JPS642652B2 - - Google Patents

Info

Publication number
JPS642652B2
JPS642652B2 JP55103130A JP10313080A JPS642652B2 JP S642652 B2 JPS642652 B2 JP S642652B2 JP 55103130 A JP55103130 A JP 55103130A JP 10313080 A JP10313080 A JP 10313080A JP S642652 B2 JPS642652 B2 JP S642652B2
Authority
JP
Japan
Prior art keywords
furnace
frequency induction
burner
low
induction furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55103130A
Other languages
Japanese (ja)
Other versions
JPS5728672A (en
Inventor
Hiroshi Iwabuchi
Mitsuyoshi Ooba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10313080A priority Critical patent/JPS5728672A/en
Publication of JPS5728672A publication Critical patent/JPS5728672A/en
Publication of JPS642652B2 publication Critical patent/JPS642652B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

【発明の詳細な説明】 一般に低周波誘導炉では商用周波数の50または
60Hzを電源とすることに特徴があり、そのために
高周波炉に比べて設備費ははるかに安価である。
しかし周波数が低いために表皮効果が小さく連続
操業に適しており、しかも周波数が低いため誘導
炉特有の撹拌力が強く、そのために炉壁の摩耗、
溶湯の酸化などが大きくなるために電力をあげる
ことはできない。
[Detailed Description of the Invention] In general, low frequency induction furnaces have a commercial frequency of 50 or
The feature is that it uses 60Hz as a power source, so the equipment cost is much lower than that of a high frequency furnace.
However, because the frequency is low, the skin effect is small and it is suitable for continuous operation.Furthermore, because the frequency is low, the stirring force unique to induction furnaces is strong, which causes wear and tear on the furnace walls.
It is not possible to increase the power because the oxidation of the molten metal increases.

従つて低周波誘導炉では連続操業あるいは保温
操業を実施している。たとえば4〜5回/月とい
う間歇操業下で操業をしていない時にも保温を実
施する必要があつて、多大なコストを要してい
た。
Therefore, low frequency induction furnaces are operated continuously or kept warm. For example, under intermittent operation of 4 to 5 times a month, it is necessary to maintain heat even when not in operation, which requires a great deal of cost.

しかし、最近の耐火材の進歩により保温を実施
する必要がなくなつてきつつあり、間歇操業でも
完全な冷材スタートで操業している所が多くなつ
てきている。
However, with recent advances in refractory materials, it is becoming unnecessary to carry out heat insulation, and even in intermittent operations, more and more plants are operating completely with a cold start.

ところが、保温を廃止できる反面、低周波誘導
炉の最大電力(銅合金用40T炉で2000KW)が、前
述の理由で小さくなつているために1チヤージ当
りの金属溶解に多くの時間を要していた。
However, while it is possible to eliminate heat retention, the maximum power of the low-frequency induction furnace (2000 KW for a 40 T furnace for copper alloys) is small for the reasons mentioned above, so it takes a lot of time to melt the metal per charge. Was.

そのために熱効率(有効入熱/入熱)が約30%
と非常に悪く多大なる電力と労力を浪費してい
た。
Therefore, the thermal efficiency (effective heat input/heat input) is approximately 30%.
This was extremely bad and wasted a lot of power and effort.

このような低周波誘導炉の効率的な運用を図る
ためには次のことが考えられる。
In order to efficiently operate such a low frequency induction furnace, the following can be considered.

(イ) トランスの容量アツプ (ロ) 溶解補助燃料の採用 (ハ) 主原料の形状 ここで(イ)についてはコストの問題があり困難で
ある。(ハ)についてはスターテイングブロツクの形
状を変えても大巾な改善にはつながらない。
(a) Increasing the capacity of the transformer (b) Adopting auxiliary melting fuel (c) Shape of the main raw material Here, (b) is difficult due to cost issues. Regarding (c), changing the shape of the starting block will not lead to a significant improvement.

そこで最も有効な手段は(ロ)の溶解補助燃料の採
用である。
Therefore, the most effective means is to use (b) a dissolving auxiliary fuel.

