JPS5914099B2 - Duplex stainless steel with excellent hot workability and local corrosion resistance - Google Patents

Duplex stainless steel with excellent hot workability and local corrosion resistance

Info

Publication number
JPS5914099B2
JPS5914099B2 JP4346380A JP4346380A JPS5914099B2 JP S5914099 B2 JPS5914099 B2 JP S5914099B2 JP 4346380 A JP4346380 A JP 4346380A JP 4346380 A JP4346380 A JP 4346380A JP S5914099 B2 JPS5914099 B2 JP S5914099B2
Authority
JP
Japan
Prior art keywords
phase
corrosion resistance
amount
alloy
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4346380A
Other languages
Japanese (ja)
Other versions
JPS56142855A (en
Inventor
浩一郎 遅沢
邦明 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP4346380A priority Critical patent/JPS5914099B2/en
Publication of JPS56142855A publication Critical patent/JPS56142855A/en
Publication of JPS5914099B2 publication Critical patent/JPS5914099B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 本発明は、熱間カ口T性および耐局部腐食性に優れる二
相ステンレス鋼に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a duplex stainless steel having excellent hot-hole T properties and local corrosion resistance.

SUS329J1型のような高Cr二相ステンレス鋼は
耐孔食、耐酸化性に非常に優れ強度も高いという優れた
性能を有するが、熱間加工性が劣り、例えばプラネタ
ルによる圧延の様な高歪速度下での圧延が難かしい
という欠点を有している。
High Cr duplex stainless steel such as SUS329J1 has excellent properties such as excellent pitting corrosion resistance and oxidation resistance and high strength, but has poor hot workability, such as planetary
It has the disadvantage that it is difficult to roll under high strain rates such as rolling by rolling.

上記高Cr二相ステンレス鋼の欠点を改善するため、従
来下記の如き成分組成を有する(イ)〜(ハ)合金がそ
れぞれ提案されている。(イ)特公昭51−43807
号によれば耐食性、熱間ならびに冷間加工性に優れた高
クロム低ニッケル系二相ステンレス鋼が提案されている
In order to improve the drawbacks of the above-mentioned high Cr duplex stainless steel, alloys (a) to (c) having the following compositions have been proposed. (a) Special Public Service Publication No. 51-43807
According to the publication, a high-chromium, low-nickel duplex stainless steel with excellent corrosion resistance and hot and cold workability is proposed.

(D)特開昭52−716号によれば、げ)と同様な特
性を有する高クロム低ニッケル系二相ステンレス鋼IJ
3提案されている。(ハ)特開昭51−117916号
によればフェライト−オーステナイト系二相ステンレス
鋼が提案されており、耐全面腐食性、耐局部腐食性、熱
間力1工性および機械的性質に優れるものであることが
記載されている。
(D) According to JP-A No. 52-716, high chromium, low nickel duplex stainless steel IJ having properties similar to (D)
3 have been proposed. (c) According to JP-A-51-117916, a ferritic-austenitic duplex stainless steel is proposed, which has excellent general corrosion resistance, local corrosion resistance, hot workability, and mechanical properties. It is stated that

本発明は、STJS329J1型あるいは(イ)2仲)
、(ハ)に記載の合金等の有する諸特性のうち熱間加工
性のさらに著しく優れた二相ステンレス鋼を提供するこ
とを目的とするものであり、特許請求の範囲」己載の二
相ステンレス鋼を提供することによって前記目的を達成
することができる。
The present invention is based on STJS329J1 type or (a) 2-type)
The object of the present invention is to provide a duplex stainless steel which is even more excellent in hot workability among the various properties of the alloy described in (c), This objective can be achieved by providing stainless steel.

次に本発明を詳細(こ説明する。Next, the present invention will be explained in detail.

本発明者等は、SUS329J1型のような高Cr二相
ステンレス鋼1ま耐孔食性、耐酸化性には非常Qこ優れ
ているが、熱間カロエ性に劣り、特に高歪速度下での圧
延が難しいことから、熱間加工性を改善するために種々
の研究を重ねた結果、(1)α2γ二相の比率をα相の
多い刀に設定する。
The present inventors have discovered that high Cr duplex stainless steels such as SUS329J1 type have excellent pitting corrosion resistance and oxidation resistance, but have poor hot corrosion resistance, especially under high strain rates. Since rolling is difficult, various studies were conducted to improve hot workability. (1) The ratio of α2γ two phases was set to a steel with a large amount of α phase.

