JPS642124B2 - - Google Patents

Info

Publication number
JPS642124B2
JPS642124B2 JP835881A JP835881A JPS642124B2 JP S642124 B2 JPS642124 B2 JP S642124B2 JP 835881 A JP835881 A JP 835881A JP 835881 A JP835881 A JP 835881A JP S642124 B2 JPS642124 B2 JP S642124B2
Authority
JP
Japan
Prior art keywords
catalyst
titanium
weight
polymerization
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP835881A
Other languages
Japanese (ja)
Other versions
JPS57121003A (en
Inventor
Shinichi Yoshida
Hitoshi Futamura
Takanori Kajiwara
Makoto Kono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP835881A priority Critical patent/JPS57121003A/en
Publication of JPS57121003A publication Critical patent/JPS57121003A/en
Publication of JPS642124B2 publication Critical patent/JPS642124B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

【発明の詳现な説明】 〔〕 発明の背景 技術分野 本発明は、いわゆるチヌグラヌ型觊媒を䜿甚す
るオレフむン重合䜓の補造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [1] Background Technical Field of the Invention The present invention relates to a method for producing an olefin polymer using a so-called Ziegler type catalyst.

本発明によれば、新しいチヌグラヌ型觊媒によ
るオレフむン重合䜓の補造方法が提䟛される。こ
の觊媒は高掻性であり、又埗られるオレフむン重
合䜓は高床の立䜓芏則性を有し、重合䜓粉末の粒
床分垃が極めお良奜なものが埗られる。
According to the present invention, a method for producing an olefin polymer using a new Ziegler type catalyst is provided. This catalyst has high activity, and the olefin polymer obtained has a high degree of stereoregularity, and the particle size distribution of the polymer powder is extremely good.

先行技術 チタンハロゲン化合物ず有機アルミニりム化合
物を組合せおなる觊媒によ぀おオレフむン重合䜓
を補造するこずは埓来より知られるが、近幎この
ハロゲン化チタン、特に四塩化チタンを皮々の担
䜓、特に磚砕されたハロゲン化マグネシりムなど
の担䜓に担持させお䜿甚するこずが特公昭39―
12105号公報蚘茉の発明においお怜蚎されおいる。
PRIOR ART It has been known for a long time to produce olefin polymers using a catalyst consisting of a combination of a titanium halide compound and an organoaluminum compound. It was proposed in the 1970s to be used on a carrier such as magnesium halide.
This is discussed in the invention described in Publication No. 12105.

たた、特公昭46―7583号公報によれば、四塩化
チタンをグリニア詊薬で還元した耇合䜓も高い掻
性を持぀こずが報告されおおり、この耇合䜓䞭に
含たれるハロゲン化マグネシりムはハロゲン化チ
タンの掻性を向䞊させる助觊媒的効果も発揮され
おいるものず理解される。
Furthermore, according to Japanese Patent Publication No. 46-7583, it has been reported that a complex obtained by reducing titanium tetrachloride with a Grignard reagent also has high activity, and the magnesium halide contained in this complex is It is understood that it also exerts a cocatalytic effect to improve the activity of .

このようにハロゲン化マグネシりムずチタンハ
ロゲン化合物ずの耇合䜓は皮々の方法により合成
できるが、これを有機アルミニりム化合物ず組合
せおオレフむン、特にプロピレン、を重合させる
ず重合掻性面においおすぐれた効果を発揮するこ
ずができるが、生成オレフむン重合䜓の立䜓芏則
性が極めお䜎いので、このたたではオレフむン重
合䜓補造甚觊媒ずしおの実甚䟡倀はほずんどな
い。
The composite of magnesium halide and titanium halide compound can be synthesized by various methods, but when combined with an organoaluminum compound to polymerize olefins, especially propylene, it exhibits excellent effects in terms of polymerization activity. However, since the stereoregularity of the produced olefin polymer is extremely low, it has almost no practical value as a catalyst for producing olefin polymers as it is.

䞀方、チタンハロゲン化合物ず有機アルミニり
ム化合物ずを組合せおなる觊媒を改倉しお、生成
オレフむン重合䜓の立䜓芏則性を向䞊させるため
これら觊媒成分に第䞉の成分を加えるこずが広く
怜蚎されおいる。そのなかでも特に効果の高い第
䞉成分ずしお、有機酞゚ステル、特に安息銙酞゚
チル、―トルむル酞゚チル、―アニス酞゚チ
ル等のαβ―䞍飜和カルボン酞゚ステル、を甚
いる方法が特公昭46―12140号、同46―21731号、
同47―25706号公報等においお知られる。
On the other hand, it has been widely considered to modify a catalyst formed by combining a titanium halogen compound and an organoaluminum compound and add a third component to these catalyst components in order to improve the stereoregularity of the produced olefin polymer. Among these, a method using organic acid esters, especially α,β-unsaturated carboxylic acid esters such as ethyl benzoate, p-ethyl toluate, and p-ethyl anisate, is a method that is particularly effective as a third component. No. 46-12140, No. 46-21731,
It is known from Publication No. 47-25706, etc.