これは低周波誘導炉の電力ロスの5%は大気へ
の放熱であるといわれていることでもわかる。
This can be seen from the fact that it is said that 5% of power loss in low-frequency induction furnaces is due to heat radiation to the atmosphere.

従つて本発明の目的は低周波誘導炉に溶解補助
燃料として酸素バーナーを適用し、放熱を極力防
止することによつて熱効率を大巾に改善して溶解
時間を大巾に短縮して電力消費量の低減と操作時
間を短縮させることにある。
Therefore, the purpose of the present invention is to apply an oxygen burner to a low-frequency induction furnace as an auxiliary melting fuel, to prevent heat radiation as much as possible, thereby greatly improving thermal efficiency, greatly shortening melting time, and reducing power consumption. The objective is to reduce the amount and operation time.

低周波誘導炉では一般に急熱・急冷をさけるべ
きであり(耐火材にクラツクの入る恐れがあるた
めに)、操業を実施していなくてもバーナー保温
を実施している所が多いが、本発明は低周波炉に
冷材スタートで通電開始とともに酸素バーナーで
補助加熱を実施すること、および炉の拝ガス温度
(T)を200t<T<300+160t(t:時間)に調整
することを特徴とする。
In general, rapid heating and cooling should be avoided in low-frequency induction furnaces (because of the risk of cracking the refractory material), and many places keep the burners warm even when they are not in operation. The invention is characterized by performing auxiliary heating with an oxygen burner when electricity is started with a cold material start in a low frequency furnace, and adjusting the furnace gas temperature (T) to 200t<T<300+160t (t: time). do.

本発明は、耐スポーリング性の強いライニング
材を使用している低周波誘導炉にはすべて応用で
きる。
The present invention can be applied to any low frequency induction furnace that uses a lining material with strong spalling resistance.

以下本発明をその好適な実施例について詳述す
る。
The present invention will be described in detail below with reference to preferred embodiments thereof.

第1図は本発明方法を実施する低周波誘導炉の
縦断面図である。
FIG. 1 is a longitudinal sectional view of a low frequency induction furnace in which the method of the present invention is carried out.

この図から明かなように低周波誘導炉本体1内
には溶解しようとする地金2が積上げてあり、こ
の炉本体1の頂部は上部蓋3で閉じてある。この
上部蓋3を貫通して溶解補助手段である酸素バー
ナー4が地金2の頂部に向つ配設してある。この
酸素バーナーに酸素、オイルを供給すると共に、
オイル噴霧用に空気を送り、かつ冷却水でバーナ
チツプを冷却する。酸素バーナー4は通電開始と
ともに燃焼させるのであるが、その操業条件の要
因としては低周波誘導炉の電力のかけ方、排ガス
温度に伴うバーナー4オイル量、地金3とバーナ
ー4の先端との距離が考えられる。
As is clear from this figure, ingots 2 to be melted are piled up inside the low-frequency induction furnace body 1, and the top of the furnace body 1 is closed with an upper lid 3. An oxygen burner 4 serving as a melting aid is provided through the upper lid 3 toward the top of the base metal 2. In addition to supplying oxygen and oil to this oxygen burner,
Air is sent for oil spraying, and cooling water is used to cool the burner tip. Oxygen burner 4 starts combustion as soon as electricity starts, and the operating conditions include how to apply power to the low-frequency induction furnace, the amount of oil in burner 4 depending on the exhaust gas temperature, and the distance between base metal 3 and the tip of burner 4. is possible.

最大効率を達成するためには通電によつて溶湯
ができるのと酸素バーナー4によつて地金2の上
部が溶けはじめる時期を調整する必要があり、そ
のための操業条件は次の通りである。
In order to achieve the maximum efficiency, it is necessary to adjust the time when molten metal is formed by energization and the time when the upper part of base metal 2 begins to melt by oxygen burner 4, and the operating conditions for this are as follows.

