JPS642660B2 - - Google Patents

Info

Publication number
JPS642660B2
JPS642660B2 JP12518379A JP12518379A JPS642660B2 JP S642660 B2 JPS642660 B2 JP S642660B2 JP 12518379 A JP12518379 A JP 12518379A JP 12518379 A JP12518379 A JP 12518379A JP S642660 B2 JPS642660 B2 JP S642660B2
Authority
JP
Japan
Prior art keywords
corrosion
stainless steel
corrosion resistance
seawater
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12518379A
Other languages
Japanese (ja)
Other versions
JPS5647551A (en
Inventor
Masakatsu Sugimoto
Futoshi Fukui
Koichi Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Metal Industry Co Ltd
Original Assignee
Nippon Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Metal Industry Co Ltd filed Critical Nippon Metal Industry Co Ltd
Priority to JP12518379A priority Critical patent/JPS5647551A/en
Publication of JPS5647551A publication Critical patent/JPS5647551A/en
Publication of JPS642660B2 publication Critical patent/JPS642660B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は重量%でC:0.08%以下、Si:1.0〜
2.0%、Mn:1.0%以下、Ni:8.0〜16.0%、Cr:
16.0〜21.0%、Mo:1.0%未満、Cu:4.0%以下、
N:0.2%以下、残部Feよりなり、製鉄所、発電
所をはじめ各種工業における冷却用海水や、淡水
化装置のような海水使用の環境で優れた耐食性を
有するオーステナイト・ステンレス鋼に関するも
のである。 海水はその量が無尽蔵に近いことから現在各種
工業の冷却水に広く利用されているが、今後はさ
らに海水の淡水化が極めて大規模に行われるよう
になつてくるにつれて、これらの装置にステンレ
ス鋼が大量に使用されることは明らかである。 以上のような用途においては、海水は塩化物を
含んだ高温の状態になり、孔食、すきま腐食、応
力腐食割れなどの局部腐食が発生しやすく、ステ
ンレス鋼にとつては苛酷な環境である。オーステ
ナイト系ステンレス鋼において、海水使用環境で
発生する局部腐食は管理体制が確立していれば十
分な耐食性を発揮でき、実際面でも強度、溶接
性、加工性が優れていることからSUS316が耐海
水ステンレス鋼としてかなり広く使われている。
しかしながらSUS316は本来耐酸性ステンレス鋼
であることから海水のような中性環境では必ずし
も最良とはいい難く、しかも高価である。 本発明はオーステナイト・ステンレス鋼で、海
水における耐食性がすぐれ、さらには熱交換器に
使用される場合の被冷却液体への耐食性も考慮し
て耐酸性をも兼ね備え、しかも価格が低廉である
最適の組成を見出したものである。本発明による
ステンレス鋼において、その成分、組成の限定理
由および作用効果を述べると次のようである。 炭素:オーステナイト・ステンレス鋼は一般に溶
接時の熱影響部の耐食性が劣化し、特に海水に
おいては、当該部に孔食が発生し易く、又孔食
が応力腐食割れを誘発する場合が多い。この傾
向は合金中のC量が増加すると敏感になるので
本発明鋼ではこの点を考慮してCの上限を0.08
%とする。 珪素:Siの添加は耐孔食、耐塩酸、耐応力腐食割
れに有効であるので1.0%以上添加する必要が
ある。しかし量を多くして2.0%以上にすると
鋼中の非金属介在物の増加をもたらし、材料の
表面品質を劣化させ溶接性に問題を生ずるので
上限を2.0%とする。 満俺:Mnは、材料の内部性状を考慮して1.0%以
下とする。 ニツケル:オーステナイト・ステンレス鋼の欠点
の1つとして応力腐食割れが挙げられるが、そ
の感受性はNi量の増大に従つて減少すること
は周知の事実である。本発明鋼はこの点を考慮
してNi量の下限を8.0%とし、又材料の熱間加
工性、経済性より上限を16.0%とする。 クロム:Crはステンレス鋼の耐食性を高める上
で最も有効な元素であり、特にオーステナイ
ト・ステンレス鋼の耐食性を考えた場合16.0%
は最低必要である。しかしCr量の増加はフエ
ライト相を増加させ、鋳造状態での金属組織の
バランスをくずし、熱間加工性を悪化させるの
で上限を21.0%とする。 モリブデン:Moはオーステナイト・ステンレス
鋼の耐孔食性、耐すきま腐食、耐酸性の向上
に最も有効な添加元素である。しかしMo添
加量の増加は省資源、製品価格の点から見て
得策ではない。 本発明の優れた点の1つはMo量を
SUS316より大巾に低く1.0%未満に押え、し
かも上記の特性を損なわない成分、組成とし
たことである。 銅:Cuは耐酸性を向上させ、応力腐食割れ感受
性を減少させるために有効な元素である。しか
し添加量を増すと結晶粒界へ析出し、高温脆化
の原因となる。Cu量が4.0%を超えると熱間加
工性を阻害するので上限を4.0%とする。 窒素:Nは耐孔食性、耐すきま腐食性を向上させ
るのに有効な元素であるが、多量の添加は応力
腐食割れ感受性を高めること、および高強度ス
テンレス鋼に見られるように強度を高める作用
もある。しかし過度の強化は素材の製造、二次
加工において高負荷を必要とするので、耐食性
と強度とのバランス、さらに溶接性を考慮して
上限を0.2%とする。なお粒界腐食感性を低め
るために、さらにTi,Nbを添加することが好
ましい。 次に本発明の実施例について述べる。 本発明の効果を確かめるため第1表に示す試料
番号1〜3の本発明鋼を製造し、これと対比させ
るため市販のSUS304、SUS316を用意した。こ
れらの材料について耐食性を調査した結果は第2
表に示す通りである。 本発明鋼は耐食性、製品価格を勘案してMoを
1%未満としたが、第2表から明らかなように、
海水中のNaCl濃度と同等の環境における耐孔食
性を示す孔食電位、および20%NaCl中の応力腐
食割れ感受性が特に優れており、硫酸、塩酸中の
全面腐食についてもSUS316と同等又はそれ以上
の耐食性を示していて、本用途に要求されるオー
ステナイト・ステンレス鋼として最適である。 試料1は全面腐食をそれ程起させずに孔食、応
力腐食割れ感受性、すきま腐食のような中性環境
における局部腐食に耐してSUS316より耐食性が
優れていることを示す。 試料2,3は海水を冷却水として使用する熱交
換器用ステンレス鋼管の材料に最適で、管内外の
腐食環境が異なつてくる場合に適用できる。 即ち試料2,3は局部腐食、全面腐食の両方に
ついて、耐食的であるが、試料2は局部腐食に対
してより優れており、試料3は全面腐食に対して
それぞれSUS316より良好な耐食性を発揮し、使
用環境により安価な材料を選択できることを示し
ている。 以上述べたように本発明によるオーステナイ
ト・ステンレス鋼は耐海水ステンレス鋼として一
般的に要求される中性環境でSUS316より優れた
耐食性を示すことが立証された。 本発明鋼は高価なモリブデンを大巾に節減した
にも拘らず特に海水使用の環境で優れた耐食性を
示し、省資源の見地からも極めて利点の大きい優
秀なものである。
In the present invention, C: 0.08% or less, Si: 1.0~
2.0%, Mn: 1.0% or less, Ni: 8.0-16.0%, Cr:
16.0-21.0%, Mo: less than 1.0%, Cu: 4.0% or less,
