JPS642238B2 - - Google Patents

Info

Publication number
JPS642238B2
JPS642238B2 JP55101289A JP10128980A JPS642238B2 JP S642238 B2 JPS642238 B2 JP S642238B2 JP 55101289 A JP55101289 A JP 55101289A JP 10128980 A JP10128980 A JP 10128980A JP S642238 B2 JPS642238 B2 JP S642238B2
Authority
JP
Japan
Prior art keywords
water level
reactor
control
drainage
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55101289A
Other languages
Japanese (ja)
Other versions
JPS5726795A (en
Inventor
Juichi Tokawa
Kaoru Shinohara
Koichi Izumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10128980A priority Critical patent/JPS5726795A/en
Publication of JPS5726795A publication Critical patent/JPS5726795A/en
Publication of JPS642238B2 publication Critical patent/JPS642238B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Control Of Non-Electrical Variables (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は沸騰水型原子力発電所における原子炉
水位制御装置に係り、特に原子炉の起動時、停止
時、及び原子炉スクラム時の復旧操作時にも原子
炉水位の自動調整を可能にした原子炉水位制御装
置に関する。 従来の沸騰水型原子力発電所には、原子炉運転
中の不純物を除去し、炉水の水質を適切に維持す
る目的と、原子炉の起動、停止時および燃料交換
時に発生する余剰水を原子炉系外へ排水するため
の機能を持つた原子炉冷却材浄化系が設置されて
いる。そして、原子炉が通常運転中は、給水制御
系は自動運転モードにあり、炉水位が最適に調整
されている。 第1図は従来の原子炉水位調整系を示す図で、
復水器6を出た復水は低圧復水ポンプ5、高圧復
水ポンプ4、給水ポンプ3により昇圧されたの
ち、給水調整弁2を経て原子炉1へ注入される。
原子炉通常運転時は、給水制御装置12が、自動
モードにあり、給水調整弁2を調整することによ
つて原子炉水位は自動制御されている。この時、
原子炉水は原子炉冷却材浄化系により常時規定の
水質に維持されている。すなわち、循環ポンプ7
により原子炉より送り出された原子炉水は、原子
炉冷却材浄化系熱交換器8で冷却される。さらに
浄化系過脱塩装置9により不純物を除去され、
原子炉への戻り配管、給水配管を経て原子炉へ戻
される。この時排水調整弁10は手動で全閉し、
た復水器6への連絡弁13も全閉している。 しかし、原子炉の起動、停止時には、給水系の
シートリークによる注水、制御棒駆動水圧系の冷
却水の原子炉への注水により、原子炉水位を上昇
させる余剰水が発生する。さらに、原子炉の起動
モードにおいては、給水制御弁が手動モードにあ
るときの制御棒引抜による原子炉水の昇温・昇圧
が生じ、炉水の膨張により余剰水が発生する。こ
のような場合には、運転期間中に発生する余剰水
を処理し、原子炉の炉水位を最適に制御するた
め、運転員は炉水位計を監視しながら、手動遠隔
操作を行う必要がある。すなわち、炉水位が上昇
する場合には、排水調整弁10を手動で開け、原
子炉冷却材浄化系を通して主復水器6に余剰水を
排水する。なお、同期間中に、バイパス弁開等に
よる蒸気の消費が原子炉への注水量を越えた場合
には炉水位が下降することがある。この場合にも
運転員は、排水調整弁10を調整して炉水位を制
御している。しかし、排水調整弁10を全開して
も炉水位の下降を抑えられない時には、運転員は
給水系を通して原子炉へ注水し、原子炉水位を制
御している。 原子炉スクラム時の復旧操作等の緊急時は別に
考えても、原子炉起動及び停止運転時の前述の操
作はかなり頻度も多く、炉水位の手動制御のため
に運転員がひとり専従で必要となる。また、これ
らの操作を誤ると、通常の起動運転中に原子炉は
スクラムすることもあり、このため原子力発電所
の稼動率に影響を与えることになる。 本発明は、以上の事情に鑑みてなされたもの
で、その目的とするところは、原子炉の起動、停
止時、及びスクラム後の復旧運転時等のごとく、
給水制御系が手動モードである時にも、原子炉水
位を最適かつ自動的に制御することのできる原子
炉水位制御装置を得ることにある。 本発明の装置は、原子炉水位が規定の値をこえ
て変化したときき、給水調整弁及び排水調整弁の
一方又は双方の開度を自動制御して、原子炉水位
を調整する機能を備えたことを特徴としている。 以下、本発明を実施例により詳細に説明する。
第2図は本発明の一実施例を示す図で、給水制御
系を自動運転モードに入れられないような、原子
炉起動運転、通常停止、及び原子炉スクラム復旧
後の調整運転の際等の原子炉の水位制御には、従
来と同様に原子炉冷却材浄化系を炉水水質の維持
とともに余剰水の調整用として使用する。 第2図において、原子炉水位制御部16は、電
子計算機19及びアナログメモリ18により構成
され、原子炉水位検出器11、原子炉圧力検出器
14、給水ポンプ吐出圧力検出器15及び排水流
量検出器24のプラント信号を取り込み、給水調
整弁2及び排水調整弁10の開度演算を行なう。
さらに、演算結果に基づき、前記給水調整弁2及
び排水調整弁10の開度を制御し、原子炉水位が
適正に保たれる。この時、復水器6への連絡弁1
3は開けた状態にしておく。また、給水調整弁2
の制御は、モード切替スイツチ17により、原子
炉水位制御部16によるものと、従来の給水制御
装置12によるものとの切替ができる構成とされ
ている。 電子計算機19は、入力された前記プラント信
号の合理性チエツク、平均化、フイルタ処理等を
行なう入力信号処理部20、処理された信号に基
づき給水調整弁2及び排水調整弁10の開度演算
を行なう制御演算部21、制御部16の異常動作
のの監視、プラント側の異常動作の監視を行な
い、異常を検出した時には制御部16による炉水
位制御の停止を要求する監視診断部22、及び制
御演算部21での演算結果によりアナログメモリ
18の制御を行なう出力信号処理部23より構成
されている。 この電子計算機19は、前述のプラント信号を
入力する以外に、表1に示すような水位レベル設
定値を用いて前記2つの調整弁の開度を演算す
る。
