JPS642487B2 - - Google Patents

Info

Publication number
JPS642487B2
JPS642487B2 JP20497084A JP20497084A JPS642487B2 JP S642487 B2 JPS642487 B2 JP S642487B2 JP 20497084 A JP20497084 A JP 20497084A JP 20497084 A JP20497084 A JP 20497084A JP S642487 B2 JPS642487 B2 JP S642487B2
Authority
JP
Japan
Prior art keywords
mold
molding
molded product
plating film
composite plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20497084A
Other languages
Japanese (ja)
Other versions
JPS6179611A (en
Inventor
Muneyori Matsumura
Hyoshi Okamoto
Kaoru Ido
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uemera Kogyo Co Ltd
Original Assignee
Uemera Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uemera Kogyo Co Ltd filed Critical Uemera Kogyo Co Ltd
Priority to JP20497084A priority Critical patent/JPS6179611A/en
Publication of JPS6179611A publication Critical patent/JPS6179611A/en
Publication of JPS642487B2 publication Critical patent/JPS642487B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/37Mould cavity walls, i.e. the inner surface forming the mould cavity, e.g. linings

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明はポリフエニレンオキサイド、ポリカー
ボネート等のエンジニアリングプラスチツク成形
品の製造方法に関し、特に低い金型温度において
成形品にクラツクを生じさせることなく成形する
ことができるエンジニアリングプラスチツク成形
品の製造方法に関する。 従来技術及びその問題点 最近において、構造用部品及び機械用部品など
の工業用部品にポリフエニレンオキサイド、ポリ
カーボネート等のエンジニアリングプラスチツク
成形品を用いることが多くなつてきた。これらの
エンジニアリングプラスチツク成形品は、軽く、
耐食性に富む等の一般のプラスチツク材料と同様
の長所を有するほか、耐衝撃性等の機械的性質や
熱的性質がすぐれているなど、工業用部品として
使用されるのに適した特徴を有しているものであ
るが、これらの特徴を十分発揮させるためには、
成形時に成形品に大きな残留応力を生じさせるな
どの不都合をなくして欠陥のない良好な成形品を
成形する必要がある。 このために従来、成形品の形状、ゲート位置な
どを工夫し、金型内に供給された溶融樹脂がスム
ーズに流れるようにすると共に、金型温度が低い
と金型内に供給された溶融樹脂が急激に冷却、固
化され、成形品内部に大きな残留応力が生じて成
形品にクラツクが発生する場合があるので、溶融
樹脂の急激な冷却による熱応力が生じないよう
に、金型を通常80℃以上に保温し、金型温度を80
℃以上に保つて成形することが行なわれていた。
しかしながら、このように金型をかなりの高温度
に保温して成形を行なうことは、成形作業性に問
題が生じ、成形が能率的に行なわれない上、成形
コストが高価なものになる。 発明の概要 本発明者らは、上記事情を改善し、金型に格別
な保温措置を講じなくともクラツク等の欠陥を生
じさせることなくポリフエニレンオキサイド等の
エンジニアリングプラスチツク成形品を製造し得
る成形法につき鋭意検討を行なつた結果、キヤビ
テイ面にフツ素系高分子物質を共析分散させた複
合めつき被覆を形成した金型を使用し、この金型
のキヤビテイに溶融樹脂を供給して成形を行なつ
た場合、金型温度が低温であつても、内部残留応
力が低く、クラツク等の発生が可及的に防止され
たエンジニアリングプラスチツク成形品を確実に
製造し得ることを知見し、本発明をなすに至つ
た。 即ち、本発明はキヤビテイ面にフツ素系高分子
物質を分散共析させた複合めつき被膜を形成した
金型のキヤビテイに溶融したエンジニアリングプ
ラスチツク成形材料を供給し、金型温度10〜60℃
においてエンジニアリングプラスチツク成形品を
成形することを特徴とするエンジニアリングプラ
スチツク成形品の製造方法を提供するものであ
る。 本発明によれば、キヤビテイ面にフツ素系高分
子物質を共析分散させた複合めつき被膜を形成し
たことにより、断熱効果或いは熱保持効果に優
れ、金型を特別に保温しなくとも成形品の冷却速
度を遅延化して熱応力の発生を可及的に防止し
得、成形品の残留応力を低くすることができる。
従つて、低い金型温度にて成形することができ、
例えば金型に保温装置を設備するなどの特別の措
置を講ずる必要がなく、室温の金型をそのまま使
用して成形を行なうことができる。しかも、上記
の金型は離型性が非常に良く、このため離型(脱
型)時における離型抵抗が減少するので、離型時
の歪が非常に少なくなり、この点でも残留応力を
低くし得るので、本発明方法の採用によりクラツ
ク等のない良好なエンジニアリングプラスチツク
成形品を確実にかつ能率よく成形し得るものであ
る。更に、本発明によれば、金型の保温を省略も
しくは簡略化し得るので、作業性が良好なもので
ある。 以下、本発明につき更に詳しく説明する。 発明の構成 本発明はエンジニアリングプラスチツク成形品
の製造方法に係るものであるが、本発明法を適用
できるエンジニアリングプラスチツクとしてはそ
れに限定されるものではないが、例えば、ポリフ
エニレンオキサイド、ポリカーボネート、ポリア
セタール、ポリアミド、ポリエチレンテレフタレ
ート、ポリブチレンテレフタレート、ポリフエニ
レンサルフアイド、ポリスルフオン、ポリエーテ
ルサルフオン、ポリエーテルエーテルケトン、ポ
リアリレート、ポリエーテルイミド、ポリオキシ
ベンジレンなどが挙げられる。これらのうちでは
特にポリフエニレンオキサイド、ポリカーボネー
ト、ポリスルフオン、ポリエーテルサルフオン、
ポリアリレート、ポリエーテルイミドなどが好ま
しく、本発明法はこれらのエンジニアリングプラ
スチツク成形品の製造に好適に採用される。 本発明の製造方法は、上記エンジニアリングプ
ラスチツクの溶融樹脂が供給される金型として、
そのキヤビテイ面にフツ素系高分子物質が共析分
散した複合めつき被膜を形成したものを使用する
ものである。 ここで、金型材質、或いはキヤビテイ面の材質