N: 0.2% or less, the balance being Fe, and relates to austenitic stainless steel that has excellent corrosion resistance in environments where seawater is used for cooling in various industries such as steel mills and power plants, and in seawater desalination equipment. . Seawater is currently widely used as cooling water in various industries because its quantity is almost inexhaustible, but as desalination of seawater becomes even more extensive in the future, stainless steel will be used in these devices. It is clear that steel will be used in large quantities. In the above applications, seawater becomes hot and contains chlorides, making it a harsh environment for stainless steel as it tends to cause localized corrosion such as pitting corrosion, crevice corrosion, and stress corrosion cracking. . Austenitic stainless steel can exhibit sufficient corrosion resistance if a management system is established to prevent local corrosion that occurs in seawater usage environments, and in practical terms, SUS316 is seawater resistant due to its excellent strength, weldability, and workability. It is widely used as stainless steel.
However, since SUS316 is originally an acid-resistant stainless steel, it is not necessarily the best in neutral environments such as seawater, and it is expensive. The present invention is made of austenitic stainless steel, which has excellent corrosion resistance in seawater, and also has acid resistance in consideration of corrosion resistance to cooled liquid when used in heat exchangers, and is the most suitable material at a low price. The composition was discovered. In the stainless steel according to the present invention, the ingredients, reasons for limiting the composition, and effects are as follows. Carbon: Austenitic stainless steel generally has poor corrosion resistance in the heat-affected zone during welding, and pitting corrosion is likely to occur in this area, especially in seawater, and pitting corrosion often induces stress corrosion cracking. This tendency becomes more sensitive as the amount of C in the alloy increases, so in consideration of this point, the upper limit of C in the steel of the present invention was set at 0.08.
%. Silicon: Addition of Si is effective for pitting corrosion resistance, hydrochloric acid resistance, and stress corrosion cracking resistance, so it is necessary to add 1.0% or more. However, if the amount is increased to 2.0% or more, non-metallic inclusions in the steel will increase, deteriorating the surface quality of the material and causing problems in weldability, so the upper limit is set at 2.0%. Mitsuru: Mn should be 1.0% or less considering the internal properties of the material. Nickel: One of the drawbacks of austenitic stainless steel is stress corrosion cracking, and it is a well-known fact that the susceptibility to this decreases as the Ni content increases. In consideration of this point, the lower limit of Ni content in the steel of the present invention is set to 8.0%, and the upper limit is set to 16.0% due to the hot workability and economic efficiency of the material. Chromium: Cr is the most effective element in increasing the corrosion resistance of stainless steel, especially when considering the corrosion resistance of austenitic stainless steel, it accounts for 16.0%.
is required at least. However, an increase in the amount of Cr increases the ferrite phase, disrupts the balance of the metal structure in the cast state, and worsens hot workability, so the upper limit is set at 21.0%. Molybdenum: Mo is the most effective additive element for improving the pitting corrosion resistance, crevice corrosion resistance, and acid resistance of austenitic stainless steel. However, increasing the amount of Mo added is not a good idea from the point of view of resource conservation and product price. One of the advantages of the present invention is that the amount of Mo
