JPS642621B2 - - Google Patents

Info

Publication number
JPS642621B2
JPS642621B2 JP15000879A JP15000879A JPS642621B2 JP S642621 B2 JPS642621 B2 JP S642621B2 JP 15000879 A JP15000879 A JP 15000879A JP 15000879 A JP15000879 A JP 15000879A JP S642621 B2 JPS642621 B2 JP S642621B2
Authority
JP
Japan
Prior art keywords
polyester
sheet
parts
weight
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15000879A
Other languages
Japanese (ja)
Other versions
JPS5674140A (en
Inventor
Naoki Yamamoto
Sadami Miura
Ko Tsukyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP15000879A priority Critical patent/JPS5674140A/en
Publication of JPS5674140A publication Critical patent/JPS5674140A/en
Publication of JPS642621B2 publication Critical patent/JPS642621B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は熱成圢甚のポリ゚ステルシヌトに関す
る。さらに詳しくは、本発明は透明床が高く制電
性に優れ、ヒヌトシヌル性を䞎える無延䌞の熱成
圢甚ポリ゚ステルシヌトに関する。 テレフタル酞および゚チレングリコヌルを䞻た
る成分ずするポリ゚ステルの無延䌞シヌトは、加
熱䞋での塑性加工、いわゆる熱成圢法により皮々
の成圢品に加工するために甚いられおいる。ポリ
゚ステルシヌトの成圢品は透明であり、ガスバリ
ダヌ性が良奜でありか぀毒性を有しないため、食
品、医療噚材などの包装材料ずしお広範囲に䜿甚
されおいる。 しかし、このようなポリ゚ステル及びこの無延
䌞シヌトは静電気を垯びやすいため補膜工皋、印
刷、熱成圢などの加工工皋、包装工皋、流通段階
などで、火花攟電や、ごみ、ほこりの吞着など
皮々の障害を発生しやすい欠点がある。 さらに、ポリ゚ステルシヌトの成圢品はガスバ
リア性の優れた性質を生かすべく、ヒヌトシヌル
しお䜿甚されるこずが倚いが、ポリ゚ステルは他
のポリ塩化ビニル、ポリスチレンなどの熱成圢甚
材料に范べおヒヌトシヌルの蚱容条件が狭い欠点
もある。即ち、ヒヌトシヌラヌの加熱板枩床をポ
リ゚ステルの溶融枩床に接近させないずシヌルで
きないが、シヌル枩床が高過ぎたりシヌル時間が
長過ぎるずシヌル郚分近傍が脆化しおしたう問題
がある。 本発明ずは別な目的であるが、埓来よりポリ゚
ステルに制電性を付䞎するため、ポリアルキレン
グリコヌルずスルホン酞の金属塩を同時にポリ゚
ステルに配合するいく぀かの方法が提案されおい
る。䟋えば、特公昭44−31828号公報には、酞成
分の80以䞊がテレフタル酞であり、繊維圢成胜
のあるポリ゚ステルに、該ポリ゚ステルに䞍溶性
の少くずも皮のポリアルキレングリコヌルたた
はその共重合䜓0.5〜2.0ず䞀般匏Ar−So3 Meただし、Arは眮換基を有するたたは有しな
い芳銙族残基、は〜の敎数、Meは金属原
子を瀺すで瀺されるスルホン酞塩誘導䜓0.05〜
3.0を配合する方法が提案されおいる。たた、
特開昭52−47072号公報には、ポリ゚ステル溶解
性の䜎分子量ポリアルキレングリコヌルずアルキ
ルスルホン酞塩誘導䜓ずを結合した二軞延䌞フむ
ルムが提案され、䜎分子量ポリアルキレングリコ
ヌルずしお䟋えば分子量4000以䞋のポリ゚チレン
グリコヌルを甚いるこずが瀺されおいる。 しかし、これらの方法をそのたた熱成圢甚ポリ
゚ステルシヌトに適甚するこずはできない。すな
わち熱成圢甚ポリ゚ステルシヌトの倧きな特城の
䞀぀は透明性にあるが、䞊蚘方法によるポリ゚ス
テルを甚いおの無延䌞シヌトは透明性の損われた
ものであり、熱成圢甚途には適甚できない。しか
も、ヒヌトシヌル性に぀いおは、これを改良し埗
る手段は埓来から知られおいない。 本発明者は、このような欠点を解消し、優れた
制電性ず透明性ずをかね備え、曎に良奜なヒヌト
シヌル性を有する熱成圢甚ポリ゚ステルシヌトを
提䟛すべく怜蚎した結果、特定の構造をも぀た特
定の分子量のポリアルキリングリコヌルずスルホ
ン酞の金属塩ずを組合せそれぞれの特定量を䜵甚
するこずにより、制電性ず透明性を同時に満足
し、ヒヌトシヌル性の改良された熱成圢甚ポリ゚
ステルシヌトが埗られるこずを芋出し、本発明に
到達したものである。 すなわち、本発明は、ゞカルボン酞の75モル
以䞊がテレフタル酞であり、グリコヌル成分の75
モル以䞊が゚チレングリコヌルであるポリ゚ス
テル100重量郚に察し (a) 平均分子量5000ないし15000のポリ゚チレン
グリコヌル0.1重量郚ないし0.5重量郚、および (b) アルキルスルホン酞のアルカリ金属塩0.05重
量郚ないし0.3重量郹 を配合しおなる無延䌞の熱成圢甚ポリ゚ステルシ
ヌトである。 本発明の熱成圢甚シヌトの基䜓ずなるポリ゚ス
テルは、ゞカルボン酞の75モル以䞊がテレフタ
ル酞であり、グリコヌル成分の75モル以䞊が゚
チレングリコヌルであるポリ゚ステルである。テ
レフタル酞以倖のゞカルボン酞ずしおは、䟋え
ば、こはく酞、アゞピン酞、セバシン酞、ドデカ
ンゞカルボン酞などの脂肪族ゞカルボン酞ヘキ
サヒドロテレフタル酞、−アダマンタンゞ
カルボン酞などの脂環族ゞカルボン酞む゜フタ
ル酞、ナフタレンゞカルボン酞、ゞプニルゞカ
ルホン酞、ゞプニルスルホンゞカルホン酞、ベ
ンゟプノンゞカルボン酞などの芳銙族ゞカルボ
ン酞を挙げるこずができる。ゞカルボン酞䞭にテ
レフタル酞が占める割合は75モル以䞊であり、
テレフタル酞の量が75モル未満になるずポリ゚
ステルの軟化点が䜎䞋し、熱成圢性からも、たた
成圢品を䜿甚する䞊からも奜たしくない。゚チレ
ングリコヌル以倖のグリコヌル成分ずしおは
−プロパンゞオヌル、−ブタンゞオヌ
ル、−ヘキサンゞオヌル、ネオペンチルグ
リコヌル、ゞ゚チレングリコヌル、−シク
ロヘキサンゞメタノヌル、−キシリレングリコ
ヌルなどを挙げるこずができる。グリコヌル成分
䞭の゚チレングリコヌルの量は75モル以䞊であ
り、゚チレングリコヌルの量が75モル未満にな
るずポリ゚ステルの軟化点が䜎くなり過ぎるので
奜たしくない。 ポリ゚ステルに配合するポリ゚チレングリコヌ
ルの平均分子量は、5000ないし15000である。平
均分子量が5000未満であるず制電効果は殆んど珟
われないし、平均分子量が15000を超えるずシヌ
トの透明性が悪くなる。平均分子量が15000を超
えるポリ゚チレングリコヌルでも添加量が少ない
ずシヌトの透明性は良奜ずなるが、その堎合は制
電効果が珟われず、ヒヌトシヌル性も改良されな
い。たたポリ゚チレングリコヌルの配合量は、ポ
リ゚ステル100重量郚あたり0.1重量郚ないし0.5
重量郚、奜たしくは0.1重量郚ないし0.45重量郚、
特に奜たしくは0.1重量郚ないし0.3重量郚であ
る。ポリ゚チレングリコヌルの配合量が0.1重量
郚未満であるず、シヌトの透明性を損うほど倚量
のアルキルスルホン酞の金属塩を配合しないず制
電性が䞎えられないし、ポリ゚チレングリコヌル
が0.5重量郚を超えるずポリ゚ステルシヌトの透
明性が損われおしたう。 本発明に䜿甚されるアルキルスルホン酞のアル
カリ金属塩は通垞リチりム、ナトリりムたたはカ
リりムの塩であり、たたアルキル基の炭玠数は
以䞊であるこずが奜たしい。通垞、炭玠数ない
し20の混合物で平均炭玠数14皋床のものが甚いら
れるこずが倚い。 たたポリ゚ステルに配合するアルキルスルホン
酞のアルカリ金属塩の量は、ポリ゚ステル100重
量郚あたり0.05重量郚ないし0.3重量郚、奜たし
くは0.1重量郚ないし0.3重量郚である。アルキル
スルホン酞のアルカリ金属塩の量が0.05重量郚よ
り少いずシヌトの制電性が充分でなく、ヒヌトシ
ヌル性も殆んど改良されない。も぀ずも、0.3重
量郚を超えるずシヌトの透明性が䜎䞋する。 本発明においお、ポリ゚ステル100重量郚あた
りに配合するポリ゚チレングリコヌルの量を重
量郚ずし、アルキルスルホン酞のアルカリ金属塩
の量を重量郚ずするず、ずずの和は0.2以
䞊ずするのが奜たしく、曎には0.3以䞊ずするの
が奜たしく、特に0.4以䞊ずするのが奜たしい。 本発明においお、ポリ゚チレングリコヌルおよ
びアルキルスルホン酞のアルカリ金属塩は熱成圢
甚ポリ゚ステルシヌト補造の任意の段階においお
配合するこずができ、䞡者を同時にたたは任意の
順序で配合するこずができる。䟋えば原料ずなる
ポリ゚ステルの重合反応開始前、重合反応途䞭、
重合反応終了時の溶融状態にある時点でポリ゚チ
レングリコヌルおよびアルキルスルホン酞塩を加
えるこずができる。たた、ポリ゚ステルずポリ゚
チレングリコヌルおよびアルキルスルホン酞のア
ルカリ金属塩のいずれか䞀方たたは䞡方を抌出機
で混合しお、いわゆるマスタヌチツプずし、これ
を通垞のポリ゚ステルず配合するこずもできる。
たた、熱成圢甚ポリ゚ステルシヌトを補膜するず
きに、原料ポリ゚ステルに配合しおもよい。 本発明のポリ゚ステルには他のポリマヌを配合
しおもよい。配合し埗るポリマヌずしおは、ポリ
カヌボネヌト、ポリブチレンテレフタレヌト、ポ
リスチレン、ポリメタクリル酞メチルなどを挙げ
るこずができる。これらのポリマヌは30以䞋の
量を配合されるこずがよい。 なお本発明のポリ゚ステル䞭には、立䜓障害フ
゚ノヌル系化合物の劂き抗酞化剀を配合しおもよ
く、その他必芁に応じお、他の制電剀、着色剀そ
の他の添加剀を配合するこずもできる。 本発明の熱成圢甚ポリ゚ステルシヌトは、通垞
ポリ゚ステルを抌出ダむ䟋えばダむ等からシヌ
ト状に溶融抌出し、急冷固化するこずによ぀お埗
るこずができる。この急冷固化手段ずしおはキダ
ステむングドラムが奜たしい。 本発明の熱成圢甚ポリ゚ステルシヌトは通垞衚
面固有抵抗が×1012オヌム以䞋であり、埌に定