に特に制限はなく、例えばスチール、アルミニウ
ム等の通常の金型製作用の材料が使用され得る。 また、この金型のキヤビテイ面上に形成される
複合めつき被膜は、フツ素系高分子物質がめつき
被膜母相中に均一に共析分散されているものであ
る。この場合、フツ素系高分子物質としては、ポ
リテトラフルオロエチレン、ポリクロロトリフル
オロエチレン、ポリ弗化ビニリデン、テトラフル
オロエチレン−ヘキサフルオロプロピレン共重合
体、テトラフルオロエチレン−エチレン共重合
体、クロロトリフルオロエチレン−アルキレン共
重合体、弗化ビニリデン−ヘキサフルオロプロピ
レン共重合体、弗化ビニリデン−クロロトリフル
オロエチレン共重合体、弗化ビニリデン−ペンタ
フルオロプロピレン共重合体、その他のフツ素系
樹脂の粉末、短繊維、更にフツ化黒鉛粒子などが
挙げられる。 なお、上記高分子物質として粉粒状のものを使
用する場合、その平均粒径は0.01〜200μm、特に
0.1〜20μmとすることが好ましく、また繊維状の
ものを使用する場合、その長さは0.01〜2000μm、
特に0.1〜60μmとすることが好ましい。 上記のフツ素系高分子物質が共析分散される母
相となるめつき被膜は、ニツケル、ニツケル−リ
ン合金等のニツケル合金、鉄、鉄合金、銅、銅合
金などのめつき被膜が挙げられるが、特にニツケ
ル、ニツケル合金めつき被膜が好適である。 このようなめつき被膜中にフツ素系高分子物質
が共析分散した複合めつき被膜を形成する方法と
しては、電気めつき法を採用しても無電解めつき
法を採用してもよく、所望の母相を形成し得る適
宜なめつき液にフツ素系高分子物質を懸濁させた
複合めつき液を調製し、このめつき液を用いてめ
つきを行なう公知の複合めつき法が採用し得る。 この場合、形成される複合めつき被膜中のフツ
素系高分子物質量は2〜65容量%、特に15〜40容
量%とし、まためつき膜厚は0.1〜1000μm、特に
5〜30μmとすることが本発明の目的をより確実
に達成する上で好ましい。 本発明は上述した複合めつき被膜形成金型を使
用し、この金型キヤビテイに上述したエンジニア
リングプラスチツクの溶融樹脂を射出法などによ
つて供給し、金型温度10〜60℃、好ましくは30〜
50℃において成形を行なうものである。この場
合、その他の成形条件は、射出成形法等の成形方
法や成形すべきプラスチツクの種類、成形品の用
途などに応じた公知の成形条件が採用し得る。ま
た、キヤビテイに供給する成形材料も樹脂成分以
外に充填剤等の適宜な成分が添加混練されていて
もよい。 発明の効果 本発明の製造法を採用することによつて得られ
た成形品は、上述したように残留応力が少なく、
クラツク等の欠陥の非常に少ないものであるの
で、エンジニアリングプラスチツク本来の特性が
有効に発揮され、このため種々の工業用部品に好
適に用いられるものである。 以下、実施例と比較例を示し、本発明を具体的
に説明するが、本発明は下記の実施例に制限され
るものではない。 〔実施例1、比較例1〕 リブプレート金型のスチール製入子キヤビテイ
面に下記組成の複合めつき液を使用してニツケル
めつき被膜中にポリテトラフルオロエチレン粒子
を均一に分散させた複合めつき被膜を形成した。 複合めつき液組成 スルフアミン酸ニツケル 500ml/ 塩化ニツケル 30g/ ホウ酸 35 〃 ポリテトラフルオロエチレン 70 〃 分散助剤 2 〃 PH 4.0 複合めつき条件 陰極電流密度 2A/dm2 浴温 45℃ 複合めつき被膜 膜厚 15μm 組成 35vol%ポリテトラフルオロエチレン
含有 次に、上記の金型を使用し、成形機として住友
重機械工業社製NETSTAL75Tを用いて金型温
度40℃にてポリフエニレンオキサイドの成形を行
ない、成形品(第1,2図に示すリブプレート)
を90℃で24時間熱処理した後、そのクラツクの発
生の程度を評価した。結果を第1表に示す。な
お、図中aはゲートである。また、成形品の温度
を測定した結果を第2表に示す。 ここで、クラツクの評価は、成形品を10倍ルー
ペにて観察し、クラツク発生の有無を確認すると
共に、クラツクの大きいもの3点、中程度のもの
2点、小さいもの1点として評価し、採点した。
また成形品の温度は15シヨツト目の成形品につき
第1図中bの箇所の温度を測定した。 比較のため、スチール製入子キヤビテイ面にセ
ラミツクをコーテイングしたもの及びアルミニウ
ム製の入子をそれぞれ使用して同様にポリフエニ
レンオキサイドの成形を行ない、成形品のクラツ
ク発生程度を調べた。結果は第1表に併記する。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for manufacturing engineering plastic molded products such as polyphenylene oxide, polycarbonate, etc., and in particular to a method for manufacturing engineering plastic molded products that can be molded without causing cracks in the molded product at low mold temperatures. Regarding the manufacturing method. Prior Art and its Problems Recently, engineering plastic molded products such as polyphenylene oxide and polycarbonate have been increasingly used for industrial parts such as structural parts and mechanical parts. These engineering plastic molded products are light and
In addition to having the same advantages as general plastic materials, such as high corrosion resistance, it also has excellent mechanical properties such as impact resistance and thermal properties, making it suitable for use as industrial parts. However, in order to fully demonstrate these characteristics,
