JPS642685B2 - - Google Patents

Info

Publication number
JPS642685B2
JPS642685B2 JP17589482A JP17589482A JPS642685B2 JP S642685 B2 JPS642685 B2 JP S642685B2 JP 17589482 A JP17589482 A JP 17589482A JP 17589482 A JP17589482 A JP 17589482A JP S642685 B2 JPS642685 B2 JP S642685B2
Authority
JP
Japan
Prior art keywords
temperature
yarn
stretching
polyester
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17589482A
Other languages
Japanese (ja)
Other versions
JPS5966515A (en
Inventor
Kazuyuki Yabuki
Yoji Kawamura
Mitsuo Iwasaki
Hiroshi Yasuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Petcord Co Ltd
Original Assignee
Toyobo Petcord Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Petcord Co Ltd filed Critical Toyobo Petcord Co Ltd
Priority to JP17589482A priority Critical patent/JPS5966515A/en
Publication of JPS5966515A publication Critical patent/JPS5966515A/en
Publication of JPS642685B2 publication Critical patent/JPS642685B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は熱寸法安定性および化学安定性にすぐ
れると同時に高強度を有するポリエステル繊維の
製造方法に関するものである。 ポリエステルタイヤコードに代表されるポリエ
ステル高強力糸は物性面でのバランスにすぐれた
有機繊維であり、近年産業用繊維として広くかつ
大量に使用されるに至つた。 さらに近年特に有機繊維の原料価格の上昇が著
しい中にあつて、ポリエステル特にポリエチレン
テレフタレートの原料コストは他の有機繊維例え
ばナイロン6等に比べ上昇率が低く、将来にわた
り価格面でも優位性を保ち得ると予測され、この
ことがポリエステル高強力糸の需要をさらに拡大
すると考えられる。 しかしながら、その用途によつては熱寸法安定
性や化学安定性さらにはゴム等の被補強材との接
着性の向上が要望されているのも、また事実であ
る。 当然かかる要望に対し、種々の改良が提案され
ており、熱寸法安定性の改良に関しては比較的低
い極限粘度を有するポリエステル繊維(例えば特
開昭53−31852号公報)や高配向未延伸糸(所謂
POY)を延伸する方法によるポリエステル繊維
(例えばUSP.4195052)あるいは、電子線照射を
施したポリエステル繊維(特開昭55−57070号公
報)が提案されている。 また化学安定性の改良に関しては、ポリエステ
ル中のカルボキシル基量を低下させる方法(例え
ば特開昭55−116816号公報)等の提案がなされて
いる。 さらにゴムとの接着性の改良に関してはエポキ
シ系やイソシアネート系の化学的にアクテイブな
処理剤で紡糸延伸工程中に処理する方法(例えば
特公昭47−49768号公報)やデイツプ処理中に上
記処理剤を使用する方法(例えば特開昭55−
116816号公報)が提案されている。 各々の提案は個々の改良の要望に関しては一応
成果を上げていると考えられるが、近年の技術革
新の時代にあつては、いわゆるプロパテイーのト
レード・オフといつた形での品質改良では、充分
な満足を需要家に与え得なくなつている。 かかる背景の下で上記先行技術について検討を
加えると、まず極限粘度を低下させ寸法安定性を
向上させる方法では、該繊維が例えばタイヤ補強
材として使用される状態で寸法安定性向上のため
にコード強力と耐疲労性を犠牲にしている。また
POYを延伸するUSP4195032の方法で得られた繊
維は同じく例えばタイヤ補強材として使用される
状態では寸法安定性向上のためにコードのタフネ
スを犠牲としている。 さらに本発明者らがすでに特願昭56−119614
(特開昭58−23914号公報)号において明らかにし
た如く、該繊維は化学安定性が従来品に比し劣る
という欠陥が存在する。これは繊維強力に寄与度
の高いタイ分子鎖が表面近傍に多く存在するとい
う理由によつて、ゴム中でのアミンあるいは水に
よる劣化において特に著しい傾向を示す。 電子線照射あるいは架橋剤を用いる事により三
次元架橋を施し寸法安定性を向上させる方法によ
れば、同じく寸法安定性向上のために糸のタフネ
スおよび耐疲労性を犠牲としており、いずれも他
の特性の犠牲のもとに1つの特性が改良されると
いう、いわゆるプロパテイーのトレード・オフに
よる改良にすぎない。 さらに化学安定性を改良するためポリエステル
中のカルボキシル基量を低下させる方法や、ポリ
エステル繊維の接着力を向上せしめる方法は、そ
れらの特性が必要とされる重量車輛用の補強材と
しては寸法安定性が不充分であり、その特性を発
揮できる素材として完成されていない。 本発明者らはかかる点に鑑み、すでに先願特許
(特願昭56−194129号)に、上記の問題点をこと
ごとく克服した熱寸法安定性および化学安定性に
すぐれると同時に高強度を有するポリエステル繊
維を開示している。すなわち、 ポリエチレンテレフタレートを主成分とするポ
リエステルを溶融紡出し、次いで冷却固化し、さ
らに延伸することによつて得られた延伸糸であつ
て、次の特性を有し、 (i) 極限粘度0.8以上 (ii) テレフタル酸残基に対するジエチレングリコ
ール含量2.5モル%以下 (iii) カルボキシル基含量30当量/106g以下 (iv) 平均複屈折 0.190以上 (v) ヤーン強度 8.5g/d以上 (vi) 単糸の表面と中心との複屈折差を平均複屈折
値で除した値が0.055以下 さらに該延伸糸に240℃で1分間定長で熱処理
を施したとき、次の特性を示すに至ることを特徴
とする熱寸法安定性および化学安定性にすぐれる
と同時に高強度を有するポリエステル繊維であ
る。 (a) 175℃で30分間フリー熱処理したときの乾熱
収縮率3.0%以下 (b) 試長10インチ、歪速度0.5インチ/分、温度
150℃の条件下に0.6g/dと0.05g/dの間の
応力でヒステリシスループを測定し得られた仕
事損失が2.0×10-5インチ・ポンド/デニール
以下 本発明者らは該ポリエステル繊維の工業的に有
用な製造方法、なかんずく、紡糸延伸方法につい
て鋭意研究の結果、比較的高温の冷却風により冷
却せしめた高配向未延伸糸(所謂POY)を二段
の延伸域を設けてスピンドロー法により延伸し、
その際、第一延伸域で高温加熱水蒸気を用い、第
二延伸域においては、加熱ロールあるいは加熱プ
レート等の接触式加熱装置を用いることにより経
済性にすぐれると同時に延伸操業性にすぐれた該
ポリエステル繊維の製造方法を確立した。 溶融紡糸において固化点で非晶状態を示す熱可
塑性樹脂、例えばポリエステル、ナイロン等の所
謂POYを経由した延伸糸の特徴は低収縮および
高モジユラスであるが、POYをスピンドロー法
により延伸すると延伸速度が極めて高くならざる
を得ない。そのために延伸操業性が著しく低下
し、POYをスピンドロー法で延伸することは、
結果的に経済的見地から見て、すぐれた方法であ
るとはいい難いことになる。従つて、例えば特開
昭53−58031号公報においても実質上は一段目の
延伸を施した後、オフラインで二段目の延伸を施
す方法が開示されているにすぎず、スピンドロー
法に関してはほとんどふれていない。 特願昭56−194129号に記載された繊維も、その
製造に際して高速延伸を必要とする事は同様であ
り、従来技術によるスピンドロー法では工業的見
地から見て十分満足を与えるまでには至らなかつ
た。例えば二段延伸域を設け、各々加熱ロール等
の接触式加熱装置を用いて延伸した場合には後述
の実施例における比較例Dに認められるように操
業性が極めて悪くなり、また一段の延伸域のみで
加熱水蒸気延伸を施した場合には、後述の実施例
における比較例Eに認められるように加熱水蒸気
の消費量が極めて多くなり、共に工業的見地から
見て満足とは言えないものであつた。 本発明者らはかかる点に鑑み、これらの問題点
をことごとく克服した経済性に優れ、さらに延伸
工程の操業性を向上させることができる熱寸法安
定性および化学安定性に優れると同時に高強度を
有するポリエステル繊維の製造方法を確立するに
至つた。 本発明の方法は、エチレンテレフタレートを主
たる繰り返し単位とする極限粘度(フエノール/
テトラクロルエタン6/4の溶媒中、温度30℃で
測定、以下同じ)0.7以上のポリエステルを、紡
糸口金より単孔当り吐出量を3.5g/分以下で溶
融紡出し、次いで温度50〜80℃の冷却風で冷却
し、固化点における糸条張力が1.5×107〜7.5×
107dyne/cm2の間にあるように糸条を引き出し、
次いで第1応力単離装置と第2応力単離装置との
間で温度400〜650℃の加熱水蒸気を用いた延伸点
固定装置を通過せしめて延伸倍率D(倍)が次式
(1)で示される範囲で第1段目の延伸を行い、 0.70Y≦D≦0.90Y ……(1) 〔ただし、(1)式中、Yは次式(2)で示される値であ
る。 Y=6.834×10-4×B2−0.0874×B+4.816 ……(2) なお、(2)式中Bは紡出糸の平均複屈折×10-3
示す。平均複屈折の値は15×10-3〜70×10-3の範
囲内にある。〕 引き続いて第2応力単離装置と第3応力単離装置
の間で、温度180℃以上融点までの範囲で、延伸
倍率1.05〜1.20の間で延伸し、しかる後、直ちに
あるいは第4応力単離装置を用いてリラツクスさ
せた後、巻き取ることを特徴とする熱寸法安定性
および化学安定性にすぐれると同時に高強度を有
するポリエステル繊維の製造方法である。 本発明におけるポリエステルは主として産業用
の高強力繊維として供給することを目的とするた