The present invention relates to a reactor water level control device in a boiling water nuclear power plant, and in particular to a nuclear reactor water level control system that enables automatic adjustment of the reactor water level during reactor startup, shutdown, and recovery operations during reactor scram. Related to water level control device. Conventional boiling water nuclear power plants have two purposes: to remove impurities during reactor operation and maintain appropriate water quality in the reactor water, and to collect surplus water generated during reactor startup, shutdown, and fuel exchange. A reactor coolant purification system is installed that has the function of discharging water outside the reactor system. During normal operation of the reactor, the water supply control system is in automatic operation mode, and the reactor water level is optimally adjusted. Figure 1 shows a conventional reactor water level adjustment system.
Condensate exiting the condenser 6 is pressurized by a low-pressure condensate pump 5, a high-pressure condensate pump 4, and a feed water pump 3, and then is injected into the reactor 1 via a feed water regulating valve 2.
During normal operation of the reactor, the feed water control device 12 is in automatic mode, and the reactor water level is automatically controlled by adjusting the feed water regulating valve 2. At this time,
Reactor water is always maintained at specified water quality by the reactor coolant purification system. That is, the circulation pump 7
The reactor water sent out from the reactor is cooled by the reactor coolant purification system heat exchanger 8. Furthermore, impurities are removed by the purification system over-desalination equipment 9,
The water is returned to the reactor via return piping and water supply piping. At this time, the drainage regulating valve 10 is fully closed manually,
The communication valve 13 to the condenser 6 is also fully closed. However, when a nuclear reactor is started or shut down, excess water is generated that raises the reactor water level due to water injection due to sheet leakage in the water supply system and cooling water from the control rod drive hydraulic system into the reactor. Furthermore, in the reactor start-up mode, the temperature and pressure of the reactor water increases due to control rod withdrawal when the water supply control valve is in the manual mode, and surplus water is generated due to expansion of the reactor water. In such cases, operators must perform manual remote control while monitoring the reactor water level gauge in order to treat excess water generated during operation and optimally control the reactor water level. . That is, when the reactor water level rises, the drain control valve 10 is manually opened to drain excess water to the main condenser 6 through the reactor coolant purification system. Additionally, during the same period, if steam consumption due to bypass valve opening exceeds the amount of water injected into the reactor, the reactor water level may drop. In this case as well, the operator controls the reactor water level by adjusting the drainage regulating valve 10. However, when the drop in the reactor water level cannot be suppressed even if the drainage control valve 10 is fully opened, the operator injects water into the reactor through the water supply system to control the reactor water level. Even if we do not consider emergencies such as recovery operations during reactor scrams, the above-mentioned operations during reactor startup and shutdown operations are quite frequent and require one full-time operator to manually control the reactor water level. Become. Furthermore, if these operations are incorrectly performed, the reactor may scram during normal startup operation, which will affect the operating rate of the nuclear power plant. The present invention has been made in view of the above circumstances, and its purpose is to provide the following:
