5〜60メガラツド
(Mrad)で望ましくは5〜40メガラツドである。 以下に本発明を実施例により説明する。但し、
本発明に基づく製造方法の特徴を逸脱しない限り
に於て、以下の実施例に限定されることなく基板
の構成等を変更し得ることは言うまでもない。 実施例 1 第1表に示した組成物1を用いて、150℃×10
分間プレスし、0.4mm厚の樹脂板を作成した。 又、厚さ30μmの平織りガラスクロスにNISSO
−PB B−1000(液状ポリブタジエン、日本曹達
株式会社製、商品名)100重量部、ジクミルパー
オキサイド2重量部及びメチルエチルケトン100
重量部より成る含浸液を浸み込ませ、メチルエチ
ルケトンを乾燥除去した後150℃×15分間加熱し
てポリブタジエン含浸ガラスクロスより成る半硬
化の複合体を作成した。該複合体を上記樹脂板の
間に挾んで絶縁基体とし、更に該絶縁基体と40μ
mの銅箔の間に上記複合体を介して密接せしめ、
150℃×10分間、50Kg/cm2で加熱加圧を行ない、
冷却後取出し、これに25メガラツドの電子線を照
射して絶縁基板厚さ0.8mmの印刷配線用硬質基板
を得た。 得られた基板について、電気特性、平担度並び
に280℃ハンダ浴中に10秒浸漬して異常の有無を
調べた。第2表にその結果を示した。実施例1に
より得た基板は、誘電率が2.4と小さく、平担度
も十分であり、且つ耐ハンダ性も優れていること
がわかつた。 実施例 2 第1表に示した組成物2を用い、150℃×10分
間プレスして厚さ0.4mmの樹脂板を作成した。実
施例1のNISSO−PB B−1000にかえて、BF−
1000(エポキシ化液状ポリブタジエン、アデカア
ーガス化学株式会社製 商品名)を使用し、実施
例1に示した場合と同じ条件でエポキシ化液状ポ
リブタジエン含浸ガラスクロスより成る半硬化の
複合体を製作した。次いで実施例1と同様にして
樹脂板/複合体/樹脂板/複合体/銅箔の構造を
有するように密接せしめ、実施例1と同じ条件で
加熱加圧し、電子線を照射し、印刷配線用硬質基
板を得た。 この基板についても実施例1と同じ試験を行な
い第2表に示す結果を得た。この基板についても
誘電率が2.8と小さく、平坦度、耐ハンダ性も良
好であつた。 比較例 1 第1表に示した組成物1を用い、厚さ0.8mmの
樹脂板を実施例1と同じ条件で作成した。次いで
実施例1で作成したものと同じ半硬化された複合
体を介して、上記樹脂板と40μmの銅箔を密接せ
しめ、実施例1と同一条件にて印刷配線用硬質基
板を得た。この基板についても実施例1と同様の
試験を行ない、第2表に示す結果を得た。この基
板は電気特性、耐ハンダ性とも良好であつたが、
彎曲が大きく印刷配線用硬質板として使用できな
い。 比較例2及び3 市販のガラス−エポキシ硬質基板(比較例2)
及びガラス−トリアジン硬質基板(比較例3)に
ついて、実施例1と同様の試験を行ない、第2表
に示す結果を得た。 いずれも誘電率が4以上であり、印刷配線基板
として完全に満足するものではない。
The present invention relates to a method for manufacturing a hard board for printed wiring that has excellent solder resistance and a low dielectric constant. In recent years, printed wiring boards have been increasingly used for internal wiring in various audio equipment, industrial equipment, telephone exchanges, etc. for the purpose of reducing size and weight, simplifying wiring layouts, simplifying wiring work, and improving reliability. I'm getting used to it. A printed wiring board uses a hard board for printed wiring, which is made by pasting metal foil such as copper on one or both sides of an insulating board, and according to the wiring diagram based on the circuit design,
It is manufactured by partially removing the metal foil using a method such as etching to form a predetermined electric circuit. Printed wiring boards are soldered during the wiring process, so they have a high degree of durability, meaning they will not suffer damage such as deformation, peeling of constituent materials, or cracking even when immersed in a solder bath at 250 to 300°C for about 10 to 20 seconds. Solderability is required. Conventionally, as an insulating substrate, a method for manufacturing a hard substrate for printed wiring uses a composite material made by impregnating a nonwoven or woven fabric with a thermosetting resin liquid such as epoxy resin, phenolic resin, or triazine resin. Methods have been adopted, such as pasting the composite with metal foil via an adhesive, or bringing the composite and metal foil into close contact with each other before curing the thermosetting resin liquid, and then curing them together. However, the hard substrate for printed wiring manufactured based on the conventional manufacturing method as described above has poor electrical characteristics,
It is difficult to say that all necessary conditions such as price are satisfied. For example, electrical properties, especially dielectric constant, are important properties that determine the performance of a wiring board, and the smaller the value, the higher the wiring density of the wiring board and the better the crosstalk, but epoxy resin 4.6
-4.8, phenolic resin 4.8-5.0, and triazine resin 4.1-4.2, all of which have dielectric constants exceeding 4. By using a polyolefin resin as the insulating substrate, the dielectric constant can be significantly improved to 2.2 to 3.0, compared to printed wiring boards using conventional resins. However, when a polyolefin resin and a metal foil are brought into close contact with each other by direct heat and pressure, the resulting bonded substrate becomes curved and cannot be put to practical use. The present invention has been made to solve the above-mentioned problems, and its purpose is to prevent the insulating substrate and the metal foil from being bent even when they are heated and pressed into close contact with each other, and to avoid deformation even when immersed in solder. The present invention provides a method for manufacturing a hard substrate for printed wiring with a low dielectric constant