め少なくとも繰り返し構造単位の95モル%以上が
エチレンテレフタレートであり、ポリエステルの
極限粘度が0.7以上であることが必要である。極
限粘度が0.7未満の場合は、高強度のポリエステ
ル繊維が得られず産業用の高強力繊維としての使
用目的に適合しない。次に本発明において用いる
ポリエステルを、紡糸口金より紡出する際、単孔
当り吐出量を3.5g/分以下で紡出することが必
要である。吐出量が3.5g/分を超える場合にあ
つては、紡出糸条各フイラメントの複屈折の内外
層差が大きくなり、後述の高温冷却風使用の効果
が乏しく、得られる延伸糸の複屈折も低い値とな
る。その結果、産業用の高強度を有する低収縮繊
維が得られず、従つて自動車タイヤ等のゴム補強
材として好適な高強力ポリエステル繊維を製造す
る場合において、ゴム補強材としての使用目的に
適合しなくなる。本発明ではこのようにポリエス
テルを紡糸口金より押し出し、いわゆる加熱筒を
用いることなく、直ちに、もしくは保温筒中を糸
条が通過した後、50〜80℃の温度を有する比較的
高温の冷却風、好ましくは60〜80℃の温度を有す
る高温の冷却風により糸条固化点まで冷却する。
かくすることにより固化点におけるフイラメント
内外層の温度差が著しく減少し、その結果紡出糸
の分子鎖配向度のフイラメント内層外層間差が著
しく減少する。例えば冷却風温度を20℃から50℃
へ変更することにより紡出糸の単糸の中心と表面
との複屈折差が15%であつたものが5%へと著し
く減少する。 この場合、冷却風温度を35℃未満にすると本発
明の目的に適合する強度は得られず操業性も低下
する。また冷却風が温度80℃を超える場合におい
ては、ユーテイリテイーコストが増大すると同時
に、ノズルから固化点までの距離が極端に長くな
つて操業性が悪化し工業的に実用化が困難とな
る。 また固化点での糸条張力が紡出糸の複屈折の値
を決めるので、本発明において固化点での糸条張
力は重要である。糸条固化後の糸条張力は主とし
て空気摩擦による張力により単調に増加するが、
糸条の分子鎖の配向には無関係であるので、本発
明の如く、紡出糸条の複屈折が重要となる場合に
は固化点の張力をコントロールすることが技術的
なポイントとなる。固化点張力を決定する主な因
子としては、単孔吐出量、ノズルから冷却風が糸
条に当るまでの距離および紡速であるので、必要
な固化点張力を与えるには種々の紡糸条件が考え
られる。本発明では1.5×107dyne/cm2から7.5×
107dyne/cm2の間に有るようにすることが必要で
あり、好ましくは、2.0×107dyne/cm2から6.5×
107dynecm2の間にあるようにする。 固化点張力の値1.5×107〜7.5×107dyne/cm2は、
紡出糸の複屈折の値にして15×10-3〜70×10-3
相当する。 かかる場合において、固化点の糸条張力を1.5
×107dyne/cm2未満にすれば、本発明の最も重要
な効果である低収縮性を有するポリエステル繊維
を得ることができない。さらに固化点における糸
条張力が7.5×107dyne/cm2を超える場合において
は紡出糸条はすでに結晶化(広角X線回折法によ
り判定)していることが認められ、かかる紡出糸
はフイラメント内複屈折が極めて大きくなつてお
り、延伸後、繊維強度の低いポリエステル繊維と
なる。 本発明は熱寸法安定性および化学安定性にすぐ
れた高強力糸を得る上で、二段の延伸域を設けて
スピンドロー法により延伸することが必要であ
り、かくすることによつてユーテイリテイコスト
を下げることが出来、経済性にもすぐれた良質の
繊維を得ることができる。 本発明者らは、かかる二段延伸に関して、鋭意
研究を重ねた結果、一段目延伸は、温度400〜650
℃の加熱水蒸気を用いて、式(1)で示される延伸倍
率で行ない、さらに二段目延伸は、温度180℃以
上融点までの範囲で、延伸倍率1.05〜1.20の範囲
で行なうことが最も好ましいことを見い出した。 紡出糸は、一段目延伸において、温度400〜650
℃の加熱水蒸気で加熱される。この時の加熱水蒸
気の温度は高強力糸を得る上で重要であり、400
℃未満になると充分な延伸を行なうために蒸気の
使用量が増加し、はなはだしく低い温度になる
と、本発明の必要な一段目延伸倍率迄、延伸する
ことができなくなる。また加熱水蒸気温度が650
℃を超えると、糸条の溶融を惹起することにな
り、本発明の目的を達することが出来なくなる。
ここで一段目延伸倍率の最適範囲を示す前式(1)
は、複屈折が15×10-3〜75×10-3の範囲にある紡
出糸(POY)数種類を供給速度100m/分、供給
ローラの表面温度を〔90+(IV−0.6)×4.5−
POY×280〕−5℃(ただし、IVは極限粘度、
POYはPOYの平均複屈折を表わしている。)、ホ
ツトプレートの温度230℃、引取りローラの温度
140℃に設定した延伸機を用いて延伸し、引取り
ローラの回転を上げることによつて破断延伸倍率
を測定し、かくして求めた破断延伸倍率Yと紡出
糸の複屈折値とから二次回帰分析を行ない(2)式を
導いて、該(2)式を目安として、求められたもので
ある。 かかる延伸配分を施した場合、一段目延伸にお
いては、繊維製品重量当りの加熱水蒸気の使用量
が最も少なくなり、かつ、操業性が向上する。 次いで、二段目延伸を行なうが、この場合の延
伸温度は180℃以上融点まで、好ましくは200〜
240℃の範囲にあることが必要であり、この温度
が180℃未満になると延伸が不可能となつて糸切
れが多発する。また、この温度が融点を超える
と、糸条の溶断が起こり延伸することができなく
なる。 さらに、二段目延伸における延伸倍率は1.05〜
1.20の範囲で行なうことが必要であつて、この場
合、延伸倍率を1.05倍未満にすると充分な強度が
得られず、従つて高強力糸を得ることができなく
なる。また、延伸倍率が1.20倍を超えると、最大
延伸倍率を超過し、糸切れが多発する。 なお、延伸後の引取速度は5500m/分以下にす
ることが好ましく、引取速度が5500m/分を越え
る場合は、延伸速度が高くなりすぎ、その結果、
延伸糸切れが多発し、操業が困難となる。 次に実施例に基づき本発明について説明する。 実施例 1 極限粘度1.0、ジエチレングリコール含量1.0モ
ル%、カルボキシル基含量10当量/106gのポリ
エチレンテレフタレートを表−1に示す条件で紡
糸延伸した。A、B、Cは本発明の実験結果を示
すものであり、D、E、F、Gは比較例の実験結
果を示すものである。 A、B、Cはいずれも工業的な見地から見て有
効な方法であり、これらに対して一段目の延伸に
加熱ロールを使用し、加熱水蒸気を用いなかつた
比較例Dは、延伸糸切れ率が非常に高く、とても
工業生産をするには困難な状態であつた。また比
較例Eは、一段延伸に加熱水蒸気を用い、二段延
伸を施さないケースであるが、この場合は加熱水
蒸気の使用量が極めて大量となり、ユーテイリテ
イーコストが極めて高くなつて工業生産を行なう
には適当な方法ではない。さらに紡糸時単孔吐出
量が3.5g/分を超え、最終巻取速度が5500m/
分を超えた比較例Fは、延伸速度が高くなりすぎ
ており、従つて延伸糸切れ率が極めて高率とな
り、操業性に悪い影響を与えることを示してい
る。ここで最終巻取速度を5500m/分以下にする
ためには、第1ゴデツトローラへ送り込まれる紡
出糸条の複屈折値を、なるべく低い紡糸速度下
に、高い値にする必要がある。このため吐出ポリ
マーの極限粘度は0.7以上、吐出温度は280〜325
℃、単孔当り吐出量は3.5g/分以下にする必要
がある。比較例Gは、通常のスピンドロー法によ
る結果を示すものであり、この場合は固化点張力
低がく、得られる糸の乾熱収縮率は高い。
The present invention relates to a method for producing polyester fibers having excellent thermal dimensional stability and chemical stability as well as high strength. Polyester high-strength yarn, typified by polyester tire cord, is an organic fiber with excellent balance in terms of physical properties, and has recently come to be widely used in large quantities as an industrial fiber. Furthermore, as raw material prices for organic fibers have risen markedly in recent years, raw material costs for polyester, particularly polyethylene terephthalate, have been increasing at a lower rate than for other organic fibers such as nylon 6, so they can maintain their price advantage in the future. It is predicted that this will further expand the demand for high-strength polyester yarn. However, it is also true that depending on the application, improvements in thermal dimensional stability, chemical stability, and adhesion to reinforced materials such as rubber are required. Naturally, in response to such demands, various improvements have been proposed, including polyester fibers with relatively low intrinsic viscosity (for example, JP-A-53-31852) and highly oriented undrawn yarns ( so-called