(2)鋼塊成分組成をバランスさせることにより鋼塊を
力p熱した際、鋼塊中のに相の強度をα相の強度に近す
け、に相とび相の強度差をできるたけ少なくして熱間圧
延すると、α相とγ相との境界からの圧延割れを防止す
ることができる。すなわち、熱間圧延温度域におけるγ
相の強度、変化の態様及びγ相量の変化の態様は、α相
形成元素としてのCr,MO,Si,W,Tiなどと、
γ相形成元素としてのC,N,Ni,Mn,Cuなどと
の成分バランスで決定される。そこで、比較的少ない量
のα相形成元素とγ相形成元素とバランスさせて得られ
るγ相量およびγ相の強度を比較的多い量のび相形成元
素量で達成すると、この場合は得られるγ相の強度とび
相の強度差は減少し、γ相量の温度上昇に対する減少の
割合を大きくすることができる。(3)Bを微量添加し
て、粒界を強化するととも(こ、さらζこ粒界に偏析し
て熱間圧延中に割れ発生の原因となるSの量を低減する
(2) By balancing the component composition of the steel ingot, when the steel ingot is heated to a high temperature, the strength of the α phase in the steel ingot is brought close to the strength of the α phase, and the difference in strength between the two phases is minimized. Hot rolling can prevent rolling cracks from the boundary between the α phase and the γ phase. In other words, γ in the hot rolling temperature range
The strength of the phase, the mode of change, and the mode of change of the amount of γ phase are determined by Cr, MO, Si, W, Ti, etc. as α phase forming elements,
It is determined by the component balance with C, N, Ni, Mn, Cu, etc. as γ phase forming elements. Therefore, if the amount of γ phase and the strength of γ phase obtained by balancing relatively small amounts of α phase forming elements and γ phase forming elements are achieved with a relatively large amount of elongated phase forming elements, in this case, the obtained γ The strength of the phases and the difference in strength between the phases are reduced, and the rate of decrease in the amount of γ phase with respect to temperature rise can be increased. (3) A small amount of B is added to strengthen the grain boundaries (this also reduces the amount of S which segregates at the grain boundaries and causes cracking during hot rolling).

(4)Cを極めて低くすることにより低温側での炭化物
の生成を抑制し、該温度域での炭化物からの割れの発生
を防止して熱間卯工性の向上を図るとともに、γ相の温
度上昇に対する量の減少の割合とγ相の温度上昇に対す
る強度の低下の割合を高める。
(4) By making C extremely low, the formation of carbides at low temperatures is suppressed, and cracking from carbides is prevented in this temperature range, improving hot workability, and the γ phase is Increase the rate of decrease in quantity with respect to temperature increase and the rate of decrease in strength of γ phase with respect to temperature increase.

以上(1)〜(4)を実施することにより従来のSUS
329.T,型二相ステンレス鋼Qこ比べて著しく優れ
た熱間加工性を発揮することを新規Cこ知見して本発明
に想到した。
By implementing the above (1) to (4), conventional SUS
329. The present invention was conceived based on the discovery that C exhibits significantly superior hot workability compared to T and type duplex stainless steel Q.

本発明において、前記(1)の如くα,γ二相の比率を
α相の多い力に設定すると耐食性が劣化する傾向が生ず
るが、α,γ相比率と耐食性、特に耐 −局部腐食性と
の関係を定量的Qこ把握し、Cr,MO量をα,γ相比
率に合わせて設定することにより、耐食性が非常Qこ優
れ、例えば3.5%NaCl、70℃で孔食が発生しな
いようにすることに成功した。
In the present invention, if the ratio of α and γ two phases is set to a force with a large amount of α phase as described in (1) above, corrosion resistance tends to deteriorate. By understanding the relationship quantitatively and setting the amounts of Cr and MO in accordance with the α and γ phase ratios, corrosion resistance is extremely excellent. For example, pitting corrosion does not occur at 3.5% NaCl and 70°C. I succeeded in doing so.

またWが耐孔食性Qこ効果があり、かつ強いフエラ ,
イト生成元素であって熱間圧延温度域上部でγ相量減少
の割合を高め、該温度域での熱間加工性を高めている。
しかしWは過剰Qこ添加すると固溶量が増力口し、また
偏析することなど(こよって鋼の脆化を促進するため、
CrtMO+ S +などの他のα相形成元素の量とバ
ランスさせてWの含有量範囲を設定した。次に本発明合
金の成分組成を限定する理由を説明する。
In addition, W has a pitting corrosion resistant Q effect and is a strong material.
It is an iron-forming element that increases the rate of decrease in the amount of γ phase in the upper part of the hot rolling temperature range and improves hot workability in this temperature range.
However, when W is added in excess of Q, the amount of solid solution increases and segregation occurs (thus promoting embrittlement of the steel.
The content range of W was set in balance with the amount of other α-phase forming elements such as CrtMO+S+. Next, the reason for limiting the composition of the alloy of the present invention will be explained.

Cは0.02%より多いと粒界腐食が発生し、耐孔食性
が劣化し、炭化物の析出により熱間加工性が低下し、か
つγ相が高温域まで安定に存在し、高温での熱間カロエ
性が低下するので0.02%以下にする必要があり、0
.01%以下がより好ましい。
If C exceeds 0.02%, intergranular corrosion will occur, pitting corrosion resistance will deteriorate, hot workability will decrease due to precipitation of carbides, and the γ phase will stably exist up to high temperature ranges, making it difficult to work at high temperatures. Since the hot caroe properties decrease, it must be kept at 0.02% or less, and 0.
.. 0.01% or less is more preferable.