An object of the present invention is to obtain a reactor water level control device capable of optimally and automatically controlling the reactor water level even when a water supply control system is in manual mode. The device of the present invention has a function of automatically controlling the opening degree of one or both of the water supply regulating valve and the drainage regulating valve to adjust the reactor water level when the reactor water level changes beyond a specified value. It is characterized by Hereinafter, the present invention will be explained in detail with reference to Examples.
Figure 2 is a diagram showing an embodiment of the present invention, and is used during reactor start-up operation, normal shutdown, and adjustment operation after reactor scram recovery, etc., when the feed water control system cannot be put into automatic operation mode. For reactor water level control, the reactor coolant purification system is used to maintain reactor water quality and to adjust surplus water, as in the past. In FIG. 2, the reactor water level control unit 16 is composed of an electronic computer 19 and an analog memory 18, and includes a reactor water level detector 11, a reactor pressure detector 14, a water pump discharge pressure detector 15, and a drainage flow rate detector. 24 plant signals are taken in, and the opening degrees of the water supply regulating valve 2 and the drainage regulating valve 10 are calculated.
Further, based on the calculation results, the opening degrees of the water supply regulating valve 2 and the drainage regulating valve 10 are controlled to maintain the reactor water level appropriately. At this time, connection valve 1 to condenser 6
Leave number 3 open. In addition, water supply adjustment valve 2
The mode changeover switch 17 is configured to allow switching between control by the reactor water level control section 16 and control by the conventional water supply control device 12. The computer 19 includes an input signal processing section 20 that performs rationality checking, averaging, filter processing, etc. of the inputted plant signals, and an input signal processing section 20 that performs a rationality check, averaging, filter processing, etc. on the inputted plant signals, and an input signal processing section 20 that calculates the opening degrees of the water supply regulating valve 2 and the drainage regulating valve 10 based on the processed signals. a control calculation unit 21 that performs control, a monitoring and diagnosis unit 22 that monitors abnormal operation of the control unit 16, monitors abnormal operation of the plant side, and requests the control unit 16 to stop reactor water level control when an abnormality is detected; It is composed of an output signal processing section 23 that controls the analog memory 18 based on the calculation result of the calculation section 21. In addition to inputting the above-mentioned plant signals, the computer 19 calculates the opening degrees of the two regulating valves using water level setting values as shown in Table 1.