Polyester fibers produced by drawing polyester fibers (for example, USP. 4195052) or polyester fibers subjected to electron beam irradiation (Japanese Patent Application Laid-open No. 57070/1983) have been proposed. Regarding improvement of chemical stability, proposals have been made such as a method of reducing the amount of carboxyl groups in polyester (for example, JP-A-55-116816). Furthermore, in order to improve the adhesion to rubber, there is a method of treating the yarn with a chemically active treatment agent such as an epoxy or isocyanate type during the spinning and drawing process (for example, Japanese Patent Publication No. 47-49768), or using the above-mentioned treatment agent during dip treatment. (for example, JP-A-55-
116816) has been proposed. Although each proposal seems to have achieved some results in terms of individual requests for improvement, in the recent era of technological innovation, quality improvements in the form of so-called property trade-offs are insufficient. It is becoming increasingly difficult to provide customers with sufficient satisfaction. Considering the above-mentioned prior art in this background, firstly, in the method of reducing the intrinsic viscosity and improving the dimensional stability, when the fiber is used as a tire reinforcing material, for example, a cord is formed to improve the dimensional stability. It sacrifices strength and fatigue resistance. Also
The fibers obtained by the method of US Pat. No. 4,195,032 for drawing POY also sacrifice cord toughness for improved dimensional stability when used, for example, as tire reinforcement. Furthermore, the present inventors have already filed a patent application in 1986-119614.
As disclosed in Japanese Patent Application Laid-Open No. 58-23914, this fiber has a defect in that its chemical stability is inferior to that of conventional products. This is because there are many tie molecular chains near the surface, which have a high contribution to fiber strength, and this shows a particularly remarkable tendency for deterioration caused by amines or water in rubber. According to the method of improving dimensional stability by performing three-dimensional cross-linking by electron beam irradiation or using a cross-linking agent, the toughness and fatigue resistance of the yarn are sacrificed in order to improve dimensional stability. This is simply an improvement by so-called property trade-off, where one property is improved at the expense of another property. Furthermore, methods to reduce the amount of carboxyl groups in polyester in order to improve chemical stability and methods to improve the adhesive strength of polyester fibers have improved dimensional stability as reinforcing materials for heavy vehicles that require these properties. is insufficient, and the material has not been perfected to exhibit its characteristics. In view of these points, the present inventors have already published a patent application (Japanese Patent Application No. 56-194129) that has excellent thermal dimensional stability and chemical stability, which overcomes all of the above problems, and has high strength at the same time. Polyester fibers are disclosed. That is, a drawn yarn obtained by melt-spinning polyester containing polyethylene terephthalate as a main component, then cooling and solidifying it, and further drawing, which has the following properties: (i) an intrinsic viscosity of 0.8 or more; (ii) Diethylene glycol content based on terephthalic acid residues: 2.5 mol% or less (iii) Carboxyl group content: 30 equivalents/10 6 g or less (iv) Average birefringence: 0.190 or more (v) Yarn strength: 8.5 g/d or more (vi) Single yarn The value obtained by dividing the birefringence difference between the surface and the center by the average birefringence value is 0.055 or less. Furthermore, when the drawn yarn is heat-treated at 240°C for 1 minute at a constant length, it exhibits the following characteristics. It is a polyester fiber that has excellent thermal dimensional stability and chemical stability as well as high strength. (a) Dry heat shrinkage rate 3.0% or less when free heat treated at 175℃ for 30 minutes (b) Sample length 10 inches, strain rate 0.5 inches/min, temperature
The work loss obtained by measuring the hysteresis loop at a stress between 0.6 g/d and 0.05 g/d at 150° C. is less than 2.0×10 -5 inch-lb/denier. As a result of intensive research on industrially useful manufacturing methods, especially spinning and drawing methods, we have developed highly oriented undrawn yarn (so-called POY) that has been cooled by relatively high-temperature cooling air and spin-draws it in two drawing zones. Stretched by method,