低周波誘導炉の電力P(KW) P>190+150(t−1)(KW) (t:時間) この電力Pが190+150(t−1)以下になると
通電によつて溶湯のできるのが遅くなり、酸素バ
ーナー4によつて地金2の上部の溶けるのが早く
なり、これが再凝固し棚吊り現象を起す。
Power P (KW) of low frequency induction furnace P>190 + 150 (t-1) (KW) (t: time) If this power P becomes less than 190 + 150 (t-1), the formation of molten metal will be delayed due to energization. The upper part of the base metal 2 is melted quickly by the oxygen burner 4, and this solidifies again, causing a shelf-hanging phenomenon.

排ガス温度(T℃) 200t<T<300+160t(℃) この排ガス温度はバーナー4のオイル量あるい
は地金2とバーナー4の先端の距離によつて変動
し、時間tとともに上昇するが、200t以下ではバ
ーナーの放熱は少くなるが、地金に吸収される熱
も少なくなり電力の使用量あるいは操業時間を大
巾に短縮するまでには至らない。また300+160t
以上になればバーナー4の放熱が多くなり熱効率
が悪化するとともに上部地金が先行して溶けてし
まい、これが再凝固し棚吊り現象を起す。
Exhaust gas temperature (T℃) 200t<T<300+160t (℃) This exhaust gas temperature varies depending on the amount of oil in burner 4 or the distance between base metal 2 and the tip of burner 4, and increases with time t, but below 200t Although the heat dissipated from the burner is reduced, the amount of heat absorbed by the metal is also reduced, and this does not result in a significant reduction in power consumption or operating time. Also 300+160t
If the temperature exceeds that level, the burner 4 releases a lot of heat, deteriorating the thermal efficiency, and the upper base metal melts first, which re-solidifies and causes a shelf-hanging phenomenon.

地金とバーナー先端の距離D(mm) 1000<D<1500(mm) この地金とバーナー先端の距離は近ければ良い
というのではなくあくまでも補助加熱という目的
であるから前述の棚吊り現象を起さず放熱を多く
し排ガス温度をあまりあげないように決める必要
がある。
Distance between the base metal and the burner tip D (mm) 1000 < D < 1500 (mm) The distance between the base metal and the burner tip does not need to be as short as possible; it is only for the purpose of auxiliary heating, which causes the above-mentioned shelf hanging phenomenon. It is necessary to decide to increase the heat dissipation first and not to raise the exhaust gas temperature too much.

上記条件下で酸素バーナー4は最大の効率を発
揮するが、その実施例を第2図に示す。
Under the above conditions, the oxygen burner 4 exhibits maximum efficiency, an example of which is shown in FIG.

第2図のグラフは溶湯温度と経過時間との関係
を示すグラフで、点線は通電のみによる操業、一
点鎖線は空気バーナー併用による操業、実線は酸
素バーナー併用による操業(本発明)をそれぞれ
示す。この実施例は40T炉における実例であり、
酸素バーナーにおけるオイル供給量は灯油60―70
/H、O2供給量は110―120m2/Hであつた。
The graph in FIG. 2 is a graph showing the relationship between molten metal temperature and elapsed time, where the dotted line indicates operation with only energization, the dashed line indicates operation with air burner in combination, and the solid line indicates operation with oxygen burner (in the present invention). This example is an example in a 40T furnace,
The oil supply amount in the oxygen burner is kerosene 60-70
/H, O 2 supply amount was 110-120 m 2 /H.

このグラフから明かなように、酸素バーナーを
効率的に運用することにより熱効率を45〜50%に
まで向上させることができ、低周波誘導炉の電力
消費量と操業時間を各々30%の減少と50%の短縮
を達成することができた。
As is clear from this graph, by operating the oxygen burner efficiently, the thermal efficiency can be improved to 45-50%, and the power consumption and operating time of the low frequency induction furnace can be reduced by 30% each. We were able to achieve a 50% reduction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施する低周波誘導炉の縦断
面図、第2図は溶湯温度と経過時間との関係を示
すグラフである。 1…低周波誘導炉、2…地金、3…上部蓋、4
…酸素バーナー。
FIG. 1 is a longitudinal sectional view of a low frequency induction furnace embodying the present invention, and FIG. 2 is a graph showing the relationship between molten metal temperature and elapsed time. 1...Low frequency induction furnace, 2...Basic metal, 3...Top lid, 4
...Oxygen burner.