It is necessary to eliminate inconveniences such as generating large residual stress in the molded product during molding, and to mold a good molded product without defects. For this purpose, conventionally, the shape of the molded product, the gate position, etc. have been devised so that the molten resin supplied into the mold can flow smoothly, and when the mold temperature is low, the molten resin supplied into the mold has been devised. is rapidly cooled and solidified, and large residual stress is generated inside the molded product, which may cause cracks in the molded product.To prevent thermal stress from occurring due to rapid cooling of the molten resin, the mold is usually heated to 80°C. Keep the mold temperature above ℃ and keep the mold temperature at 80℃.
Molding was carried out while keeping the temperature above ℃.
However, performing molding while keeping the mold at a fairly high temperature in this manner causes problems in molding workability, inefficiently molding, and increases molding cost. SUMMARY OF THE INVENTION The present inventors have improved the above-mentioned circumstances, and have made it possible to produce engineering plastic molded products such as polyphenylene oxide without causing defects such as cracks without taking any special heat-insulating measures for the mold. As a result of intensive research on the method, we used a mold with a composite plating coating in which a fluorine-based polymer material was eutectoidally dispersed on the cavity surface, and supplied molten resin to the cavity of this mold. We have discovered that when molding is carried out, even if the mold temperature is low, it is possible to reliably produce engineering plastic molded products with low internal residual stress and the occurrence of cracks, etc. being prevented as much as possible, The present invention has been accomplished. That is, in the present invention, a molten engineering plastic molding material is supplied to the cavity of a mold in which a composite plating film in which a fluorine-based polymer substance is dispersed and eutectoid is formed on the cavity surface, and the mold temperature is 10 to 60°C.
The present invention provides a method for manufacturing an engineering plastic molded article, which comprises molding an engineering plastic molded article. According to the present invention, by forming a composite plating film in which a fluorine-based polymer substance is eutectoidally dispersed on the cavity surface, it has an excellent heat insulation effect or heat retention effect, and molding can be performed without special heat insulation of the mold. By slowing down the cooling rate of the product, the generation of thermal stress can be prevented as much as possible, and residual stress in the molded product can be reduced.
Therefore, it can be molded at a low mold temperature,
For example, there is no need to take special measures such as installing a heat insulating device in the mold, and the mold at room temperature can be used as is for molding. In addition, the mold described above has very good mold release properties, which reduces mold release resistance during mold release (demolding), resulting in extremely low distortion during mold release, and in this respect also reduces residual stress. Therefore, by employing the method of the present invention, it is possible to reliably and efficiently mold good engineering plastic molded products without cracks or the