At that time, high-temperature heated steam is used in the first stretching zone, and a contact heating device such as a heating roll or heating plate is used in the second stretching zone, which is both economical and highly efficient in stretching operation. Established a method for producing polyester fiber. The characteristics of drawn fibers made from so-called POY, such as polyester and nylon, which exhibit an amorphous state at the solidification point during melt spinning, are low shrinkage and high modulus.However, when POY is drawn by the spin-draw method, the drawing speed is low. must be extremely high. As a result, the drawing operability is significantly reduced, and it is difficult to draw POY using the spin draw method.
As a result, from an economic standpoint, it is difficult to say that this is an excellent method. Therefore, for example, Japanese Patent Application Laid-Open No. 53-58031 only discloses a method in which a second stage of stretching is performed off-line after the first stage of stretching; It's hardly touched. Similarly, the fiber described in Japanese Patent Application No. 194129/1980 requires high-speed drawing during its production, and the conventional spin-draw method is not fully satisfactory from an industrial standpoint. Nakatsuta. For example, if two-stage stretching zones are provided and each stretching is performed using a contact heating device such as a heating roll, the operability will be extremely poor as seen in Comparative Example D in the Examples below, and the one-stage stretching zone will When heating steam stretching is carried out using only the above-mentioned materials, the consumption of heating steam becomes extremely large, as seen in Comparative Example E in the Examples described later, and both of these results cannot be said to be satisfactory from an industrial standpoint. Ta. In view of these points, the inventors of the present invention have overcome all of these problems and have excellent economic efficiency, as well as excellent thermal dimensional stability and chemical stability that can improve the operability of the drawing process, as well as high strength. We have now established a method for producing polyester fibers with The method of the present invention has an intrinsic viscosity (phenol/
Polyester (measured in a solvent of 6/4 tetrachloroethane at a temperature of 30°C, the same applies hereinafter) of 0.7 or more is melt-spun from a spinneret at a rate of 3.5 g/min or less per single hole, and then at a temperature of 50 to 80°C. The yarn tension at the solidification point is 1.5×10 7 to 7.5×.
Pull out the yarn so that it is between 10 and 7 dyne/ cm2 ,
Next, the stretching point fixing device using heated steam at a temperature of 400 to 650°C is passed between the first stress isolating device and the second stress isolating device, and the stretching ratio D (times) is determined by the following formula.
The first stage of stretching is performed within the range shown in (1), and 0.70Y≦D≦0.90Y...(1) [However, in formula (1), Y is the value shown in the following formula (2). be. Y=6.834×10 −4 ×B 2 −0.0874×B+4.816 (2) In formula (2), B represents the average birefringence of the spun yarn×10 −3 . The average birefringence value is in the range 15×10 −3 to 70×10 −3 . ] Subsequently, stretching is performed between the second stress isolation device and the third stress isolation device at a temperature of 180°C or higher up to the melting point, and at a stretching ratio of 1.05 to 1.20, and then immediately or the fourth stress isolation device is applied. This is a method for producing polyester fibers having excellent thermal dimensional stability and chemical stability as well as high strength, which is characterized by relaxing the fibers using a separating device and then winding them up. Since the polyester in the present invention is mainly intended to be supplied as a high-strength fiber for industrial use, it is necessary that at least 95 mol% or more of the repeating structural unit is ethylene terephthalate and that the intrinsic viscosity of the polyester is 0.7 or more. . If the intrinsic viscosity is less than 0.7, high-strength polyester fibers cannot be obtained and are not suitable for use as industrial high-strength fibers. Next, when the polyester used in the present invention is spun from a spinneret, it is necessary to spin the polyester at a rate of 3.5 g/min or less per single hole. If the discharge rate exceeds 3.5 g/min, the difference in birefringence between the inner and outer layers of each filament of the spun yarn becomes large, and the effect of using high-temperature cooling