【表】【table】

【表】 以下、電子計算機19による前記2つの調整弁
2,10の開度演算方式例を、第3図の水位制御
概念図及び第4A図〜第4C図のフローチヤート
を用いて詳細に説明する。ただし、第4A図〜第
4C図では、目標水位レベルLoよりも検出水位
Lxが大きい時のみを示しており、逆の場合は省
略されているが、そのフローは全く同様である。 まず、第4A図において、後述する弁開度計算
が必要になつた時にすぐ使えるように、ステツプ
400において時点iの水位変化率(dL/dt)i
〔mm/sec〕を、現時点及び過去3点の水位Lxの
値Li、Li-1、……、Li-3〔mm)から直線回帰法に
より算出する; (dL/dt)i≒3Li+Li-1−Li-2−3Li-3/10Δt……(1) ただしΔt〔sec〕は水位Lxのサンプリング同期
である。 次いで、ステツプ401において、制御モードを
定める水位偏差εLを εL=Lx−Lo〔mm〕 ……(2) により算出する。 ここで、第3図の最初の時点のように(LL<)
Lx<LHであると、この時は高水位修正操作中の
フラグFHはオンでないとするとステツプ402か
らステツプ403の判定により第4B図のステツプ
408へ移る。さらにここでフラグオンでないので
第4C図のステツプ413へとび、同じ理由でフロ
ー出口へとび、1回の制御動作を終る。すなわち
LL<Lx<LHにある間は、水位制御装置16は弁
開度の制御を何も行なわない。 原子炉水位Lxが上昇し、第3図の時刻t1のよ
うにLx>LHになると、ステツプ403の判定によつ
てステツプ404へと進む。ここでは、制御定数K1
〜K3〔mm3/Kg〕、水位下降目標時間TS〔sec〕を用
いて、水位をLoに回復するのに必要な排水量WD1
〔Kg/sec〕及び水位をLoに維持するのに必要な
排水量WD2〔Kg/sec〕を によつて求める。 さらにステツプ405へ進むと、まずステツプ404
で求めた要求排水量から弁CV値を次式により求
める; ただしWDO〔Kg/sec〕は現在の排水量、PR
〔Kg/cm2・g〕は原子炉圧力、Pcvw〔Kg/cm2
g〕は原子炉冷却材浄化系により付加される圧
力、Kcは制御定数である。さらに弁CV値と弁開
度XD〔%〕との関係はあらかじめXD=f(CV)の
形でわかつているので、水位Loに回復するに要
する弁開度操作量XD1〔%〕、及び水位Loを維持す
るに必要な弁開度操作量XD2〔%〕が XD1=f(CV1)−XD0 XD2=f(CV2)−f(CV1) ……(5) で求められる。ただしXD0は現在の弁開度であ
る。 この計算が終つてステツプ406で排水調整弁1
0をXD1だけ開く指令を出力し、ステツプ407で
高水位修正操作中のプラグFHをオンにする。こ
のFHオンによつてステツプ408からステツプ409
へ進むが、水位LxがL0より大きい間は第4C図
のステツプ413を径てフローは終了する。すなわ
ち高水位修正操作が続けられる。 この修正操作によつて水位Lxが第3図の時刻
t1以後のように低下し、時刻t2でL0に達すると、
ステツプ410(第4B図)からステツプ411へ進み、
ここで弁開度をXD2だけ閉じる指令が出力され、
これによつて水位LxはLoに維持され、フラグ
FHはオフにされる(ステツプ412)。これ以後は
t<t1の時と同じく何の制御も行なわれない。 第3図の時刻t3,t4等における水位低下時の動
作も同様である。 次に、第3図の時刻t5においてLx=LLとなり、
このため排水調整弁10が全閉(XD=0%)に
なるよう制御されても、蒸気の消費が多くて水位
Lxが下降し、時刻t6で排水制御不能低水位検出
レベルLLLに達したとすると、これは第4C図の
ステツプ415に対応する低水位フロー(図では省
略、Lx<LLLの条件)ステツプで検出され、ステ
ツプ416、417、418に対応する低水位フローの各
ステツプで給水調整弁2を開度XFCVだけ大きく
し、かつ低水位修正操作中のフラグFLをオフと
する。このFLオフは、ステツプ403〜407、409〜
412に対応する制御をせずに、ステツプ414、415
に対応する判定(Lx>LL、Lx<LLL)をくり返
して給水を続けるためである。また、上記の給水
調整弁2の1回の操作開度XFCVは、起動用給水
調整弁を適用した場合、レンジアビリテイの関係
から十分連続使用可能な最小開度として5%と選
定する。 この給水が続くと水位Lxは目標レベルLoをこ
えて上昇し、時刻t7でLHに達する。そうすると、
高水位修正のフローである第4A図のステツプ403
がこれを検出し、ステツプ404〜406の排水調整弁
10を開ける開度制御が行なわれる。これによつ
て水位Lxが低下すれば、それからは第3図の時
刻t1〜t2のような前述の制御に入る。しかしもし
弁10の開度XDが100%(全開)になつても水位
Lxが上昇し、時刻t3で排水制御不能高水位検出
レベルLHHに達すると、これは第4C図のステツ
プ415で検出されて、ステツプ416、417で給水調
整弁2の弁が開度XFCVだけ閉じられ(もし1回
で全閉とならなければ何回かの制御で全閉にな
る)、水位Lxは下降する。この時はフラグFHは
オフになつているから水位はそのまま低下し、時
刻t9でLLに達し、これ以後は時刻t3以降と同様な
制御に入る。 以上のように、本発明では、排水調整弁10の
みの制御で原子炉水位を制御できなくなつた時に
も、給水調整弁2を制御して、再度、排水調整弁
10の開度制御が可能となるような領域に移行し
制御することを特徴としている。これは、排水調
整弁の制御を優先させることによつて、給水調整
弁制御による原子炉への悪影響を極力避けるよう
にしたものである。 以上の説明から明らかなように、本発明によれ
ば、原子炉の起動、停止時及びスクラム後の復旧
運転時等のごとく、給水制御系が手動モードにあ
る時にも原子炉水位を最適かつ自動的に制御する
ことができ、原子力発電所の稼動率の向上が計れ
る。
[Table] Hereinafter, an example of how the computer 19 calculates the openings of the two regulating valves 2 and 10 will be explained in detail using the water level control conceptual diagram in FIG. 3 and the flowcharts in FIGS. 4A to 4C. do. However, in Figures 4A to 4C, the detected water level is lower than the target water level level Lo.
Only the case where Lx is large is shown, and the reverse case is omitted, but the flow is exactly the same. First, in Fig. 4A, the steps are shown so that they can be used immediately when the valve opening calculation described later becomes necessary.
Water level change rate (dL/dt) i at time i at 400