like. Further, according to the present invention, it is possible to omit or simplify the need to keep the mold warm, resulting in good workability. The present invention will be explained in more detail below. Structure of the Invention The present invention relates to a method for manufacturing an engineering plastic molded article, but the engineering plastics to which the method of the present invention can be applied include, but are not limited to, polyphenylene oxide, polycarbonate, polyacetal, Examples include polyamide, polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide, polysulfone, polyether sulfone, polyether ether ketone, polyarylate, polyetherimide, polyoxybenzylene, and the like. Among these, polyphenylene oxide, polycarbonate, polysulfon, polyether sulfon,
Polyarylate, polyetherimide, etc. are preferred, and the method of the present invention is suitably employed for producing these engineering plastic molded products. The manufacturing method of the present invention includes, as a mold to which the molten resin of the engineering plastic is supplied,
A composite plating film in which a fluorine-based polymer substance is eutectoidally dispersed is formed on the cavity surface. Here, there is no particular restriction on the material of the mold or the material of the cavity surface, and for example, ordinary materials for manufacturing molds such as steel and aluminum may be used. Further, the composite plating film formed on the cavity surface of this mold is one in which a fluorine-based polymer substance is uniformly eutectoid-dispersed in the plating film matrix. In this case, the fluorine-based polymer substances include polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-ethylene copolymer, and chlorotrifluoroethylene. Fluoroethylene-alkylene copolymer, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, vinylidene fluoride-pentafluoropropylene copolymer, and other fluororesin powders , short fibers, and fluorinated graphite particles. In addition, when using powder as the above-mentioned polymer substance, the average particle size is 0.01 to 200 μm, especially
The length is preferably 0.1 to 20 μm, and when a fibrous material is used, the length is 0.01 to 2000 μm,
In particular, it is preferably 0.1 to 60 μm. Examples of the plating film that serves as the parent phase in which the above-mentioned fluorine-based polymer substances are eutectoidally dispersed include plating films made of nickel, nickel alloys such as nickel-phosphorus alloys, iron, iron alloys, copper, and copper alloys. However, nickel and nickel alloy plating films are particularly suitable. As a method for forming such a composite plating film in which a fluorine-based polymer substance is eutectoidally dispersed in the plating film, an electroplating method or an electroless plating method may be used. A known composite plating method involves preparing a composite plating solution in which a fluorine-based polymer substance is suspended in an appropriate plating solution capable of forming a desired matrix, and performing plating using this plating solution. Can be adopted. In this case, the amount of fluorine-based polymer substance in the composite