air, which will be described later, is poor, and the birefringence of the resulting drawn yarn increases. is also a low value. As a result, low-shrinkage fibers with high strength for industrial use cannot be obtained, and therefore, when producing high-strength polyester fibers suitable as rubber reinforcing materials for automobile tires, etc., they are not suitable for the purpose of use as rubber reinforcing materials. It disappears. In the present invention, the polyester is extruded through the spinneret, and the polyester is extruded immediately or after the yarn has passed through the heat-insulating cylinder without using a so-called heating cylinder, and then the polyester is extruded using relatively high-temperature cooling air having a temperature of 50 to 80°C, preferably. is cooled to the yarn solidification point by high-temperature cooling air having a temperature of 60 to 80°C.
By doing so, the temperature difference between the inner and outer layers of the filament at the solidification point is significantly reduced, and as a result, the difference in the degree of molecular chain orientation of the spun yarn between the inner and outer layers of the filament is significantly reduced. For example, change the cooling air temperature from 20℃ to 50℃
By changing to , the birefringence difference between the center and surface of the single filament of the spun yarn is significantly reduced from 15% to 5%. In this case, if the cooling air temperature is lower than 35° C., the strength suitable for the purpose of the present invention cannot be obtained, and the operability will also deteriorate. Furthermore, when the temperature of the cooling air exceeds 80°C, utility costs increase and at the same time the distance from the nozzle to the solidification point becomes extremely long, resulting in poor operability and making it difficult to put it into practical use industrially. Furthermore, since the yarn tension at the solidification point determines the birefringence value of the spun yarn, the yarn tension at the solidification point is important in the present invention. After the yarn is solidified, the yarn tension increases monotonically mainly due to the tension caused by air friction.
Since it has nothing to do with the orientation of the molecular chains of the yarn, controlling the tension at the solidification point is a technical point when the birefringence of the spun yarn is important as in the present invention. The main factors that determine the solidification point tension are the single hole discharge rate, the distance from the nozzle to the point where the cooling air hits the yarn, and the spinning speed, so various spinning conditions must be adjusted to provide the necessary solidification point tension. Conceivable. In the present invention, from 1.5×10 7 dyne/cm 2 to 7.5×
107 dyne/ cm2 , preferably between 2.0× 107 dyne/ cm2 and 6.5×
Make it between 10 7 dynecm 2 . The value of solidification point tension 1.5×10 7 to 7.5×10 7 dyne/cm 2 is
This corresponds to a birefringence value of 15×10 −3 to 70×10 −3 of the spun yarn. In such cases, the yarn tension at the solidification point is set to 1.5.
If it is less than ×10 7 dyne/cm 2 , it will not be possible to obtain a polyester fiber having low shrinkage, which is the most important effect of the present invention. Furthermore, if the yarn tension at the solidification point exceeds 7.5×10 7 dyne/cm 2 , it is recognized that the spun yarn has already been crystallized (determined by wide-angle X-ray diffraction); has extremely high birefringence within the filament, resulting in a polyester fiber with low fiber strength after stretching. In order to obtain a high-strength yarn with excellent thermal dimensional stability and chemical stability, it is necessary to provide a two-stage drawing zone and draw it by a spin draw method. It is possible to reduce the production cost and obtain high-quality fibers with excellent economic efficiency. As a result of extensive research into such two-stage stretching, the present inventors found that the first-stage stretching was carried out at a temperature of 400 to 650.
It is most preferable to carry out the stretching at a stretching ratio shown by the formula (1) using heated steam at ℃, and furthermore, the second stage stretching is carried out at a temperature of 180°C or higher up to the melting point and at a stretching ratio of 1.05 to 1.20. I discovered that. The spun yarn is drawn at a temperature of 400 to 650 in the first stage.
Heated with steam at ℃. The temperature of the heated steam at this time is important in obtaining high-strength yarn;