[mm/sec] is calculated by the linear regression method from the current and past three water level Lx values Li, Li -1 , ..., Li -3 [mm]; (dL/dt) i≒3Li + Li -1 −Li −2 −3Li −3 /10Δt……(1) However, Δt [sec] is the sampling synchronization of the water level Lx. Next, in step 401, the water level deviation ε L that determines the control mode is calculated by ε L =Lx−Lo [mm] (2). Here, as at the first point in Figure 3, (L L <)
If Lx< LH , and assuming that the high water level correction operation flag FH is not on at this time, the judgment in steps 402 and 403 will lead to the step in FIG. 4B.
Move to 408. Furthermore, since the flag is not on here, the process jumps to step 413 in FIG. 4C, and for the same reason, jumps to the flow outlet, completing one control operation. i.e.
While L L <Lx <L H , the water level control device 16 does not control the valve opening. When the reactor water level Lx rises and becomes Lx> LH as at time t1 in FIG. 3, the process proceeds to step 404 based on the determination at step 403. Here, the control constant K 1
Using ~K 3 [mm 3 /Kg] and water level lowering target time T S [sec], the displacement W D1 required to restore the water level to Lo
[Kg/sec] and the displacement W D2 [Kg/sec] required to maintain the water level at Lo. Find it by. When proceeding further to step 405, first step 404
Calculate the valve C V value from the required displacement determined by the following formula; However, W DO [Kg/sec] is the current displacement, P R
[Kg/cm 2・g] is the reactor pressure, Pcvw [Kg/cm 2
g] is the pressure applied by the reactor coolant purification system, and Kc is the control constant. Furthermore, since the relationship between the valve C V value and the valve opening X D [%] is known in advance in the form X D = f (C V ), the valve opening manipulated variable X D1 [%] required to recover the water level Lo. %], and the valve opening operation amount X D2 [%] required to maintain the water level Lo is X D1 = f ( CV1 ) - X D0 (5). However, X D0 is the current valve opening. After this calculation is completed, in step 406, the drain control valve 1 is
Outputs a command to open 0 by X D1 , and in step 407 turns on plug FH during high water level correction operation. This FH ON causes steps 408 to 409.
However, while the water level Lx is greater than L0 , the flow ends at step 413 in FIG. 4C. In other words, the high water level correction operation continues. By this correction operation, the water level Lx will be adjusted to the time shown in Figure 3.
It decreases as after t 1 and reaches L 0 at time t 2 ,
Proceeding from step 410 (Figure 4B) to step 411,
Here, a command is output to close the valve opening by X D2 ,
This keeps the water level Lx at Lo and flags
FH is turned off (step 412). After this, no control is performed as in the case of t< t1 . The operation when the water level drops at times t3 , t4, etc. in FIG. 3 is similar. Next, at time t 5 in Figure 3, Lx = L L ,
For this reason, even if the drainage control valve 10 is controlled to be fully closed (X D = 0%), the water level will drop due to high steam consumption.
Assuming that Lx decreases and reaches the drainage uncontrollable low water level detection level LLL at time t6 , this is the low water level flow corresponding to step 415 in Figure 4C (omitted from the diagram, condition of Lx < LLL ) At each step of the low water level flow detected in step 416, 417, and 418, the water supply regulating valve 2 is increased by the opening degree XFCV, and the low water level correction operation flag FL is turned off. This FL off steps 403~407, 409~