plating film to be formed is 2 to 65% by volume, especially 15 to 40% by volume, and the thickness of the plating film is 0.1 to 1000 μm, especially 5 to 30 μm. This is preferable in order to more reliably achieve the object of the present invention. The present invention uses the above-mentioned composite plating film forming mold, and supplies the above-mentioned molten resin of the engineering plastic into the mold cavity by an injection method or the like, and the mold temperature is 10-60°C, preferably 30-60°C.
Molding is carried out at 50°C. In this case, other molding conditions may be known molding conditions depending on the molding method such as injection molding, the type of plastic to be molded, the use of the molded product, etc. Furthermore, the molding material supplied to the cavity may also have appropriate components such as fillers added and kneaded in addition to the resin component. Effects of the Invention As mentioned above, the molded product obtained by employing the manufacturing method of the present invention has low residual stress and
Since it has very few defects such as cracks, the original characteristics of engineering plastics can be effectively exhibited, and therefore it is suitable for use in various industrial parts. EXAMPLES Hereinafter, the present invention will be specifically explained by showing examples and comparative examples, but the present invention is not limited to the following examples. [Example 1, Comparative Example 1] A composite plating solution in which polytetrafluoroethylene particles were uniformly dispersed in a nickel plating film was prepared by using a composite plating solution with the following composition on the steel insert cavity surface of a rib plate mold. A plating film was formed. Composite plating solution composition Nickel sulfamate 500ml / Nickel chloride 30g / Boric acid 35 Polytetrafluoroethylene 70 Dispersion aid 2 PH 4.0 Composite plating conditions Cathode current density 2A/dm 2 Bath temperature 45℃ Composite plating film Film thickness: 15 μm Composition: Contains 35 vol% polytetrafluoroethylene Next, using the above mold, polyphenylene oxide was molded at a mold temperature of 40°C using a NETSTAL75T manufactured by Sumitomo Heavy Industries, Ltd. as a molding machine. , molded product (rib plate shown in Figures 1 and 2)
After heat-treating at 90°C for 24 hours, the degree of crack generation was evaluated. The results are shown in Table 1. Note that a in the figure is a gate. Table 2 also shows the results of measuring the temperature of the molded product. Here, to evaluate cracks, observe the molded product with a 10x magnifying glass to confirm the presence or absence of cracks, and evaluate the cracks as 3 points for large cracks, 2 points for medium cracks, and 1 point for small cracks. Scored.
The temperature of the molded product was measured at the point b in FIG. 1 for the 15th shot of the molded product. For comparison, polyphenylene oxide was molded in the same manner using a steel insert cavity surface coated with ceramic and an aluminum insert, respectively, and the degree of cracking in the molded product was examined. The results are also listed in Table 1.