矩する垯電䜍半枛時間が60秒以䞋であり、たた厚
さ250ミクロンのシヌトに぀いお枬定したヘヌズ
の倀が以䞋であり、望たしい透明性ず制電性
をかね備えおいる。 本発明の熱成圢甚ポリ゚ステルシヌトは熱成圢
䟋えば真空成圢、圧空成圢、プレス成圢等によ぀
お加工し、透明性、ヒヌトシヌル性、垯電防止性
等に優れた成圢品䟋えば容噚等ずするこずができ
る。 以䞋に実斜䟋をあげお本発明を詳述する。なお
文䞭「郚」は重量郚を衚わす。たた実斜䟋䞭制電
性および透明性は䞋蚘の方法で枬定した。 衚面固有抵抗は竹田理研(æ ª)振動容量型埮少電䜍
電流蚈TR−84M型で枬定した。 垯電䜍半枛時間は(æ ª)穎戞商䌚スタチツクオネス
トメヌタヌ−4104型で電圧−5KVを詊料の䞊
cmから30秒間印加したずき詊料に生ずる電䜍が
の倀に枛衰するたでの時間秒である。な
お、衚面固有抵抗ず垯電䜍半枛時間の枬定は20
℃、60RHの雰囲気䞭で行぀た。 透明性は日本電色工業(æ ª)デゞタルヘヌズメヌタ
ヌNDH−2D型を甚いお枬定した。 実斜䟋、比范䟋〜 テレフタル酞ゞメチル100郚、゚チレングリコ
ヌル70郚および゚ステル亀換觊媒ずしお酢酞マン
ガン0.025郚の混合物を撹拌䞋加熱しお発生する
メタノヌルを留去しながら、90分間゚ステル亀換
させた。次いで平均炭玠数14のアルキルスルホン
酞ナトリりム1.98郚、安定剀ずしお亜リン酞
0.015郚および重合觊媒ずしお䞉酞化アンチモン
0.041郚を添加し、285℃昇枩し、系内を枛圧に移
行しお60mmHgの枛圧䞋で30分間、次いで0.5mm
Hgの枛圧䞋で80分間反応させた。埗られたポリ
゚チレンテレフタレヌトはポリマヌ100郚あたり
郚のアルキルスルホン酞ナトリりムを含有しお
いる。これをポリ゚ステルずする。 アルキルスルホン酞ナトリりム1.98郚の代りに
分子量8000のポリ゚チレングリコヌル9.90郚を添
加する以倖は䞊蚘ず同様にしお、ポリマヌ100郚
あたり、分子量8000のポリ゚チレングリコヌル10
郚を含有するポリ゚チレンテレフタレヌトを埗
た。これをポリ゚ステルずする。 ポリ゚ステル、ポリ゚ステルおよびポリ゚
チレンテレフタレヌトを皮々の割合で混合し、
ダむより抌出しお、厚さ0.25mmの無延䌞シヌトを
補膜した。 これらのシヌトに぀いお制電性ず透明性を枬定
した結果を第衚に瀺す。
The present invention relates to polyester sheets for thermoforming. More specifically, the present invention relates to an unstretched polyester sheet for thermoforming that has high transparency, excellent antistatic properties, and provides heat sealability. BACKGROUND ART Unstretched polyester sheets containing terephthalic acid and ethylene glycol as main components are used to be processed into various molded products by plastic processing under heating, a so-called thermoforming method. Polyester sheet molded products are transparent, have good gas barrier properties, and are nontoxic, so they are widely used as packaging materials for foods, medical equipment, etc. However, such polyester and this unstretched sheet are easily charged with static electricity, so they are susceptible to various problems such as spark discharge and adsorption of dirt and dust during processing processes such as film forming, printing, and thermoforming, packaging, and distribution. It has the disadvantage of being prone to failure. Furthermore, polyester sheet molded products are often heat-sealed to take advantage of their excellent gas barrier properties, but polyester is less heat-sealable than other thermoforming materials such as polyvinyl chloride and polystyrene. It also has the disadvantage that the permissible conditions are narrow. That is, sealing cannot be achieved unless the heating plate temperature of the heat sealer approaches the melting temperature of polyester, but if the sealing temperature is too high or the sealing time is too long, there is a problem that the vicinity of the sealing part becomes brittle. Although the purpose is different from the present invention, several methods have been proposed in the past in which polyalkylene glycol and a metal salt of sulfonic acid are simultaneously blended into polyester in order to impart antistatic properties to polyester. For example, in Japanese Patent Publication No. 44-31828, 80% or more of the acid component is terephthalic acid, and at least one polyalkylene glycol or a copolymer thereof that is insoluble in the polyester is added to a polyester that has fiber-forming ability. 0.5 to 2.0% and is represented by the general formula Ar-So 3 1/m Me (where Ar is an aromatic residue with or without a substituent, m is an integer from 1 to 3, and Me is a metal atom). Sulfonate derivatives 0.05~
A method of blending 3.0% has been proposed. Also,
JP-A No. 52-47072 proposes a biaxially oriented film in which a polyester-soluble low molecular weight polyalkylene glycol and an alkyl sulfonate derivative are combined, and the low molecular weight polyalkylene glycol is, for example, polyethylene with a molecular weight of 4000 or less. The use of glycols has been shown. However, these methods cannot be directly applied to polyester sheets for thermoforming. That is, one of the major characteristics of polyester sheets for thermoforming is transparency, but unstretched sheets using polyester produced by the above method have impaired transparency and cannot be applied to thermoforming applications. Furthermore, no means for improving heat sealability has been known so far. The inventor of the present invention, as a result of studies aimed at solving these drawbacks and providing a polyester sheet for thermoforming that has both excellent antistatic properties and transparency, and has even better heat sealing properties, developed a polyester sheet with a specific structure. By combining a polyalkylene glycol with a specific molecular weight and a metal salt of sulfonic acid and using specific amounts of each, a thermoformable product that satisfies antistatic properties and transparency at the same time and has improved heat sealability. The inventors have discovered that a polyester sheet for use in plastics can be obtained, and have arrived at the present invention. That is, the present invention provides 75 mol% of dicarboxylic acid