Siは耐食性の向上に有効であるが2.0%より多いと
、高温でα相の粒成長による脆化、γ相脆化、475℃
脆AOこ悪影響を与えるので2.0%以下にする必要が
あり、10%以下がより好ましい。Mnは3,0係より
多いと耐食性が劣化し、γ相量が必要量以上に増加する
。また製鋼工程中に混入される元素であって通常のフエ
ライトまたはオーステナイトステンレス鋼の成分範囲で
ある3.0%以下の範囲内に限定すると工業的に容易に
製造し得るからである。Niはオーステナイト形成元素
であり、Niが3%より少ないとγ相が消失し、一方1
0%より多いと必要量以上のγ相が発生するばかりでな
く製造コストが上昇するのでNiは3〜10%の範囲内
にする必要がある。
Si is effective in improving corrosion resistance, but if it exceeds 2.0%, embrittlement due to α phase grain growth at high temperatures, γ phase embrittlement, and 475°C
Since brittle AO has a negative effect, it must be kept at 2.0% or less, and more preferably 10% or less. If Mn exceeds the 3.0 factor, corrosion resistance will deteriorate and the amount of γ phase will increase beyond the required amount. In addition, if the element is mixed during the steelmaking process and is limited to 3.0% or less, which is the range of components of ordinary ferrite or austenitic stainless steel, it can be easily produced industrially. Ni is an austenite-forming element, and when Ni is less than 3%, the γ phase disappears, while 1
If it is more than 0%, not only will more than the required amount of γ phase be generated, but the manufacturing cost will also increase, so Ni needs to be in the range of 3 to 10%.

Crはフエライト形成元素でありCrが20%より少な
いと耐食性が劣化し、一刀35%より多いと靭性が劣化
するのでCrは20〜35係の範囲内にする必要があり
、23〜27%の範囲内がより好ましい。
Cr is a ferrite-forming element, and if it is less than 20%, corrosion resistance will deteriorate, and if it is more than 35%, toughness will be deteriorated, so Cr must be within the range of 20 to 35%. It is more preferable to be within this range.

MOはフエライト形成元素であり、MOが0.5%より
少ないと耐局部腐食性が劣化し、一力6.0係より多い
と靭性の劣化および耐局部腐食性が劣化するばかりでな
く製造コストが上昇するのでMOは0.5〜6、0係の
範囲内にする必要があり、1〜4%の範囲内がより好ま
しい。
MO is a ferrite-forming element, and if MO is less than 0.5%, local corrosion resistance will deteriorate, and if it is more than 6.0%, not only will toughness and local corrosion resistance deteriorate, but also manufacturing costs will increase. MO increases, so it is necessary to keep the MO within the range of 0.5 to 6.0%, and more preferably within the range of 1 to 4%.

Cuは耐応力腐食割れ性、耐全面腐食性、耐すき間腐食
性、冷間力ロエ性を向上する元素であるが、熱間力p工
性を劣化させる元素である。
Cu is an element that improves stress corrosion cracking resistance, general corrosion resistance, crevice corrosion resistance, and cold stress resistance, but it is an element that deteriorates hot stress resistance.

本発明の第2発明合金においてCuが0.2%より少な
いと、熱間加工性は優れるが十分な耐食性を得られず、
一方2.0%より多いと優れた耐食性を得られるが十分
な熱間加工性が得られないので2.0%以下にする必要
があり、0.5〜1.4係の範囲内がより好ましい。N
はCと同様に強力なオーステナイト形成元素であり、こ
のためN含有量はフエライト形成元素とのバランスで定
める。
If Cu is less than 0.2% in the second invention alloy of the present invention, hot workability is excellent but sufficient corrosion resistance cannot be obtained.
On the other hand, if it exceeds 2.0%, excellent corrosion resistance can be obtained, but sufficient hot workability cannot be obtained, so it is necessary to keep it below 2.0%. preferable. N
Like C, N is a strong austenite-forming element, and therefore the N content is determined by the balance with the ferrite-forming elements.

またNはγ相に多く固溶して耐孔食性を向上するに有効
な元素である。N量の増力ロとともに耐孔食性は向上す
るので、少なくとも0.04係以上必要とし、一力、N
が0.3係より多いとブローホールなど鋼塊の欠陥を生
じたりγ相が安定に存在することにより熱間カロエ性が
劣化するので、0.04〜0,3%の範囲内にする必要
があり、0.08〜0.12%の範囲内がより好ましい
。W,Vはそれぞれフエライト形成元素であり、耐局部
腐食性向上、高温でのγ相の安定な存在を防1トン、熱
間力PT性を向上させるのQこ役立つ。
Further, N is an element that is dissolved in large quantities in the γ phase and is effective in improving pitting corrosion resistance. Pitting corrosion resistance improves as the N amount increases, so it is necessary to have at least a coefficient of 0.04 or more.
If the coefficient is more than 0.3, defects such as blowholes will occur in the steel ingot, and the stable presence of the γ phase will deteriorate the hot caloric properties, so it is necessary to keep it within the range of 0.04 to 0.3%. It is more preferably within the range of 0.08 to 0.12%. W and V are ferrite-forming elements, and are useful for improving local corrosion resistance, preventing the stable existence of the γ phase at high temperatures, and improving hot stress PT properties.