that is completely free from damage such as peeling and cracking. The gist of the present invention is to impregnate a nonwoven fabric or a woven fabric with a liquid polybutadiene resin, and then apply a semi-cured composite between two polyolefin resin plates and between at least one of the resin plates and a metal foil. The method of manufacturing a hard substrate for printed wiring is characterized in that the resin plate is sandwiched between the resin plates, heated and pressurized, and then irradiated with an electron beam to crosslink the resin plate. The polyolefin resin plate used in the present invention is a homopolymer of olefin, a copolymer of olefin, a copolymer of olefin and a vinyl compound,
Alternatively, polyolefin resins such as derivatives of these halides can be used as substrates, with compositions prepared by adding processing aids, stabilizers, flame retardants, fillers, etc. to one or more of these polymers as necessary. It has become. In addition, the polyolefin resin may optionally contain a polymer having good compatibility with the liquid polybutadiene resin, in order to improve the adhesion with the composite formed by impregnating a nonwoven fabric or a woven fabric with the liquid polybutadiene resin. For example, it is also possible to incorporate polybutadiene resin. The nonwoven fabric or woven fabric used in the composite according to the present invention is a fibrous cloth-like article having a thickness of 5 to 100 μm and made of insulating and highly heat resistant fibers such as glass fibers. In the present invention, the liquid polybutadiene resin to be impregnated into the non-woven or woven fabric is a low-molecular to medium-molecular weight material such as a butadiene homopolymer, a copolymer with other functional compounds, or a modified product thereof. A liquid polymer that has unsaturated bonds or functional groups in the main chain or side chain of the molecule, and is cured by adding a crosslinking agent such as peroxide or by heating or other means as necessary. It can be cured by To explain in detail the method for forming the composite according to the present invention, for example, a composition obtained by adding a crosslinking aid and, if necessary, auxiliary materials such as a flame retardant and a stabilizer to a liquid polybutadiene resin is diluted with a solvent. It is produced by impregnating a nonwoven fabric or woven fabric with the compound, volatilizing the solvent, drying it, and then semi-curing it by means such as heating if necessary. The above composite is sandwiched between two polyolefin resin plates, at least one of the two resin plates, and a metal foil present on the outer surface of the resin plate. The resin plate may be sandwiched and pressurized to form an insulating substrate, and then the composite may be sandwiched between this insulating substrate and metal foil and heated and pressurized, or the composite may be sandwiched at the same time and then heated and pressurized all at once. Generally, the effect of the present invention does not particularly differ depending on the order of sandwiching. The temperature and pressure conditions for adhering the polyolefin resin plate, composite, and metal foil to each other and bonding them by applying heat and pressure are the temperature at which the polyolefin resin used is melted, and the temperature at which the liquid polybutadiene resin is cured or higher. It is necessary to apply pressure to an extent that does not leave defects such as bubbles at the interface of each material. Irradiation conditions for crosslinking polyolefin resins by electron beam irradiation are determined based on the crosslinking reaction characteristics of the polyolefin resin used, but the irradiation dose of electron beams is usually 0.5 to 60 megarads (Mrad), preferably 5 to 40 megarads. It's Megarad. The present invention will be explained below using examples. however,
It goes without saying that the structure of the substrate, etc. can be changed without being limited to the following embodiments without departing from the characteristics of the manufacturing method based on the present invention. Example 1 Composition 1 shown in Table 1 was used at 150°C x 10
It was pressed for a minute to create a resin plate with a thickness of 0.4 mm. In addition, NISSO is applied to the plain weave glass cloth with a thickness of 30 μm.