Claims (1)

【特許請求の範囲】[Claims] 1 低周波誘導炉の頂部に酸素バーナを配置し
て、冷材スタートで通電開始と共に炉内地金の補
助加熱を行なうと共に、炉の排ガス温度(T)を
200t<T<300+160t(但しtは時間)に調整する
ことを特徴とする、低周波誘導炉の運転方法。
1 An oxygen burner is placed at the top of the low-frequency induction furnace, and when the cold material starts and electricity starts, it performs auxiliary heating of the metal inside the furnace, and also controls the exhaust gas temperature (T) of the furnace.
A method of operating a low frequency induction furnace, characterized by adjusting the condition to 200t<T<300+160t (where t is time).
JP10313080A 1980-07-29 1980-07-29 Method for operating low frequency induction furnace Granted JPS5728672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10313080A JPS5728672A (en) 1980-07-29 1980-07-29 Method for operating low frequency induction furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10313080A JPS5728672A (en) 1980-07-29 1980-07-29 Method for operating low frequency induction furnace

Publications (2)

Publication Number Publication Date
JPS5728672A JPS5728672A (en) 1982-02-16
JPS642652B2 true JPS642652B2 (en) 1989-01-18

Family

ID=14345960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10313080A Granted JPS5728672A (en) 1980-07-29 1980-07-29 Method for operating low frequency induction furnace

Country Status (1)

Country Link
JP (1) JPS5728672A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108436044A (en) * 2018-05-31 2018-08-24 佛山峰合精密喷射成形科技有限公司 A kind of melting casting equipment

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016107333A (en) * 2014-11-28 2016-06-20 白岩 慎一郎 Nonferrous metal melting furnace, nonferrous metal melting method and nonferrous metal melting equipment
JP6193325B2 (en) * 2015-09-28 2017-09-06 アイシン高丘株式会社 Hybrid metal melting furnace
JP6082138B1 (en) * 2016-01-26 2017-02-15 株式会社亀山鋳造所 Melting material structure for induction electric furnace, and method for constructing induction electric furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108436044A (en) * 2018-05-31 2018-08-24 佛山峰合精密喷射成形科技有限公司 A kind of melting casting equipment
CN108436044B (en) * 2018-05-31 2020-05-05 佛山峰合精密喷射成形科技有限公司 Smelting and casting equipment

Also Published As

Publication number Publication date
JPS5728672A (en) 1982-02-16

Similar Documents

Publication Publication Date Title
RU2226553C1 (en) Method and device for production of melted iron
JPS5920604B2 (en) Electrically heated glass melting method and device
BR0004572A (en) Foundry pot, a heating system for the foundry pot and processes for heating the foundry pot
US3851090A (en) Means for melting, holding and tapping metals or metal alloys
JPS642652B2 (en)
JP2914674B2 (en) Heat dissolution method
JP5408417B2 (en) Operation method of electric furnace for ferronickel smelting
JPS621827A (en) Recovery of metal from lead alloy
US3997712A (en) Electric arc furnace
RU2661322C2 (en) Method for manufacture of bimetallic electrode by electroslag cladding
US3192303A (en) Method of reducing overheating in melting troughs and similar devices in melting and holding furnaces
JP5203680B2 (en) Metal electroslag remelting process and ingot mold used therefor
JPH023118Y2 (en)
US1875787A (en) Process of melting or heating material in an electrical furnace
GB1585570A (en) Melting and casting apparatus
US3413113A (en) Method of melting metal
US4121043A (en) Preheating metallurgical enclosures
JP2002088457A (en) Galvanizing apparatus
RU2060292C1 (en) Method for preparation of electric furnace for smelting ferrosilicon after prolonged shutdown
CN208620822U (en) Melting furnace is used in a kind of preparation of alloy
SU1043455A2 (en) Coreless induction furnace
SU1128084A1 (en) Induction crucible furnace
SU1700073A1 (en) Method of electroslag melting of bulk materials
JPH08233468A (en) Melting apparatus
SU685894A1 (en) Induction crucible furnace