WまたはVはいずれか1種又は2種が添力ρされ、0.
03%より少ないと耐局部腐食性向上、熱間加工性向上
は認められず、一刀2.0%より多いと合金の靭性をそ
こない熱間カロエ性を低下するとともに製造コストは高
くなるので、0.03〜2.0%の範囲内にする必要が
あり、0,05〜024%の範囲内がより好ましい。B
は微量添加することで合金の粒界に存在し熱間加工性を
向上するが0.0005%より少ないと、S量の低減、
C量の調節によっても熱間加工性の向上は認められず、
また0.01%より多いと粒界への偏析量が多くなり熱
間加工性の劣化をまねくので0.0005〜0.01%
の範囲内にする必要がある。
Either one or two of W or V is added ρ, and 0.
If it is less than 0.03%, no improvement in local corrosion resistance or hot workability will be observed, and if it is more than 2.0%, it will impair the toughness of the alloy, reduce hot carometry, and increase manufacturing costs. It needs to be within the range of 0.03 to 2.0%, and more preferably within the range of 0.05 to 0.24%. B
When added in a small amount, it exists in the grain boundaries of the alloy and improves hot workability, but if it is less than 0.0005%, the amount of S decreases,
No improvement in hot workability was observed even by adjusting the amount of C.
In addition, if the amount exceeds 0.01%, the amount of segregation at grain boundaries increases, leading to deterioration of hot workability, so 0.0005 to 0.01%
Must be within the range.

Sは、熱間力カエ性および耐食性の点から低いほど良い
The lower the S content, the better in terms of hot stress resistance and corrosion resistance.

特Qこ、熱間加工性に対して重要であり、Sが0.00
5%を超えると高温で、α/γ粒界にSが析出し、粒界
が脆化し、熱間加工性が劣化するので、Sは0.005
%以下Cこする必要がある。次に本発明を実験データに
ついて説明する。第1表に本発明の代表的成分組成の鋼
五1〜10を、第2表に比較のための比較鋼[A,b,
c−D,fを示す。第1表、第2表の本発明合金ならび
(こ比較合金の成分組成から判るように、本発明合金は
特に第2表&f合金(特開昭51−117916号によ
る発明鋼)のCとSの含有量がそれぞれ0.022%,
0.018%程度であるのに対し、それぞれ0.020
%以下、0,01%以下と減少させ、かつWおよびまた
はVを適当量含有させたことに成分組成上の特徴を有す
る。
Special Q: This is important for hot workability, and S is 0.00.
If it exceeds 5%, S will precipitate at α/γ grain boundaries at high temperatures, making the grain boundaries brittle and deteriorating hot workability, so S is 0.005.
It is necessary to rub less than %C. Next, the present invention will be explained using experimental data. Table 1 shows steels 51 to 10 with typical compositions of the present invention, and Table 2 shows comparative steels [A, b,
c-D,f is shown. As can be seen from the compositions of the alloys of the present invention in Tables 1 and 2 and the comparative alloys, the alloys of the present invention are particularly suitable for the C and S The content of each is 0.022%,
It is about 0.018%, while it is 0.020% respectively.
% or less, 0.01% or less, and contains an appropriate amount of W and/or V.

二相ステンレス鋼の熱間カロエ性は、二相の比率に大き
く依存することは知られており、本発明の合金五3は合
金溜bにWが0.24係、BO.OO5係が添加された
合金であるが、この合金扁3にあっては第1図に示す如
< /Kbと比較して熱間圧延温度域全域にわたってγ
相量が少ないので、熱間圧延性を捩り試験によって評価
する場合の材料の延性を示す特性値の1つである破断捻
回値が高く、熱間カロエ性に優れている。
It is known that the hot caloric property of duplex stainless steel is largely dependent on the ratio of the two phases, and Alloy No. 53 of the present invention has a BO. This is an alloy to which OO5 is added, but as shown in Fig. 1, this alloy flat plate 3 has a γ over the entire hot rolling temperature range compared to < /Kb.
Since the amount of phases is small, the fracture torsion value, which is one of the characteristic values indicating the ductility of the material when hot rolling property is evaluated by a torsion test, is high, and the hot rolling property is excellent.