If the temperature is below .degree. C., the amount of steam used will increase to achieve sufficient stretching, and if the temperature is extremely low, it will no longer be possible to stretch to the first-stage stretching ratio required by the present invention. In addition, the heating steam temperature is 650
If the temperature exceeds .degree. C., the yarn will melt, making it impossible to achieve the object of the present invention.
Here, the previous formula (1) shows the optimal range of the first stage stretching ratio.
Several kinds of spun yarns (POY) with birefringence in the range of 15 × 10 -3 to 75 × 10 -3 were supplied at a speed of 100 m/min, and the surface temperature of the supply roller was set to [90 + (IV - 0.6) × 4.5 -
POY×280〕-5℃ (However, IV is the intrinsic viscosity,
POY represents the average birefringence of POY. ), hot plate temperature 230℃, take-up roller temperature
Stretching is carried out using a stretching machine set at 140°C, and the break stretch ratio is measured by increasing the rotation of the take-up roller. From the thus determined break stretch ratio Y and the birefringence value of the spun yarn, the secondary It was obtained by performing regression analysis and deriving equation (2), using equation (2) as a guide. When such a stretching distribution is applied, the amount of heated steam used per weight of the fiber product is minimized in the first stage stretching, and operability is improved. Next, second-stage stretching is performed, and the stretching temperature in this case is 180°C or higher to the melting point, preferably 200°C to the melting point.
It is necessary that the temperature be in the range of 240°C; if this temperature is less than 180°C, stretching becomes impossible and yarn breakage occurs frequently. Furthermore, if this temperature exceeds the melting point, the threads will be fused and cannot be drawn. Furthermore, the stretching ratio in the second stage stretching is 1.05~
It is necessary to carry out the stretching within a range of 1.20, and in this case, if the stretching ratio is less than 1.05, sufficient strength will not be obtained, and therefore a high-strength yarn will not be obtained. Furthermore, if the stretching ratio exceeds 1.20 times, the maximum stretching ratio will be exceeded and yarn breakage will occur frequently. In addition, it is preferable that the take-off speed after stretching is 5500 m/min or less, and if the take-off speed exceeds 5500 m/min, the stretching speed becomes too high, and as a result,
The drawn yarn breaks frequently, making operation difficult. Next, the present invention will be explained based on examples. Example 1 Polyethylene terephthalate having an intrinsic viscosity of 1.0, a diethylene glycol content of 1.0 mol%, and a carboxyl group content of 10 equivalents/10 6 g was spun and drawn under the conditions shown in Table 1. A, B, and C show the experimental results of the present invention, and D, E, F, and G show the experimental results of the comparative example. All of A, B, and C are effective methods from an industrial standpoint, whereas Comparative Example D, in which heated rolls were used for the first drawing and no heated steam was used, caused the drawn yarn to break. The production rate was extremely high, making it difficult to carry out industrial production. Comparative Example E is a case in which heated steam is used for the first-stage stretching and no second-stage stretching is performed, but in this case, the amount of heated steam used is extremely large, and the utility cost is extremely high, making industrial production difficult. That's not the right way to do it. Furthermore, the single hole discharge rate during spinning exceeds 3.5 g/min, and the final winding speed is 5500 m/min.
In Comparative Example F, in which the drawing speed exceeded 10 minutes, the drawing speed was too high, and therefore the drawing yarn breakage rate was extremely high, which had a negative effect on the operability. In order to make the final winding speed 5500 m/min or less, the birefringence value of the spun yarn sent to the first godet roller must be set to a high value while keeping the spinning speed as low as possible. Therefore, the intrinsic viscosity of the discharged polymer is 0.7 or more, and the discharge temperature is 280 to 325.
℃, the discharge amount per single hole must be 3.5 g/min or less. Comparative Example G shows the results obtained by the usual spin-draw method, and in this case, the tension at the solidification point is low, and the resulting yarn has a high dry heat shrinkage rate.