The above is terephthalic acid, and the glycol component is 75
For every 100 parts by weight of a polyester of which mole percent or more is ethylene glycol, (a) 0.1 part to 0.5 part by weight of polyethylene glycol having an average molecular weight of 5,000 to 15,000, and (b) 0.05 part to 0.3 part by weight of an alkali metal salt of an alkylsulfonic acid. This is an unstretched thermoformable polyester sheet made by blending the following parts: The polyester serving as the base of the thermoformable sheet of the present invention is a polyester in which 75 mol% or more of the dicarboxylic acid is terephthalic acid and 75 mol% or more of the glycol component is ethylene glycol. Examples of dicarboxylic acids other than terephthalic acid include aliphatic dicarboxylic acids such as succinic acid, adipic acid, sebacic acid, and dodecanedicarboxylic acid; alicyclic dicarboxylic acids such as hexahydroterephthalic acid and 1,3-adamantanedicarboxylic acid; Aromatic dicarboxylic acids such as isophthalic acid, naphthalene dicarboxylic acid, diphenyl dicarboxylic acid, diphenylsulfone dicarboxylic acid, and benzophenone dicarboxylic acid can be mentioned. The proportion of terephthalic acid in the dicarboxylic acid is 75 mol% or more,
If the amount of terephthalic acid is less than 75 mol%, the softening point of the polyester will decrease, which is undesirable from the standpoint of thermoformability and use of the molded product. Glycol components other than ethylene glycol include 1,
Examples include 3-propanediol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, diethylene glycol, 1,4-cyclohexanedimethanol, and p-xylylene glycol. The amount of ethylene glycol in the glycol component is 75 mol% or more, and if the ethylene glycol amount is less than 75 mol%, the softening point of the polyester becomes too low, which is not preferable. The average molecular weight of polyethylene glycol blended into polyester is 5,000 to 15,000. If the average molecular weight is less than 5,000, the antistatic effect will hardly appear, and if the average molecular weight exceeds 15,000, the transparency of the sheet will deteriorate. Even with polyethylene glycol having an average molecular weight exceeding 15,000, if the amount added is small, the transparency of the sheet will be good, but in that case, the antistatic effect will not appear and the heat sealability will not be improved. The blending amount of polyethylene glycol is 0.1 part by weight to 0.5 part by weight per 100 parts by weight of polyester.
parts by weight, preferably from 0.1 parts to 0.45 parts by weight,
Particularly preferred is 0.1 part by weight to 0.3 part by weight. If the blending amount of polyethylene glycol is less than 0.1 part by weight, antistatic properties cannot be provided unless a large amount of metal salt of alkyl sulfonic acid is blended so as to impair the transparency of the sheet, and if the polyethylene glycol exceeds 0.5 part by weight and the transparency of the polyester sheet will be impaired. The alkali metal salt of alkylsulfonic acid used in the present invention is usually a lithium, sodium or potassium salt, and the alkyl group has 8 carbon atoms.
It is preferable that it is above. Usually, a mixture of 8 to 20 carbon atoms, with an average carbon number of about 14, is often used. The amount of the alkali metal salt of alkylsulfonic acid added to the polyester is 0.05 part by weight to 0.3 part by weight, preferably 0.1 part by weight to 0.3 part by weight, per 100 parts by weight of polyester. If the amount of the alkali metal salt of alkyl sulfonic acid is less than 0.05 part by weight, the antistatic properties of the sheet will not be sufficient and the heat sealability will hardly be improved. However, if it exceeds 0.3 parts by weight, the transparency of the sheet will decrease. In the present invention, if the amount of polyethylene glycol blended per 100 parts by weight of polyester is A, and the amount of alkali metal salt of alkyl sulfonic acid is B, the sum of A and B is 0.2 or more. is preferable, more preferably 0.3 or more, particularly preferably 0.4 or more. In the present invention, polyethylene glycol and the alkali metal salt of alkylsulfonic acid can be blended at any stage of producing a polyester sheet for thermoforming, and both can be blended simultaneously or in any order. For example, before starting the polymerization reaction of raw material polyester, during the polymerization reaction,