The ingredients and composition have been kept to less than 1.0%, much lower than SUS316, and do not impair the above characteristics. Copper: Cu is an effective element to improve acid resistance and reduce stress corrosion cracking susceptibility. However, if the amount added is increased, it will precipitate at grain boundaries, causing high-temperature embrittlement. If the Cu amount exceeds 4.0%, hot workability will be inhibited, so the upper limit is set at 4.0%. Nitrogen: N is an effective element for improving pitting corrosion resistance and crevice corrosion resistance, but adding a large amount increases stress corrosion cracking susceptibility and has the effect of increasing strength, as seen in high-strength stainless steel. There is also. However, excessive strengthening requires high loads during material manufacturing and secondary processing, so the upper limit is set at 0.2% in consideration of the balance between corrosion resistance and strength, as well as weldability. Note that in order to reduce sensitivity to intergranular corrosion, it is preferable to further add Ti and Nb. Next, examples of the present invention will be described. In order to confirm the effects of the present invention, inventive steels of sample numbers 1 to 3 shown in Table 1 were manufactured, and commercially available SUS304 and SUS316 were prepared for comparison. The results of investigating the corrosion resistance of these materials are shown in the second
As shown in the table. The steel of the present invention has a Mo content of less than 1% in consideration of corrosion resistance and product price, but as is clear from Table 2,
The pitting potential, which shows pitting corrosion resistance in an environment equivalent to the NaCl concentration in seawater, and the stress corrosion cracking susceptibility in 20% NaCl are particularly excellent, and the overall corrosion in sulfuric acid and hydrochloric acid is equivalent to or higher than SUS316. It exhibits high corrosion resistance and is ideal as the austenitic stainless steel required for this application. Sample 1 shows superior corrosion resistance to SUS316 by resisting pitting corrosion, stress corrosion cracking susceptibility, and localized corrosion in a neutral environment such as crevice corrosion without causing much general corrosion. Samples 2 and 3 are ideal materials for stainless steel pipes for heat exchangers that use seawater as cooling water, and can be applied when the corrosive environments inside and outside the pipes are different. In other words, Samples 2 and 3 are resistant to both local and general corrosion, but Sample 2 is better against local corrosion and Sample 3 is better against general corrosion than SUS316. This shows that cheaper materials can be selected depending on the usage environment. As described above, it has been proven that the austenitic stainless steel according to the present invention exhibits corrosion resistance superior to SUS316 in a neutral environment, which is generally required as a seawater-resistant stainless steel. The steel of the present invention exhibits excellent corrosion resistance, especially in environments where seawater is used, even though the amount of expensive molybdenum is greatly reduced, and is an excellent product with great advantages from the standpoint of resource conservation.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 重量%でC:0.08%以下、Si:1.0〜2.0%、
Mn:1.0%以下、Ni:8.0〜16.0%、Cr:16.0〜
21.0%、Mo:1.0%未満、Cu:4.0%以下、N:
0.2%以下、残部Feよりなり、海水使用の環境で
優れた耐食性を有することを特徴とするオーステ
ナイト・ステンレス鋼。
1% by weight: C: 0.08% or less, Si: 1.0-2.0%,
Mn: 1.0% or less, Ni: 8.0~16.0%, Cr: 16.0~
21.0%, Mo: less than 1.0%, Cu: 4.0% or less, N:
Austenitic stainless steel consisting of 0.2% or less, the balance being Fe, and characterized by excellent corrosion resistance in seawater environments.
JP12518379A 1979-09-28 1979-09-28 Reduced molybdenum-type austenite stainless steel having resistance to sea water Granted JPS5647551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12518379A JPS5647551A (en) 1979-09-28 1979-09-28 Reduced molybdenum-type austenite stainless steel having resistance to sea water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12518379A JPS5647551A (en) 1979-09-28 1979-09-28 Reduced molybdenum-type austenite stainless steel having resistance to sea water