【表】【table】

【表】 実施例 2 実施例1において、表−1に示した条件で得ら
れたAおよびC(本発明による繊維)とG(比較例
として通常の高強力ポリエステル繊維)とのタイ
ヤコードとしての特性の比較をした。 各繊維を撚り数40×40(T/10cm)の双糸コー
ドとなし、各コードにバルカボンドE(旧名ペク
セル;ICI社製品)を含むレゾルシン−ホルマリ
ン−ラテツクス処理液でデイツプ処理(処理温度
240℃)を施した。 かくして得られた三種のコードのデイツプコー
ド特性の比較を実施した。結果を表−2に示す。
[Table] Example 2 In Example 1, A and C (fibers according to the present invention) obtained under the conditions shown in Table 1 and G (normal high-strength polyester fiber as a comparative example) were used as a tire cord. I compared the characteristics. Each fiber is made into a double thread cord with a twist count of 40 x 40 (T/10 cm), and each cord is deep-treated with a resorcinol-formalin-latex treatment solution containing Vulcabond E (formerly known as Pexcel; a product of ICI) (processing temperature
240℃). The dip cord characteristics of the three types of cords thus obtained were compared. The results are shown in Table-2.

【表】【table】

【表】 表−2からも明らかな如く、本発明の方法によ
つて得られた繊維は、従来技術による高強力ポリ
エステル繊維と同等の強力および化学安定性を有
し、熱寸法安定性を大巾に改善していることが認
められる。 これらの実験によつて、かかる有用なる繊維を
比較的安価に製造できる本発明の意義の大なるこ
とが認められた。 実施例 3 極限粘度1.0、ジエチレングリコール含量1.0モ
ル%、カルボキシル基含量10当量/106gのポリ
エチレンテレフタレートを、表−3に示す条件で
紡糸延伸した。各条件下での実験結果を表−3の
H〜Mに示す。 Hは、単孔吐出量が3.5g/minを超えた例で
あり、この場合、紡出糸のフイラメント表面と中
心の複屈折差が大きくなり、高温クエンチ風(積
極的な高温冷却風)の効果が低く、その結果延伸
糸の複屈折が低い値となり、従つて高強度を有す
る低収縮ポリエステル繊維が得られない。 Jは固化点張力が1.5×107dyne/cm2よりやゝ低
い場合、Iは固化点張力が1.5×107dyne/cm2より
極めて小さい場合で、両者共に乾熱収縮率が大き
くなつており、低収縮ポリエステル繊維が得られ
ない。 Kは固化点張力が7.5×107dyne/cm2を超えた例
であり、この場合、紡出糸条はすでに、広角X線
回折測定によれば結晶化していることが認めら
れ、紡出糸のフイラメント内複屈折が極めて大き
くなつており、従つて延伸糸の糸切れが頻発し、
延伸後の強度は極めて低下している。 Lはクエンチ風温度が50℃の場合、Mはクエン
チ風温度が30℃の場合の例であり、本発明方法を
満足するLは糸切れ率が若干大きく出ているが、
それに対してMの場合は、強度も低くなり、糸切
れ率も極めて大きく本発明の目的を達していない
ことがわかる。
[Table] As is clear from Table 2, the fibers obtained by the method of the present invention have the same strength and chemical stability as the high-strength polyester fibers produced by the prior art, and have significantly improved thermal dimensional stability. It can be seen that there has been a significant improvement. Through these experiments, it was recognized that the present invention has great significance in that such useful fibers can be produced at a relatively low cost. Example 3 Polyethylene terephthalate having an intrinsic viscosity of 1.0, a diethylene glycol content of 1.0 mol %, and a carboxyl group content of 10 equivalents/10 6 g was spun and drawn under the conditions shown in Table 3. The experimental results under each condition are shown in H to M in Table 3. H is an example in which the single-hole discharge rate exceeds 3.5 g/min. In this case, the birefringence difference between the filament surface and center of the spun yarn becomes large, and the high-temperature quenching wind (active high-temperature cooling wind) The effect is low, resulting in a low birefringence value of the drawn yarn and therefore low shrinkage polyester fibers with high strength cannot be obtained. J is when the solidification point tension is slightly lower than 1.5×10 7 dyne/cm 2 , I is when the solidification point tension is extremely lower than 1.5×10 7 dyne/cm 2 , and both have a large dry heat shrinkage rate. Therefore, low shrinkage polyester fibers cannot be obtained. K is an example in which the solidification point tension exceeds 7.5×10 7 dyne/cm 2 , and in this case, the spun yarn is already crystallized according to wide-angle X-ray diffraction measurements, and the The birefringence within the filament of the yarn has become extremely large, resulting in frequent breakage of the drawn yarn.
The strength after stretching is extremely low. L is an example when the quench air temperature is 50°C, M is an example when the quench air temperature is 30°C, and L, which satisfies the method of the present invention, has a slightly higher yarn breakage rate,
On the other hand, it can be seen that in the case of M, the strength is low and the yarn breakage rate is extremely high, which does not achieve the purpose of the present invention.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 エチレンテレフタレートを主たる繰り返し単
位とする極限粘度(フエノール/テトラクロルエ
タン6/4の溶媒中、温度30℃で測定)0.7以上
のポリエステルを、紡出口金より単孔当り吐出量
を3.5g/分以下で溶融紡出し、次いで温度50〜
80℃の冷却風で冷却し、固化点における糸条張力
が1.5×107〜7.5×107dyne/cm2の間にあるように
糸条を引き出し、次いで第1応力単離装置と第2
応力単離装置との間で温度400〜650℃の加熱水蒸
気を用いた延伸点固定装置を通過せしめて延伸倍
率D(倍)が次式(1)で示される範囲で第1段目の
延伸を行ない、 0.70Y≦D≦0.90Y ……(1) 〔ただし、(1)式中、Yは次式(2)で示される値であ
る。 Y=6.834×10-4×B2−0.0874×B+4.816 ……(2) なお、(2)式Bは紡出糸の平均複屈折×103を示
す。平均複屈折の値は15×10-3〜70×10-3の範囲
内にある。〕引き続いて第2応力単離装置と第3
応力単離装置の間で、温度180℃以上融点までの
範囲で、延伸倍率1.05〜1.20の間で延伸し、しか
る後、直ちにあるいは第4応力単離装置を用いて
リラツクスさせた後、巻き取ることを特徴とする
熱寸法安定性および化学安定性にすぐれると同時
に高強度を有するポリエステル繊維の製造方法。
[Claims] 1. A polyester whose main repeating unit is ethylene terephthalate and which has an intrinsic viscosity of 0.7 or more (measured in a phenol/tetrachloroethane 6/4 solvent at a temperature of 30°C) is discharged per single hole from a spinneret. Melt-spun at a rate of 3.5g/min or less, then at a temperature of 50~
The yarn was cooled with cooling air at 80°C and pulled out so that the yarn tension at the solidification point was between 1.5×10 7 and 7.5×10 7 dyne/cm 2 .
The first stage of stretching is performed by passing through a stretching point fixing device using heated steam at a temperature of 400 to 650°C between the stress isolation device and the stretching ratio D (times) within the range shown by the following formula (1). 0.70Y≦D≦0.90Y...(1) [However, in formula (1), Y is the value shown by the following formula (2). Y=6.834×10 −4 ×B 2 −0.0874×B+4.816 (2) Formula (2) B indicates the average birefringence of the spun yarn×10 3 . The average birefringence value is in the range 15×10 −3 to 70×10 −3 . ]Subsequently, the second stress isolation device and the third
It is stretched between stress isolation devices at a temperature of 180°C or higher up to the melting point and at a stretching ratio of 1.05 to 1.20, and then immediately or after relaxing using the fourth stress isolation device, it is rolled up. A method for producing a polyester fiber having excellent thermal dimensional stability and chemical stability as well as high strength.
JP17589482A 1982-10-05 1982-10-05 Production of polyester fiber of high strength as well as of high thermal dimension stability and chemical stability Granted JPS5966515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17589482A JPS5966515A (en) 1982-10-05 1982-10-05 Production of polyester fiber of high strength as well as of high thermal dimension stability and chemical stability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17589482A JPS5966515A (en) 1982-10-05 1982-10-05 Production of polyester fiber of high strength as well as of high thermal dimension stability and chemical stability