-PB B-1000 (liquid polybutadiene, manufactured by Nippon Soda Co., Ltd., trade name) 100 parts by weight, dicumyl peroxide 2 parts by weight, and methyl ethyl ketone 100 parts by weight
After impregnating with an impregnating solution consisting of parts by weight, methyl ethyl ketone was removed by drying, and heating was performed at 150° C. for 15 minutes to produce a semi-cured composite made of polybutadiene-impregnated glass cloth. The composite is sandwiched between the resin plates to form an insulating base, and the insulating base is further bonded with a 40μ
m copper foils are brought into close contact via the composite,
Heat and pressurize at 50Kg/ cm2 for 10 minutes at 150℃,
After cooling, it was taken out and irradiated with a 25 megarad electron beam to obtain a hard substrate for printed wiring with an insulating substrate thickness of 0.8 mm. The obtained substrates were examined for electrical properties, flatness, and the presence or absence of abnormalities by immersing them in a 280°C solder bath for 10 seconds. The results are shown in Table 2. It was found that the substrate obtained in Example 1 had a small dielectric constant of 2.4, sufficient flatness, and excellent solder resistance. Example 2 Using Composition 2 shown in Table 1, a resin plate with a thickness of 0.4 mm was prepared by pressing at 150°C for 10 minutes. Instead of NISSO-PB B-1000 in Example 1, BF-
1000 (epoxidized liquid polybutadiene, trade name, manufactured by Adeka Argus Chemical Co., Ltd.) and under the same conditions as shown in Example 1, a semi-cured composite consisting of glass cloth impregnated with epoxidized liquid polybutadiene was produced. Next, in the same manner as in Example 1, the resin plate/composite body/resin plate/composite body/copper foil structure was closely pressed together, heated and pressed under the same conditions as in Example 1, irradiated with an electron beam, and printed wiring was formed. A rigid substrate for use was obtained. This substrate was also subjected to the same test as in Example 1, and the results shown in Table 2 were obtained. This substrate also had a low dielectric constant of 2.8, and had good flatness and solder resistance. Comparative Example 1 Using Composition 1 shown in Table 1, a resin plate with a thickness of 0.8 mm was prepared under the same conditions as in Example 1. Next, the above resin plate and 40 μm copper foil were brought into close contact with each other via the same semi-cured composite as that prepared in Example 1, and a hard substrate for printed wiring was obtained under the same conditions as in Example 1. The same tests as in Example 1 were also conducted on this substrate, and the results shown in Table 2 were obtained. This board had good electrical properties and solder resistance, but
It is too curved to be used as a hard board for printed wiring. Comparative Examples 2 and 3 Commercially available glass-epoxy hard substrate (Comparative Example 2)
and a glass-triazine hard substrate (Comparative Example 3), the same tests as in Example 1 were conducted, and the results shown in Table 2 were obtained. All have dielectric constants of 4 or more, and are not completely satisfactory as printed wiring boards.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 不織布又は織布に液状ポリブタジエン系樹脂
を含浸し半硬化して成る複合体を二枚のポリオレ
フイン系樹脂板間と、前記二枚の樹脂板の少なく
とも一枚と該樹脂板の外側面に存在する金属箔と
の間にそれぞれ挾み、加熱加圧した後、電子線を
照射して前記樹脂板を架橋することを特徴とする
印刷配線用硬質基板の製造方法。
1 A composite formed by impregnating a nonwoven fabric or a woven fabric with a liquid polybutadiene resin and semi-curing is present between two polyolefin resin plates, at least one of the two resin plates, and on the outer surface of the resin plate. A method for producing a hard substrate for printed wiring, comprising sandwiching the resin plate between the resin plate and a metal foil, heating and pressurizing the resin plate, and then irradiating the resin plate with an electron beam to crosslink the resin plate.
JP11220979A 1979-09-01 1979-09-01 Method of manufacturing hard board for printed circuit Granted JPS5636191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11220979A JPS5636191A (en) 1979-09-01 1979-09-01 Method of manufacturing hard board for printed circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11220979A JPS5636191A (en) 1979-09-01 1979-09-01 Method of manufacturing hard board for printed circuit