またW,O.2O%が含有され、Bは含有されていない
比較合金Meと比較すると、本発明&3ではC,Sが共
に少なく、Bが微量含有されているので、1050℃以
下の加工温度域においては熱間力口丁性を示す破断捻回
値が向上することが判る。ところで熱間力p工温度域で
のγ相量の増減の熱間力口T性への影響は歪速度が速く
なると顕著となり、特に二相合金では歪速べが速くなる
と熱間加工性が劣化することが知られている。
Also W, O. Compared to the comparative alloy Me, which contains 20% and no B, the present invention &3 contains less C and S, and contains a trace amount of B, so it cannot be hot-processed in the processing temperature range of 1050°C or less. It can be seen that the fracture twist value, which indicates force and tightness, is improved. By the way, the influence of the increase or decrease of the amount of γ phase on the hot workability in the hot working temperature range becomes more pronounced as the strain rate increases, and especially in two-phase alloys, the hot workability decreases as the strain rate increases. known to deteriorate.

第1図において明らかなように実際の圧延時の歪速度Q
こ近い6.0sec’の歪速度下の熱間捩り試験におい
て、比較合金Abが本発明合金&.3Cこ比し熱間加工
性は著しく劣り、すなわち本発明合金A3は優れた熱間
カロエ性を有することを知見した。このことは比較合金
&bは本発明合金炭3に比較して全温度域でγ相量が著
しく多いことによるものである。本発明者等は、上述の
如く熱間加工温度域でのγ相量の増減の挙動TJ3重要
であることを知ったが、ある程度で同程度のγ相量であ
っても、Cr,MO,Ni,N,Cの含有量に相違があ
れば高温にわたってのγ相量の減少の程度は異なってく
ることを実験により知った。その結果を第2.3.4図
に示す。第2図QこよればSUS329J,型高Cr二
相ステンレス合金の1種第3表&15合金であって、W
を含まないが、この合金の温度とγ相量との関係は曲線
1の如くである。
As is clear from Fig. 1, the strain rate Q during actual rolling is
In a hot torsion test under a strain rate of 6.0 sec', comparative alloy Ab was compared to the invention alloy &. It was found that the hot workability was significantly inferior to that of 3C, that is, the alloy A3 of the present invention had excellent hot caroe properties. This is because comparative alloy &b has a significantly larger amount of γ phase in the entire temperature range than alloy carbon 3 of the present invention. The present inventors have found that the increase/decrease behavior TJ3 of the amount of γ phase in the hot working temperature range is important as described above. It has been found through experiments that if the contents of Ni, N, and C are different, the degree of decrease in the amount of γ phase over high temperatures will be different. The results are shown in Figure 2.3.4. Figure 2 Q Accordingly, it is SUS329J, a type of high Cr duplex stainless steel alloy Table 3 & 15 alloy, and W
However, the relationship between the temperature and the amount of γ phase for this alloy is as shown in curve 1.

さてこの合金にCあるいはNを増加させると曲線2に示
す如く、同一温度のもとではγ相量が増力口する傾向C
こある。しかしながら前記曲線1の挙動を有する合金Q
こWを0.05〜0.24%の範囲内で含有させた合金
は曲線1′で示される温度とγ相量との関係、すなわち
同一温度では曲線1で示される合金よりγ相量が少なく
なる。次にこの曲線1′で示される挙動を有する合金に
CあるいはNを増加すると曲線2′で示される温度とγ
相量との関係、すなわち同一温度ではγ相量が増力ロす
る曲線2′の如き性質を有する合金となる。すなわちW
を所定量含有させることCこより高温でのγ相量を低下
させ、一刀CあるいはNが増力口含有されると高温での
γ相量が増力ロすることを定量的Qこ把握して、特Cこ
熱間カロエ性に優れる本発明合金を新規に知見した。第
3図は第2図Qこ示したと同一のWを含有しない合金1
と合金1にWを含有させた合金1′と合金1,1′のそ
れぞれにNiを増力口含有させた合金3,3′との温度
とγ相量との関併を示す図であり、また第4図は第2図
に示したと同一のWを含有しない合金1と合金1にWを
含有させた合金1′と合金1,1′のそれぞれCこCr
,MOを増加させた合金4,4′との温度とγ相量との
関係を示す図であるが、第2図、第3図のCあるいはN
1またはNiを増力ロさせた場合と異なり、Crあるい
はMOを増加させた場合には同一温度でγ相量は少なく
なる傾向となることを知見した。
Now, when C or N is increased in this alloy, as shown in curve 2, the amount of γ phase tends to increase at the same temperature C.
There it is. However, alloy Q with the behavior of curve 1
The alloy containing W in the range of 0.05 to 0.24% has a relationship between temperature and γ phase content shown by curve 1', that is, the γ phase content is smaller than that of the alloy shown by curve 1 at the same temperature. It becomes less. Next, when C or N is increased in an alloy having the behavior shown by curve 1', the temperature and γ shown by curve 2' change.
The alloy has a relationship with the phase amount, that is, a property as shown by curve 2' in which the γ phase amount increases at the same temperature. That is, W
By containing a predetermined amount of C, the amount of γ phase at high temperature is lowered, and when C or N is included, the amount of γ phase at high temperature is increased. A new alloy of the present invention has been discovered which has excellent hot caloerescence properties. Figure 3 shows the same W-free alloy 1 shown in Figure 2 Q.
and Alloy 1′ in which Alloy 1 contains W, and Alloys 3 and 3′ in which Ni is added to each of Alloys 1 and 1′ as a booster. Figure 4 also shows alloy 1 not containing W, alloy 1' containing W in alloy 1, and alloys 1 and 1', which are the same as shown in Figure 2.
, is a diagram showing the relationship between the temperature and the amount of γ phase for alloys 4 and 4' with increased MO content.
It has been found that, unlike the case where 1 or Ni is increased, when Cr or MO is increased, the amount of γ phase tends to decrease at the same temperature.