Publications (2)

Publication Number Publication Date
JPS5966515A JPS5966515A (en) 1984-04-16
JPS642685B2 true JPS642685B2 (en) 1989-01-18

Family

ID=16004081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17589482A Granted JPS5966515A (en) 1982-10-05 1982-10-05 Production of polyester fiber of high strength as well as of high thermal dimension stability and chemical stability

Country Status (1)

Country Link
JP (1) JPS5966515A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61252314A (en) * 1985-05-02 1986-11-10 Teijin Ltd Production of polyester yarn

Also Published As

Publication number Publication date
JPS5966515A (en) 1984-04-16

Similar Documents

Publication Publication Date Title
US4690866A (en) Polyester fiber
KR870001130B1 (en) Polyester fiber having excellent thermal dimensional stability chemical stability and high tenacity and process for the production thereof
JP3886360B2 (en) Method for producing polyester multifilament yarn
US5891567A (en) Polyester filamentary yarn, polyester tire cord and production thereof
JP3133177B2 (en) Polyethylene naphthalate fiber excellent in heat stability and method for producing the same
JP2629075B2 (en) High modulus polyester yarn for tire cords and composites
JP5497384B2 (en) Tire cord and tire using the same
JPS6088120A (en) Polyester yarn
KR100602286B1 (en) Polyester fiber and preparation thereof
JPS62156312A (en) Polyester fiber
JPH0733610B2 (en) Manufacturing method of polyester tire cord
KR0140230B1 (en) Manufacturing method of dimensional stability polyester yarn
JP2882697B2 (en) Polyester fiber and method for producing the same
JPS642685B2 (en)
JPH0450407B2 (en)
JPS61194218A (en) Production of polyester fiber
JP2839817B2 (en) Manufacturing method of polyester fiber with excellent thermal dimensional stability
KR19980066987A (en) Polyester filament yarn having excellent thermal dimensional stability and strength utilization rate and a method of manufacturing the same
JPH0376810A (en) Polyester finer having high toughness and low shrinkage and its production
JPS5813718A (en) Polyester fiber
JPH0321647B2 (en)
KR960002887B1 (en) High strength and low shrinkage polyester fiber and the method for manufacturing thereof
JPH0141722B2 (en)
JP2002061038A (en) Polytrimethylene terephthalate fiber
JPH0617317A (en) Production of polyester fiber