【表】【table】

〔実施例2、比較例2〕[Example 2, Comparative Example 2]

実施例1と同様にしてリブプレート金型のスチ
ール(SCM−4)製入子キヤビテイ面に第3表
に示す種々のポリテトラフルオロエチレン共析量
及び膜厚のニツケルめつき被膜を母相とする複合
めつき被膜を形成した。
In the same manner as in Example 1, nickel plating films with various polytetrafluoroethylene eutectoid amounts and film thicknesses shown in Table 3 were applied to the steel (SCM-4) insert cavity surface of the rib plate mold as the matrix. A composite plating film was formed.

【表】 次に、上記の金型を使用し、実施例1と同様の
成形機を用い、金型温度30℃にてポリフエニレン
オキサイド(PPO)及びポリカーボネート(PC)
の成形を行なつた。得られたPPO成形品を90℃
で24時間熱処理した後、そのクラツクの発生の程
度を実施例1と同様にして評価し、第4表に示す
結果を得た。また、PPO成形品及びPC成形品の
成形時に型温を測定し、30シヨツト後の温度上昇
度(温度差Δt)を調べてキヤビテイの断熱性の
程度を評価した。PPO成形品の成形の場合の結
果を第5表に、PC成形品の成形の場合の結果を
第6表に示す。
[Table] Next, using the above mold and the same molding machine as in Example 1, polyphenylene oxide (PPO) and polycarbonate (PC) were molded at a mold temperature of 30°C.
The molding process was carried out. The obtained PPO molded product was heated to 90℃.
After heat treatment for 24 hours, the degree of crack generation was evaluated in the same manner as in Example 1, and the results shown in Table 4 were obtained. In addition, the mold temperature was measured during molding of the PPO molded product and the PC molded product, and the degree of temperature rise (temperature difference Δt) after 30 shots was examined to evaluate the degree of heat insulation of the cavity. The results for molding PPO molded products are shown in Table 5, and the results for molding PC molded products are shown in Table 6.

【表】【table】

【表】【table】

【表】 第4表の結果より、キヤビテイ表面にポリテト
ラフルオロエチレン共析複合めつき被膜を形成す
ると耐クラツク性を大幅に向上させることがで
き、金型温度を低くしても成形品にクラツクを生
じさせることなく成形を良好に行なうことができ
ることが認められた。なお、第4表の結果は、成
形品を熱処理した後のクラツクの発生程度を調べ
た結果であるが、複合めつき被膜形成金型を使用
して成形したままでその後熱処理を行なわない成
形品にはクラツクが認められなかつた。 以上のように、複合めつき被膜の形成により耐
クラツク性を顕著に向上させることができる理由
は、種々考えられるが、その一つとして第5,6
表に示したように複合めつき被膜形成金型の断熱
効果が高く、射出された樹脂が金型キヤビテイ面
に接した際の樹脂の急激な冷却過程が緩和され、
内部残留応力が緩和されるためであると考えられ
た。また、PC成形品の偏光写真によると、複合
めつき被膜形成金型を用いた成形品の場合には突
出ピン付近の残留応力がかなり低下していること
が認められ、それ故複合めつき被膜形成金型を用
いることにより離型抵抗を減少させ得ることが認
められるが、このような離型抵抗の減少による離
型時の歪の減少も耐クラツク性向上の一つの原因
であると考えられた。
[Table] From the results in Table 4, forming a polytetrafluoroethylene eutectoid composite plating film on the cavity surface can greatly improve crack resistance, and the molded product will not crack even if the mold temperature is lowered. It was found that molding could be carried out satisfactorily without causing any problems. The results in Table 4 are the results of examining the degree of crack occurrence after heat treatment of molded products, but the results are for molded products that were molded using a composite plating film forming mold without subsequent heat treatment. No cracks were recognized. As mentioned above, there are various possible reasons why the formation of a composite plating film can significantly improve crack resistance.
As shown in the table, the heat insulation effect of the composite plating film forming mold is high, and the rapid cooling process of the injected resin when it comes into contact with the mold cavity surface is alleviated.
This was thought to be due to the relaxation of internal residual stress. In addition, according to polarized photographs of PC molded products, it was observed that the residual stress near the protruding pins was considerably reduced in the case of molded products using composite plating film forming molds, and therefore the composite plating film It has been recognized that mold release resistance can be reduced by using a forming mold, and the reduction in strain during mold release due to such a reduction in mold release resistance is also thought to be one of the causes of improved crack resistance. Ta.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はそれぞれクラツク発生の程
度を調べるために用いた成形品を示し、第1図は
裏面側の斜視図、第2図は表面側の斜視図であ
る。
FIGS. 1 and 2 each show a molded product used to examine the degree of crack occurrence, with FIG. 1 being a perspective view of the back side, and FIG. 2 being a perspective view of the front side.