前記第2〜4図Cこ示す実験結果から、ある温度におけ
るγ相量を予測することができ、引いてはγ相量に伴う
破断捻回値を予測でき、本発明合金に想到することがで
きたのである。
From the experimental results shown in Figures 2 to 4C above, it is possible to predict the amount of γ phase at a certain temperature, and by extension, the fracture torsion value associated with the amount of γ phase, and it is possible to arrive at the alloy of the present invention. It was done.

しかしながら加工温度が1050℃以下の低温側(こお
いては、α一γの二相比率よりも例えば、S,Pあるい
はOなとの不純物、もしくは炭化物の挙動が力p工性に
大きく影響することを知った。
However, when the processing temperature is lower than 1050℃ (in this case, impurities such as S, P, or O, or the behavior of carbides have a greater influence on mechanical workability than the two-phase ratio of α and γ). I learned that.

よって本発明合金において炭化物析出の抑制、S,Pあ
るいは0なとの低減もしくは固定化が必要となり、Cお
よびSを極小量すなわちCO.O2係以下、SO.OO
5%以下となし、極微量すなわち0.0005〜0.0
10t)のBを添力Dすルコトニヨり、第1図に示す如
く1000℃以下の温度においても充分なカロエ性を有
する合金を得ることができるに至ったのである。第5図
に本発明合金中例えば&.1,2,3,4.6と比較鋼
( SUS329Jl)慝bおよびCとの温度と加工性
(破断捻回値)との関係(但し歪速Vj=6.0s−1
)を示す。
Therefore, in the alloy of the present invention, it is necessary to suppress carbide precipitation and reduce or fix S, P, or 0, and C and S must be contained in minimal amounts, that is, CO. Below O2 staff, SO. OO
5% or less, extremely small amount, i.e. 0.0005 to 0.0
By adding 10 tons of B to D, we were able to obtain an alloy that has sufficient caloric properties even at temperatures below 1000°C, as shown in Figure 1. FIG. 5 shows that among the alloys of the present invention, for example &. Relationship between temperature and workability (rupture twist value) of 1, 2, 3, 4.6 and comparative steel (SUS329Jl) b and C (however, strain rate Vj = 6.0 s-1
) is shown.

同図によれば、本発明合金の力1工性は比較鋼に比し極
めて優れていることが判る。このようCこQ,γ相の比
率および微量元素の含有量を調整することによって優れ
た力PT性を得ることができることが判ったが、一刀耐
食性はα相量によって大きく変わることを実験により確
認した。
According to the figure, it can be seen that the mechanical strength of the alloy of the present invention is extremely superior to that of comparative steel. It was found that excellent force-PT properties could be obtained by adjusting the ratio of C, Q, and γ phases as well as the content of trace elements, but it was confirmed through experiments that single-strike corrosion resistance varied greatly depending on the amount of α phase. did.

第6図は横軸にγ相%を、縦軸ζこCr,MOの含有量
を( Cr+2M0)で表わした場合の耐孔食性( 1
0%FeCl3・6H20の40゜Cの水溶液中に試料
を4時間浸漬した場合の孔食)の結果を図示する。試料
は前記第3表に記載の合金駈13〜25の成分組成を有
するものであり、第3表には上記実験結果の他に5 %
H2SO4の煮沸水中6時間浸漬の腐食結果をも示す。
この結果から耐孔食性の点からα相量が少なくなれば、
Nがは1.10係のときQこはCr,NO量を多くする
必要があることが判る。しかしながら従来知られている
ようにα相量の増力1],Cr,MO,Siの含有量増
7JDによって脆性が著しく大きくなる。
Figure 6 shows the pitting corrosion resistance (1
This figure shows the results of pitting corrosion when a sample was immersed in an aqueous solution of 0% FeCl3.6H20 at 40°C for 4 hours. The samples had the compositions of Alloys 13 to 25 listed in Table 3 above, and Table 3 shows that in addition to the above experimental results, 5%
Corrosion results of 6 hours of immersion in boiling H2SO4 water are also shown.
From this result, from the point of view of pitting corrosion resistance, if the amount of α phase is reduced,
It can be seen that when N is 1.10, it is necessary to increase the amount of Cr and NO. However, as is conventionally known, brittleness becomes significantly increased by increasing the amount of α phase by 1] and increasing the content of Cr, MO, and Si by 7 JD.