Steps 414 and 415 without the control corresponding to 412
This is to continue water supply by repeating the judgment corresponding to (Lx>L L , Lx<L LL ). Further, the single operation opening XFCV of the water supply adjustment valve 2 is selected to be 5% as the minimum opening that can be used continuously from the viewpoint of rangeability when the startup water supply adjustment valve is applied. As this water supply continues, the water level Lx rises beyond the target level Lo and reaches LH at time t7 . Then,
Step 403 in Figure 4A, which is the flow of high water level correction
detects this, and the opening degree control for opening the drainage regulating valve 10 is performed in steps 404-406. If the water level Lx decreases as a result of this, the above-mentioned control from time t 1 to t 2 in FIG. 3 is started. However, even if the opening degree X D of valve 10 reaches 100% (fully open), the water level
When Lx increases and reaches the drainage uncontrollable high water level detection level LHH at time t3 , this is detected at step 415 in FIG. (If it is not fully closed at one time, it will be fully closed by controlling several times), and the water level Lx decreases. At this time, the flag FH is off, so the water level continues to fall, reaching L L at time t9 , and from then on, the same control as after time t3 is entered. As described above, in the present invention, even when the reactor water level cannot be controlled by controlling only the drainage regulating valve 10, it is possible to control the opening of the drainage regulating valve 10 again by controlling the water supply regulating valve 2. It is characterized by shifting to and controlling the area where . This is intended to avoid as much as possible the adverse effects on the reactor caused by the control of the water supply regulating valve by giving priority to the control of the drainage regulating valve. As is clear from the above description, according to the present invention, the reactor water level can be adjusted optimally and automatically even when the water supply control system is in manual mode, such as during reactor startup, shutdown, and recovery operation after scram. It is possible to control the nuclear power plant effectively, and improve the operation rate of nuclear power plants.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の原子炉水位制御装置を示す図、
第2図は本発明の一実施例を示す図、第3図は本
発明による水位制御概念図、第4A図〜第4C図
は水位が上昇した時の計算機処理手順を示すフロ
ーチヤートである。 1……原子炉、2……給水調整弁、6……復水
器、10……排水調整弁、11……水位検出器、
16……水位制御部、19……電子計算機、21
……制御演算部。
Figure 1 shows a conventional reactor water level control system;
FIG. 2 is a diagram showing an embodiment of the present invention, FIG. 3 is a conceptual diagram of water level control according to the present invention, and FIGS. 4A to 4C are flowcharts showing computer processing procedures when the water level rises. 1... Nuclear reactor, 2... Water supply regulating valve, 6... Condenser, 10... Drainage regulating valve, 11... Water level detector,
16...Water level control unit, 19...Electronic computer, 21
...Control calculation section.