Polyethylene glycol and alkyl sulfonate can be added in the molten state at the end of the polymerization reaction. It is also possible to mix polyester, polyethylene glycol, and/or an alkali metal salt of an alkyl sulfonic acid in an extruder to form a so-called master chip, which can then be blended with ordinary polyester.
Moreover, when forming a polyester sheet for thermoforming, it may be blended into the raw material polyester. Other polymers may be blended with the polyester of the present invention. Examples of polymers that can be blended include polycarbonate, polybutylene terephthalate, polystyrene, and polymethyl methacrylate. These polymers are preferably blended in an amount of 30% or less. In addition, an antioxidant such as a sterically hindered phenol compound may be added to the polyester of the present invention, and other antistatic agents, colorants, and other additives may also be added as necessary. . The polyester sheet for thermoforming of the present invention can usually be obtained by melt-extruding polyester into a sheet form from an extrusion die, such as a T-die, and rapidly cooling and solidifying the sheet. A casting drum is preferred as the rapid cooling and solidifying means. The polyester sheet for thermoforming of the present invention usually has a surface resistivity of 5×10 12 ohms or less, a charging potential half-life time defined later of 60 seconds or less, and a haze value measured on a sheet with a thickness of 250 microns. is 8% or less, and has both desirable transparency and antistatic properties. The polyester sheet for thermoforming of the present invention can be processed by thermoforming, such as vacuum forming, pressure forming, press molding, etc., to form molded products such as containers with excellent transparency, heat sealability, antistatic properties, etc. can. The present invention will be explained in detail with reference to Examples below. Note that "parts" in the text represent parts by weight. Further, in the examples, antistatic properties and transparency were measured by the following methods. The surface resistivity was measured with a vibrating capacitance micropotential ammeter model TR-84M manufactured by Takeda Riken Co., Ltd. The charged potential half-life time is the time it takes for the potential generated on the sample to decay to 1/2 when a voltage of -5 KV is applied for 30 seconds from 2 cm above the sample using an Anato Shokai Static Honest Meter Model S-4104 ( seconds). In addition, the surface resistivity and charging potential half-life time were measured at 20
The test was carried out in an atmosphere of ℃ and 60% RH. Transparency was measured using a digital haze meter NDH-2D model manufactured by Nippon Denshoku Kogyo Co., Ltd. Example 1, Comparative Examples 1 to 3 A mixture of 100 parts of dimethyl terephthalate, 70 parts of ethylene glycol, and 0.025 parts of manganese acetate as a transesterification catalyst was heated with stirring and transesterified for 90 minutes while distilling off the generated methanol. Ta. Next, 1.98 parts of sodium alkyl sulfonate having an average carbon number of 14, and phosphorous acid as a stabilizer.
0.015 parts and antimony trioxide as polymerization catalyst
0.041 part was added, the temperature was raised to 285°C, the system was reduced to a reduced pressure of 60 mmHg for 30 minutes, and then 0.5 mm
The reaction was carried out for 80 minutes under reduced pressure of Hg. The polyethylene terephthalate obtained contains 2 parts of sodium alkylsulfonate per 100 parts of polymer. This is called polyester A. In the same manner as above except that 9.90 parts of polyethylene glycol with a molecular weight of 8000 was added instead of 1.98 parts of sodium alkylsulfonate, 10 parts of polyethylene glycol with a molecular weight of 8000 was added per 100 parts of polymer.
% of polyethylene terephthalate was obtained. This is called polyester B. Polyester A, polyester B and polyethylene terephthalate were mixed in various proportions, and T
It was extruded from a die to form a non-stretched sheet with a thickness of 0.25 mm. Table 1 shows the results of measuring the antistatic properties and transparency of these sheets.