したがって脈化の点からCr,MO含有量を制限する必
要か生ずるので本発明合金にあってはCr,MOの含有
量をこの点からも限定する必要がある。第7図に耐孔食
性に及ぼすγ相比率とCr,MO含有量(Cr+2M0
)%との関係を示す。
Therefore, it is necessary to limit the contents of Cr and MO from the viewpoint of vein formation, so it is necessary to limit the contents of Cr and MO in the alloy of the present invention from this point as well. Figure 7 shows the effect of γ phase ratio and Cr, MO content (Cr+2M0) on pitting corrosion resistance.
) shows the relationship with %.

なお図中●印はV,Wを含有し、NO.O97〜011
3%を含有する第1表に示す本発明合金&2,3,5,
7,9であり、Δ印はNO.lO%を含有する第2表に
示す比較合金Aa,b,c,dであり、同図よりV,W
を含有させることにより、耐孔食性が優れた範囲では点
線で示した耐孔食域が実線のように拡大して耐孔食性が
向上することが判る。しかし一刀V,Wは強いα相生成
元素であり、脆化、偏析を生起し易い元素であるばかり
でなく、V,Wは高価な元素であるのでその使用はコス
ト上昇にも結び付くことから本発明合金にあってはその
含有量を限定したのである。以上本発明合金は熱間カロ
エ性、耐局部腐食性に極めて優れた二相ステンレス鋼で
あり、海水関連装置例えば熱交換器等;発電関係例えば
コンデンサ、熱交換器、熱交換器のシエル;化学プラン
ト例えば蟻酸、酢酸、尿素プラント;石油精製プラント
例えば熱交換器;パルプ、製紙製造装置関連機器;食品
工業関連機器;公害処理装置関連機器の材料として有利
に使用することができる。
Note that the ● mark in the figure contains V and W, and NO. O97-011
Invention alloy shown in Table 1 containing 3% &2,3,5,
7,9, and the Δ mark is NO. Comparative alloys Aa, b, c, d shown in Table 2 containing lO%, and from the same figure, V, W
It can be seen that by containing , the pitting corrosion resistant region shown by the dotted line expands as shown by the solid line in the range where the pitting corrosion resistance is excellent, and the pitting corrosion resistance is improved. However, V and W are strong α-phase forming elements, and are not only elements that easily cause embrittlement and segregation, but also V and W are expensive elements, so their use will lead to increased costs, so this is not recommended. In the invented alloy, the content was limited. As described above, the alloy of the present invention is a duplex stainless steel with extremely excellent hot corrosion resistance and local corrosion resistance. It can be advantageously used as a material for plants such as formic acid, acetic acid, and urea plants; petroleum refining plants such as heat exchangers; equipment related to pulp and paper manufacturing equipment; equipment related to the food industry; and equipment related to pollution treatment equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明ならびに従来の二相ステンレス鋼の温度
とγ相量ならびに破断捻回値との関係を示す図、第2.
3.4図はそれぞれ温度とγ相量との関係を示す図、第
5図は温度と破断捻回値との関係を示す図、第6図はγ
相量係)とCr+2M0(イ)との関係から等腐食度線
を示す図、第7図はγ相量(ト)とCr+2M0%)と
の関係から等腐食度線を示す図である。
FIG. 1 is a diagram showing the relationship between temperature, γ phase amount, and fracture twist value of the present invention and conventional duplex stainless steel, and FIG.
Figure 3.4 is a diagram showing the relationship between temperature and γ phase amount, Figure 5 is a diagram showing the relationship between temperature and fracture twist value, and Figure 6 is a diagram showing the relationship between temperature and γ phase amount.
FIG. 7 is a diagram showing iso-corrosion lines based on the relationship between the amount of γ phase (g) and Cr+2M0 (a), and FIG.

Claims (1)

【特許請求の範囲】 1 C0.02%以下、Si2.0%以下、Mn3.0
%以下、Ni3〜10%、Cr20〜35%、Mo0.
5〜6.0%、N0.08〜0.3%、W、Vの何れか
少なくとも1種0.03〜2.0%、B0.0005〜
0.01%、S0.005%以下、残部実質的にFeよ
りなる熱間加工性および耐局部腐食性に優れる二相ステ
ンレス鋼。 2 C0.02%以下、Si2.0%以下、Mn3.0
%以下、Ni3〜10%、Cr20〜35%、Mo0.
5〜6.0%、N0.08〜0.3%、W、Vの何れか
少なくとも1種0.03〜2.0%、B0.0005〜
0.01%、S0.005%以下、Cu2.0%以下、
残部実質的にFeよりなる熱間加工性および耐局部腐食
性に優れる二相ステンレス鋼。
[Claims] 1 C 0.02% or less, Si 2.0% or less, Mn 3.0
% or less, Ni3-10%, Cr20-35%, Mo0.
5 to 6.0%, N0.08 to 0.3%, at least one of W or V 0.03 to 2.0%, B0.0005 to
Duplex stainless steel with excellent hot workability and local corrosion resistance, consisting of 0.01% or less S, 0.005% or less, and the remainder substantially Fe. 2 C0.02% or less, Si2.0% or less, Mn3.0
% or less, Ni3-10%, Cr20-35%, Mo0.
5 to 6.0%, N0.08 to 0.3%, at least one of W or V 0.03 to 2.0%, B0.0005 to
0.01%, S 0.005% or less, Cu 2.0% or less,
A duplex stainless steel with excellent hot workability and local corrosion resistance, with the remainder essentially consisting of Fe.
JP4346380A 1980-04-04 1980-04-04 Duplex stainless steel with excellent hot workability and local corrosion resistance Expired JPS5914099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4346380A JPS5914099B2 (en) 1980-04-04 1980-04-04 Duplex stainless steel with excellent hot workability and local corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4346380A JPS5914099B2 (en) 1980-04-04 1980-04-04 Duplex stainless steel with excellent hot workability and local corrosion resistance