Publications (2)

Publication Number Publication Date
JPS5636191A JPS5636191A (en) 1981-04-09
JPS643080B2 true JPS643080B2 (en) 1989-01-19

Family

ID=14580976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11220979A Granted JPS5636191A (en) 1979-09-01 1979-09-01 Method of manufacturing hard board for printed circuit

Country Status (1)

Country Link
JP (1) JPS5636191A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065598A (en) * 1983-09-20 1985-04-15 松下電器産業株式会社 Method of producing multilayer prined circuit board
US5164237A (en) * 1987-10-05 1992-11-17 Tokyo Gas Kabushiki Kaisha Lining material for pipelines

Also Published As

Publication number Publication date
JPS5636191A (en) 1981-04-09

Similar Documents

Publication Publication Date Title
US6042685A (en) Multiple wire printed circuit board and process for making the same
JPS6250303B2 (en)
JPS643080B2 (en)
JP4747619B2 (en) Coverlay film and flexible wiring board
JP2003166162A (en) Glass nonwoven fabric and laminate
JPS6134376B2 (en)
JPH0892394A (en) Prepreg for laminate formation and laminated plate
JP2001031782A (en) Prepreg and laminate prepared by using the same
JPH08204296A (en) Multiwire wiring board and manufacture thereof
JPS62277794A (en) Manufacture of inner layer circuit board
JPS6021220A (en) Manufacture of chemical plating laminated sheet
JP2002348754A (en) Glass cloth, prepreg, laminated sheet, and printed wiring board
JP3211608B2 (en) Manufacturing method of copper-clad laminate
JPS5815952B2 (en) Manufacturing method for adhesive coated laminates
JP3783682B2 (en) Prepreg and method for manufacturing printed wiring board using this prepreg
JP3323873B2 (en) Composite copper-clad laminate
JP3227874B2 (en) Manufacturing method of laminated board
JP2825051B2 (en) Manufacturing method of multilayer printed circuit board
JP3750147B2 (en) Laminate manufacturing method
JP3883727B2 (en) Aramid fiber base insulation board and printed wiring board
JPH10190174A (en) Printed wiring board
JPH0138136B2 (en)
JP2953256B2 (en) Manufacturing method of laminated board
JPH0232797B2 (en) KATOSEIHAISENBANNOSEIZOHOHO
JPS6324695A (en) Manufacture of multilayer interconnection board