【衚】 実斜䟋のシヌトは衚面固有抵抗が小さく、垯
電䜍は短時間で枛衰し、良奜な制電性を有しおい
る。ヘヌズも小さく透明性も良奜である。 実斜䟋のポリ゚チレングリコヌルをアルキル
スルホン酞ナトリりムでおきかえた比范䟋のシ
ヌトは制電性は良奜であるが、ヘヌズが高く透明
性が著しく損われおいる。実斜䟋のアルキルス
ルホン酞ナトリりムをポリ゚チレングリコヌルで
おきかえた比范䟋のシヌトおよび実斜䟋から
ポリ゚チレングリコヌルを陀いた比范䟋のシヌ
トはいずれも透明性は良奜であ぀たが、衚面固有
抵抗倀が倧きく、垯電䜍はほずんど枛衰しなか぀
た。 実斜䟋〜、比范䟋〜 二軞抌出機を甚いおポリ゚チレンテリフタレヌ
ト100郚あたり、分子量の異る皮々のポリ゚チレ
ングリコヌル郚を含有するマスタヌチツプを぀
く぀た。実斜䟋のポリ゚ステル、これらのポ
リ゚チレングリコヌル含有マスタヌチツプおよび
ポリ゚チレンテレフタレヌトを甚いお、ポリ゚ス
テル100郚あたりアルキルスルホン酞ナトリりム
0.1郚およびポリ゚チレングリコヌル0.5郚を含有
する厚さ0.25mmの無延䌞シヌトを補膜した。これ
らのシヌトに぀いお制電性ず透明性を枬定した結
果を第衚に瀺した。
[Table] The sheet of Example 1 has a small surface resistivity, the charged potential attenuates in a short time, and has good antistatic properties. The haze is small and the transparency is good. The sheet of Comparative Example 1 in which the polyethylene glycol of Example 1 was replaced with sodium alkylsulfonate had good antistatic properties, but had high haze and significantly impaired transparency. The sheet of Comparative Example 2 in which the sodium alkyl sulfonate of Example 1 was replaced with polyethylene glycol and the sheet of Comparative Example 3 in which polyethylene glycol was removed from Example 1 both had good transparency, but the surface resistivity value was large, and the charging potential hardly attenuated. Examples 2 to 4, Comparative Examples 4 to 7 Master chips containing 4 parts of various polyethylene glycols having different molecular weights per 100 parts of polyethylene terephthalate were produced using a twin-screw extruder. Using polyester A of Example 1, these polyethylene glycol-containing master chips and polyethylene terephthalate, sodium alkyl sulfonate per 100 parts of polyester
A non-stretched sheet with a thickness of 0.25 mm containing 0.1 part of polyethylene glycol and 0.5 part of polyethylene glycol was formed. Table 2 shows the results of measuring the antistatic properties and transparency of these sheets.