Publications (2)

Publication Number Publication Date
JPS56142855A JPS56142855A (en) 1981-11-07
JPS5914099B2 true JPS5914099B2 (en) 1984-04-03

Family

ID=12664399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4346380A Expired JPS5914099B2 (en) 1980-04-04 1980-04-04 Duplex stainless steel with excellent hot workability and local corrosion resistance

Country Status (1)

Country Link
JP (1) JPS5914099B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011142423A1 (en) 2010-05-13 2011-11-17 三菱重工業株式会社 Method for manufacturing raw material for rotary machine part, method for manufacturing rotary machine part, raw material for rotary machine part, rotary machine part, and centrifugal compressor

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4832765A (en) * 1983-01-05 1989-05-23 Carpenter Technology Corporation Duplex alloy
JPS6052523A (en) * 1983-09-01 1985-03-25 Nippon Stainless Steel Co Ltd Production of ferrite-austenite two-phase stainless steel
JPS63157838A (en) * 1986-12-18 1988-06-30 Kawasaki Steel Corp Two-phase stainless steel excellent in crevice corrosion resistance
JPH0717987B2 (en) * 1989-03-29 1995-03-01 住友金属工業株式会社 Highly corrosion resistant duplex stainless steel with excellent hot workability
JP2500162B2 (en) * 1991-11-11 1996-05-29 住友金属工業株式会社 High strength duplex stainless steel with excellent corrosion resistance
JP3271262B2 (en) * 1994-12-16 2002-04-02 住友金属工業株式会社 Duplex stainless steel with excellent corrosion resistance
WO2017014632A1 (en) * 2015-07-20 2017-01-26 Stamicarbon B.V. Duplex stainless steel and use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011142423A1 (en) 2010-05-13 2011-11-17 三菱重工業株式会社 Method for manufacturing raw material for rotary machine part, method for manufacturing rotary machine part, raw material for rotary machine part, rotary machine part, and centrifugal compressor

Also Published As

Publication number Publication date
JPS56142855A (en) 1981-11-07

Similar Documents

Publication Publication Date Title
AU650799B2 (en) Duplex stainless steel having improved strength and corrosion resistance
US4099966A (en) Austenitic stainless steel
US3306736A (en) Austenitic stainless steel
US4155752A (en) Corrosion-resistant ferritic chrome-molybdenum-nickel steel
US3337331A (en) Corrosion resistant steel alloy
TW201031764A (en) Ferritic-austenitic stainless steel
US20080112840A1 (en) Duplex Stainless Steel Having Excellent Corrosion Resistance with Low Nickel
CN107138876B (en) High-temperature creep resistant low-nickel copper-containing T/P92 steel welding material
JP3982069B2 (en) High Cr ferritic heat resistant steel
EP1464718A1 (en) High-strength, heat-resistant alloy for exhaust valves with improved overaging-resistance
JPS5914099B2 (en) Duplex stainless steel with excellent hot workability and local corrosion resistance
JP2012140689A (en) Duplex stainless steel excellent in toughness
JPH01252758A (en) Nitrogen fortified fe-ni-cr alloy
JPH08170153A (en) Highly corrosion resistant two phase stainless steel
US3492117A (en) Corrosion resistant stainless type alloys
JP4312408B2 (en) Corrosion resistant austenitic alloy
US3347663A (en) Precipitation hardenable stainless steel
US4102677A (en) Austenitic stainless steel
US4915752A (en) Corrosion resistant alloy
CN107937826B (en) Stainless steel having excellent oxidation resistance at high temperature
JPH07138708A (en) Austenitic steel good in high temperature strength and hot workability
JP3598364B2 (en) Stainless steel
GB2123437A (en) Dual phase stainless steel suitable for use in sour wells
JPS58144460A (en) Two-phase cast stainless steel having high corrosion resistant and high fatique strength
JPS59211556A (en) Ferritic-austenitic two-phase stainless steel