Publications (2)

Publication Number Publication Date
JPS5647551A JPS5647551A (en) 1981-04-30
JPS642660B2 true JPS642660B2 (en) 1989-01-18

Family

ID=14903949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12518379A Granted JPS5647551A (en) 1979-09-28 1979-09-28 Reduced molybdenum-type austenite stainless steel having resistance to sea water

Country Status (1)

Country Link
JP (1) JPS5647551A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62247048A (en) * 1986-04-18 1987-10-28 Nisshin Steel Co Ltd Austenitic stainless steel excellent in weatherability, crevice corrosion resistance, and stress corrosion cracking resistance
JP3127803B2 (en) * 1995-10-20 2001-01-29 富士ゼロックス株式会社 Full-color toner, developer composition, and multicolor image forming method
CN101845598A (en) * 2009-03-23 2010-09-29 盐城中油船舶海洋工程科技有限公司 Seawater corrosion resistant austenitic stainless steel and application thereof
JP7210516B2 (en) * 2020-09-01 2023-01-23 株式会社特殊金属エクセル Manufacturing method of austenitic stainless steel sheet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS558580U (en) * 1978-07-04 1980-01-19

Also Published As

Publication number Publication date
JPS5647551A (en) 1981-04-30

Similar Documents

Publication Publication Date Title
US5582656A (en) Ferritic-austenitic stainless steel
AU650799B2 (en) Duplex stainless steel having improved strength and corrosion resistance
US4099966A (en) Austenitic stainless steel
US4798635A (en) Ferritic-austenitic stainless steel
US4329173A (en) Alloy resistant to corrosion
US3736131A (en) Ferritic-austenitic stainless steel
JPH0244896B2 (en)
US3337331A (en) Corrosion resistant steel alloy
TW201031764A (en) Ferritic-austenitic stainless steel
US3854937A (en) Pitting corrosion resistant austenite stainless steel
EP0708184A1 (en) High-strength austenitic heat-resisting steel with excellent weldability and good high-temperature corrosion resistance
US4985091A (en) Corrosion resistant duplex alloys
JPS642660B2 (en)
JPS635196B2 (en)
US4915752A (en) Corrosion resistant alloy
US2251163A (en) Corrosion resistant alloy
JPH0121863B2 (en)
JPS6358214B2 (en)
JPS5914099B2 (en) Duplex stainless steel with excellent hot workability and local corrosion resistance
US4486231A (en) Dual phase stainless steel suitable for use in sour wells
US3459538A (en) Corrosion resistant low-alloy steel
Coetzee, M. & Pistorius The welding of experimental low-nickel Cr-Mn-N stainless steels containing copper
JPS58144460A (en) Two-phase cast stainless steel having high corrosion resistant and high fatique strength
CS203149B2 (en) Ferrous stabilized and anticorrosive chrom-molybdene steel
USRE29313E (en) Pitting corrosion resistant austenite stainless steel