【衚】 実斜䟋、、のシヌトは制電性、透明性ず
もに良奜である。これに察しお、分子量の䜎いポ
リ゚チレングリコヌルを甚いた比范䟋、のシ
ヌトは、透明性は良奜であるが、制電性は䞍十分
である。䞀方、分子量の高いポリ゚チレングリコ
ヌルを甚いた比范䟋、のシヌトは、制電性は
良奜であるが、透明性が䞍十分である。 実斜䟋、比范䟋、 テレフタル酞ゞメチル100郚、゚チレングリコ
ヌル70郚および酢酞マンガン0.025郚の混合物を
撹拌䞋加熱しお発生するメタノヌルを留去しなが
ら90分間゚ステル亀換させた。次いでスルホン酞
ナトリりム塩1.98郚、ポリアルキレングリコヌル
5.94郚、亜リン酞0.015郚および䞉酞化アンチモ
ン0.041郚を添加し、285℃に昇枩し、系内を枛圧
に移行しお60mmHgの枛圧䞋で30分間、次いで0.5
mmHgの枛圧䞋で80分間反応させた。甚いたポリ
アルキレングリコヌルずスルホン酞ナトリりム塩
の組合せは䞋蚘の劂くであり、それぞれポリ゚ス
テルC.D.Eずする。 ポリ゚ステル 分子量15000のポリ゚チレングリコヌル平均炭
玠数14のアルキルスルホン酞ナトリりム ポリ゚ステル 分子量15000のポリ゚チレングリコヌルドデシ
ルベンれンスルホン酞ナトリりム ポリ゚ステル 分子量15000の゚チレンオキサむド−プロピレ
ンオキサむドのブロツク共重合䜓ただし、゚チ
レンオキサむドずプロピレンオキサむドのモル比
 平均炭玠数14のアルキルスルホン酞ナトリり
ム。 これら皮のポリ゚ステルをそれぞれポリ゚チ
レンテレフタレヌトず19の割合に混合しお
ダむより抌出し、厚さ0.3mmの無延䌞シヌトを補
膜し、埗られたシヌトに぀いお制電性を枬定した
結果を第衚に瀺す。
[Table] The sheets of Examples 2, 3, and 4 have good antistatic properties and transparency. On the other hand, the sheets of Comparative Examples 4 and 5 using polyethylene glycol with a low molecular weight had good transparency but insufficient antistatic properties. On the other hand, the sheets of Comparative Examples 6 and 7 using polyethylene glycol with a high molecular weight have good antistatic properties, but have insufficient transparency. Example 5, Comparative Examples 8 and 9 A mixture of 100 parts of dimethyl terephthalate, 70 parts of ethylene glycol and 0.025 parts of manganese acetate was heated with stirring, and transesterification was carried out for 90 minutes while distilling off the generated methanol. Then 1.98 parts of sulfonic acid sodium salt, polyalkylene glycol
5.94 parts of phosphorous acid, 0.015 parts of phosphorous acid, and 0.041 parts of antimony trioxide were added, the temperature was raised to 285°C, the system was reduced to a reduced pressure of 60 mmHg for 30 minutes, and then 0.5 parts of antimony trioxide was added.
The reaction was carried out for 80 minutes under reduced pressure of mmHg. The combinations of polyalkylene glycol and sulfonic acid sodium salt used are as follows, and each is used as a polyester CDE. Polyester C Polyethylene glycol with a molecular weight of 15,000 Sodium alkyl sulfonate polyester with an average carbon number of 14 D Polyester with a molecular weight of 15,000 Sodium alkyl decyl benzene sulfonate Polyester E Ethylene oxide-propylene oxide block copolymer with a molecular weight of 15,000 (However, ethylene oxide and propylene Molar ratio of oxide = 3:1) Sodium alkyl sulfonate having an average carbon number of 14. These three types of polyester are mixed with polyethylene terephthalate at a ratio of 1:19, respectively, and T
An unstretched sheet with a thickness of 0.3 mm was formed by extrusion through a die, and the antistatic properties of the obtained sheet were measured. Table 3 shows the results.