Claims (1)

【特許請求の範囲】 1 沸騰水型原子力発電所の原子炉冷却材浄化設
備に設けた排水調整弁と、原子炉給水設備に設け
た給水調整弁と、原子炉水位検出器と、該検出器
の検出水位を取込み上記排水調整弁及び給水調整
弁の弁制御を行い、目標値に原子炉水位を設定す
る水位制御部と、より成ると共に、該水位制御部
は、 上記目標値を含む第1の設定範囲を前記検出水
位が越えた時には排水制御のみによつて水位調整
すべく排水調整弁の弁制御を行わせ、該排水制御
のみによる水位制御が不可能となつたことを示す
第2の設定範囲を上記検出水位がこえた時には、
排水調整弁の制御を一時中断し、給水制御によつ
て原子炉水位を上記第1の設定範囲に移すべく給
水調整弁の制御を行わせ、この給水調整弁の制御
により、原子炉水位が上記第1の設定範囲に移つ
たのちに、上記排水制御によつて水位調整をすべ
く排水調整弁の制御を行わせる構成を有する、 ことを特徴とする原子炉水位制御装置。
[Scope of Claims] 1. A drainage control valve provided in a reactor coolant purification facility of a boiling water nuclear power plant, a water supply control valve provided in a reactor water supply facility, a reactor water level detector, and the detector. a water level control section that takes in the detected water level and controls the drainage adjustment valve and the water supply adjustment valve, and sets the reactor water level to the target value; When the detected water level exceeds the set range, the valve control of the drainage regulating valve is performed to adjust the water level only by the drainage control, and a second condition indicating that the water level cannot be controlled only by the drainage control When the above detection water level exceeds the setting range,
The control of the drainage regulating valve is temporarily suspended, and the water supply regulating valve is controlled to move the reactor water level to the above-mentioned first setting range by water supply control. A nuclear reactor water level control device having a configuration in which, after moving to a first setting range, a drainage adjustment valve is controlled to adjust the water level by the drainage control.
JP10128980A 1980-07-25 1980-07-25 Nuclear reactor water level control device Granted JPS5726795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10128980A JPS5726795A (en) 1980-07-25 1980-07-25 Nuclear reactor water level control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10128980A JPS5726795A (en) 1980-07-25 1980-07-25 Nuclear reactor water level control device

Publications (2)

Publication Number Publication Date
JPS5726795A JPS5726795A (en) 1982-02-12
JPS642238B2 true JPS642238B2 (en) 1989-01-17

Family

ID=14296682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10128980A Granted JPS5726795A (en) 1980-07-25 1980-07-25 Nuclear reactor water level control device

Country Status (1)

Country Link
JP (1) JPS5726795A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58176592A (en) * 1982-04-12 1983-10-17 株式会社日立製作所 Reactor water level control device
US4589364A (en) * 1982-12-09 1986-05-20 Pegasus Sewing Machine Mfg. Co. Ltd. Sewing machine top feed

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5479392A (en) * 1977-12-05 1979-06-25 Toshiba Corp Controller of reactor water-level

Also Published As

Publication number Publication date
JPS5726795A (en) 1982-02-12

Similar Documents

Publication Publication Date Title
DE112013001671B4 (en) Method and apparatus for safety operation of a steam extraction turbine, which is used for a power plant
CN109524140B (en) Nuclear power station primary loop abnormal state tracking and monitoring method and system
CN103982891B (en) Steam Generators in NPP drainage and flow control methods thereof
CN110689973A (en) Nuclear power station primary circuit pressure reduction control method under heat transfer pipe fracture accident
DE69825858T2 (en) STEAM COOLING DEVICE FOR GAS TURBINE
DE69505209T3 (en) Overload protection system set in transient mode
JP2000019287A (en) Control system of nuclear power plant
JPS642238B2 (en)
US4343682A (en) Plant having feed water heating means for nuclear units during plant start up and method of operating the same
JPS6124679B2 (en)
CN107543141A (en) Steam generator analogue body water supply system and control method during increasing temperature and pressure
JP2599026B2 (en) Steam drum water level control method when water supply control valve is switched
JP2758250B2 (en) Feed water heater drain water level control device
JP3039874B2 (en) Reactor isolation cooling system
CN116989265A (en) Auxiliary steam self-supply system and control method thereof
JPH02192501A (en) Water feed control device during fcb of drum boiler
JPS6356441B2 (en)
JPH07229995A (en) Pressure controller at the cold hot condition of reactor pressure vessel
JP2763178B2 (en) Feed water heater drain water level control device
GB2538567A (en) Method and system for controlling output of nuclear power plants
JPS63295997A (en) Warming control apparatus of plant
JPS63278101A (en) Process controller
JPH07109284B2 (en) Nuclear plant control equipment
JPS634160B2 (en)
JPH09222489A (en) Method and device for automatic power regulation of boiling water reactor