Claims (1)

【特許請求の範囲】[Claims] 1 キヤビテイ面にフツ素系高分子物質を分散共
析させた複合めつき被膜を形成した金型のキヤビ
テイに溶融したエンジニアリングプラスチツク成
形材料を供給し、金型温度10〜60℃においてエン
ジニアリングプラスチツク成形品を成形すること
を特徴とするエンジニアリングプラスチツク成形
品の製造方法。
1. A molten engineering plastic molding material is supplied to the cavity of a mold in which a composite plating film in which a fluorine-based polymer substance is dispersed and co-deposited is formed on the cavity surface, and an engineering plastic molded product is formed at a mold temperature of 10 to 60°C. A method for manufacturing an engineering plastic molded product, characterized by molding.
JP20497084A 1984-09-28 1984-09-28 Manufacture of engineering plastic molded part Granted JPS6179611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20497084A JPS6179611A (en) 1984-09-28 1984-09-28 Manufacture of engineering plastic molded part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20497084A JPS6179611A (en) 1984-09-28 1984-09-28 Manufacture of engineering plastic molded part

Publications (2)

Publication Number Publication Date
JPS6179611A JPS6179611A (en) 1986-04-23
JPS642487B2 true JPS642487B2 (en) 1989-01-17

Family

ID=16499309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20497084A Granted JPS6179611A (en) 1984-09-28 1984-09-28 Manufacture of engineering plastic molded part

Country Status (1)

Country Link
JP (1) JPS6179611A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06246797A (en) * 1992-12-28 1994-09-06 Nippon Steel Chem Co Ltd Prevention of generation of sink in appearance surface of molded product and injection mold
JP3382281B2 (en) * 1993-01-22 2003-03-04 株式会社太洋工作所 Mold for thermoplastic resin injection molding
WO2001060591A1 (en) * 2000-02-15 2001-08-23 Dow Global Technologies Inc. Mold for reaction injection molding and reaction injection molding process
JP4887041B2 (en) * 2005-12-28 2012-02-29 株式会社リコー High durability heat insulation mold

Also Published As

Publication number Publication date
JPS6179611A (en) 1986-04-23

Similar Documents

Publication Publication Date Title
EP0610002B1 (en) Mold for injection molding of thermoplastic resin
US5489410A (en) Molding thermoplastic materials for producing textured articles
US5075065A (en) Method for manufacturing of cast films at high productivity
KR100763327B1 (en) Heat insulating stamper structure
JPH0457175B2 (en)
KR940009877B1 (en) Insulated mold structure with multilayered metal skin
JPS642487B2 (en)
WO2011030707A1 (en) Process for producing injection-molded article
JPS642488B2 (en)
JPS6258289B2 (en)
WO2012121066A1 (en) Production method for injection-molded article
WO2013035443A1 (en) Method for producing resin composite molded body and resin composite molded body
JP3305736B2 (en) Mold for molding and method of manufacturing the same
JPH06270154A (en) Resin molding die and manufacture of high functional resin molded form
JP2794184B2 (en) Graphite mold for plastic molding
JP3363500B2 (en) Mold and injection molding method using the same
JPWO2011158673A1 (en) Mold manufacturing method
JP4255045B2 (en) Manufacturing method of molded products
JPH0236917A (en) Injection molding method for fluororesin
JP3268067B2 (en) Mold for synthetic resin molding
Jayanthi et al. Stereolithographic injection molds for direct tooling
JP2000158505A (en) Method for molding polyacetal resin
JP4887041B2 (en) High durability heat insulation mold
CN112829184B (en) Preparation method of BMC composite metal piece
JP3676597B2 (en) Spool valve