【衚】 実斜䟋  䞋蚘の混合物から、ダむを甚いお厚さ0.7mm
の無延䌞シヌトを補膜した。 ポリ゚チレンテレフタレヌト 79.5郚 ポリブチレンテレフタレヌト 10 実斜䟋のポリ゚ステル 7.5 実斜䟋のポリ゚ステル 3 埗られた熱成圢甚ポリ゚ステルシヌトの衚面固
有抵抗は1.8×1011オヌム、垯電䜍半枛時間は2.8
秒、ヘヌズは6.1であ぀た。 実斜䟋、、比范䟋10、11 実斜䟋のポリ゚ステル、ポリ゚ステル比
范䟋のポリ゚ステルおよびポリ゚チレンテレ
フタレヌトを皮々の割合で混合しダむより抌出
しお厚さ0.125mmおよび厚さ0.3mmの無延䌞シヌト
を補膜した。 東掋テスタヌ産業(æ ª)フむルムヒヌトシヌラヌを
甚い、厚さ0.125mmのシヌトが加熱板偎になるよ
うに厚さ0.3mmのシヌトず重ね、Kgcm2の圧力
で秒間圧着した。シヌルの状態は、匷固に接着
しおいお、剥離しようずしおもシヌル郚分は剥離
せず、その近傍のシヌルされおいない郚分が砎壊
するものから、シヌルされおいないものたでに分
かれた。これらの詊料のヒヌトシヌルの状態を第
衚に瀺した。第衚の結果から、本発明の熱成
圢甚ポリ゚ステルシヌトは比范的䜎い枩床から、
シヌルが可胜ずなり、広い枩床範囲にわた぀おヒ
ヌトシヌルするこずができるこずが刀明した。
[Table] Example 6 From the mixture below, use a T-die to make a 0.7mm thick
A non-stretched sheet was formed into a film. Polyethylene terephthalate 79.5 parts Polybutylene terephthalate 10 Polyester A of Example 1 7.5 Polyester B of Example 1 3 The surface resistivity of the obtained polyester sheet for thermoforming was 1.8×10 11 ohms, and the charging potential half-life time was 2.8
Second, the haze was 6.1%. Examples 7, 8, Comparative Examples 10, 11 Polyester A and Polyester B of Example 1 and Polyester D of Comparative Example 8 and polyethylene terephthalate were mixed in various proportions and extruded through a T-die to a thickness of 0.125 mm and a thickness of 0.3 mm. A non-stretched sheet was formed into a film. Using a film heat sealer manufactured by Toyo Tester Sangyo Co., Ltd., the 0.125 mm thick sheet was stacked on the 0.3 mm thick sheet so that it was facing the heating plate, and the sheets were pressed together at a pressure of 2 kg/cm 2 for 1 second. The conditions of the seals were divided into two categories: those in which the seal was firmly adhered and the sealed portion would not peel off even if an attempt was made to remove it, and the unsealed portion in the vicinity would be destroyed, and those in which the seal was not sealed. Table 4 shows the heat sealing conditions of these samples. From the results in Table 4, it can be seen that the polyester sheet for thermoforming of the present invention can be
It was found that heat sealing was possible over a wide temperature range.

【衚】【table】

【衚】 ○ヒヌトシヌルの状態良奜
△ヒヌトシヌルされおいるが接着力匱
い
×ヒヌトシヌルされおいない
[Table] ○: Heat seal in good condition
△: Heat sealed, but adhesive strength is weak
×: Not heat sealed

Claims (1)

【特蚱請求の範囲】  ゞカルボン酞成分の75モル以䞊がテレフタ
ル酞であり、グリコヌル成分の75モル以䞊が゚
チレングリコヌルであるポリ゚ステル100重量郹
に察し (a) 平均分子量5000ないし15000のポリ゚チレン
グリコヌル0.1重量郚ないし0.5重量郚および (b) アルキルスルホン酞のアルカリ金属塩0.05重
量郚ないし0.3重量郹 を配合しおなる無延䌞の熱成圢甚ポリ゚ステルシ
ヌト。
[Scope of Claims] 1. For 100 parts by weight of a polyester in which 75 mol% or more of the dicarboxylic acid component is terephthalic acid and 75 mol% or more of the glycol component is ethylene glycol, (a) polyethylene glycol having an average molecular weight of 5,000 to 15,000; A non-stretched polyester sheet for thermoforming, which contains 0.1 part by weight to 0.5 part by weight and (b) 0.05 part to 0.3 part by weight of an alkali metal salt of alkylsulfonic acid.
JP15000879A 1979-11-21 1979-11-21 Polyester sheet for heat forming Granted JPS5674140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15000879A JPS5674140A (en) 1979-11-21 1979-11-21 Polyester sheet for heat forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15000879A JPS5674140A (en) 1979-11-21 1979-11-21 Polyester sheet for heat forming

Publications (2)

Publication Number Publication Date
JPS5674140A JPS5674140A (en) 1981-06-19
JPS642621B2 true JPS642621B2 (en) 1989-01-18

Family

ID=15487450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15000879A Granted JPS5674140A (en) 1979-11-21 1979-11-21 Polyester sheet for heat forming

Country Status (1)

Country Link
JP (1) JPS5674140A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645175B2 (en) * 1986-04-15 1994-06-15 東掋玡瞟株匏䌚瀟 Method for producing polyester film
DE69310887T2 (en) * 1992-07-29 1998-01-22 Baxter Int PHARMACEUTICAL CONTAINERS AND MEDICAL DEVICES WITH HYDROPHILIC, PROTEIN-COMPATIBLE SURFACES
KR20010047581A (en) * 1999-11-22 2001-06-15 장용균 Copolyester resin
JP6999151B2 (en) * 2017-05-12 2022-01-18 竹本油脂株匏䌚瀟 Antistatic agent for thermoplastic polyester resin, thermoplastic polyester resin masterbatch, thermoplastic polyester resin molded body and its manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011944B2 (en) * 1977-06-01 1985-03-29 垝人株匏䌚瀟 Antistatic polyester composition
JPS5812910B2 (en) * 1977-08-23 1983-03-10 垝人株匏䌚瀟 polyester film

Also Published As

Publication number Publication date
JPS5674140A (en) 1981-06-19

Similar Documents

Publication Publication Date Title
JP3939754B2 (en) Copolyester composition containing carbon black
US4264667A (en) Polyester film
EP3561019B1 (en) Adhesive composition having antifog properties
KR20010052858A (en) Polyester resin compositions
KR20200031044A (en) Heat-sealable polyester film for production of ready-meal trays, process for its production, and use of the film
JP2573986B2 (en) Permanent antistatic resin composition
JPH11166045A (en) Polyesterether film
JPS642621B2 (en)
JP3474306B2 (en) Improved polyester film or sheet and processed product thereof
JP3665192B2 (en) Polyester resin composition
JP3365450B2 (en) Method for producing high polymerization degree polyester
JP2681683B2 (en) Polyester film
JP3736664B2 (en) Polyester resin composition
JPH0410858B2 (en)
JPH08156210A (en) Thermoformed polyester container excellent in slip properties
JPH03149253A (en) Film or sheet of excellent heat sealing property
JP2588576B2 (en) Antistatic resin composition
JP3645657B2 (en) Polyester resin composition
JP3398309B2 (en) Sheet-shaped molded products and transparent packaging containers
JP3400571B2 (en) Conductive resin composition
KR0175549B1 (en) A method for producing a polyester film excellent in antistatic property
JPH07166037A (en) Polyester film
JPH05239324A (en) Polyester resin composition for producing theremoforming sheet
JPH10226031A (en) Polyester multilayer sheet with excellent slipperiness and antistatic property, and molding
JPH10316845A (en) Polyester-based resin composition