これらの二皮類の先行技術を組合せた觊媒、即
ち、ハロゲン化マグネシりム、チタンハロゲン化
合物、有機第䞉成分および有機アルミニりム化合
物よりなる觊媒、を埗るこずも怜蚎されおいる。
しかし、このような觊媒により補造されるオレフ
むン重合䜓は、觊媒の掻性および立䜓芏則性が十
分に高く、重合操䜜埌に觊媒を分解し陀去する工
皋を省略又は簡略化でき、その補造コストを䜎枛
させるこずができるずしお期埅されおいるが、実
際には䞊蚘の課題を十分に満足させ埗る技術は未
だ提䟛されおいない。
It is also being considered to obtain a catalyst that combines these two types of prior art, ie, a catalyst consisting of a magnesium halide, a titanium halide compound, an organic third component, and an organoaluminium compound.
However, the olefin polymer produced using such a catalyst has sufficiently high catalyst activity and stereoregularity, and the process of decomposing and removing the catalyst after the polymerization operation can be omitted or simplified, reducing its production cost. However, in reality, no technology has yet been provided that can fully satisfy the above-mentioned problems.

たた、埓来より觊媒成分ずしお甚いられるチタ
ンハロゲン化合物䞭のハロゲン原子は、匷い酞性
を有し、生成オレフむン重合䜓が重合操䜜埌の造
粒、成型などの各埌凊理工皋に甚いる機噚に察し
お匷い腐食性を発揮するこずから、生成オレフむ
ン重合䜓䞭のハロゲン原子の濃床は䜎い方が良い
こず、䞊びに重合時の掻性䞭心はチタン化合物で
あるずいう定説に䟝存しお、チタンハロゲン化合
物圓りのオレフむン重合䜓収率を向䞊させるこず
によ぀お生成オレフむン重合䜓䞭のハロゲン原子
の濃床を䜎䞋させるこずにのみ努力しおきた。
In addition, the halogen atoms in titanium halogen compounds conventionally used as catalyst components have strong acidity, and the resulting olefin polymer is resistant to equipment used in post-processing steps such as granulation and molding after polymerization. Based on the well-established theory that the lower the concentration of halogen atoms in the produced olefin polymer is, the more corrosive it is, and that the active center during polymerization is the titanium compound. Efforts have been made only to reduce the concentration of halogen atoms in the resulting olefin polymer by increasing the coalescence yield.

しかし、觊媒䞭にはチタンハロゲン化合物の他
に担䜓たたは助觊媒ずしお甚いるハロゲン化マグ
ネシりムに由来するハロゲン原子がより倚く含た
れおおり、このハロゲン化マグネシりムに由来す
るハロゲン原子は生成オレフむン重合䜓䞭に数十
ppmから通垞数癟ppm含たれ、絶察に無芖するこ
ずができない圱響を䞎えるのである。
However, in addition to the titanium halogen compound, the catalyst contains more halogen atoms derived from the magnesium halide used as a carrier or co-catalyst, and the halogen atoms derived from the magnesium halide are present in the produced olefin polymer. dozens
It usually contains from ppm to several hundred ppm, and has an impact that cannot be ignored.

即ち、チタンハロゲン化合物䞭のハロゲン原子
は匷い酞性を有するが、觊媒䞭に含たれるチタン
原子グラムに察しお数十䞇グラムのオレフむン
重合䜓を埗るこずは可胜であるから、チタン成分
に由来する生成オレフむン重合䜓䞭のハロゲン原
子の含有量も数ppm皋床ずなり、これを陀去する
かどうかはそれほど重芁な問題ではないずも考え
られる。
That is, although the halogen atom in the titanium halogen compound has strong acidity, it is possible to obtain hundreds of thousands of grams of olefin polymer for every gram of titanium atom contained in the catalyst. The content of halogen atoms in the produced olefin polymer is also on the order of several ppm, and it is considered that whether or not to remove this is not a very important issue.

それよりもむしろ觊媒䞭に含有するハロゲン化
マグネシりム、特に塩化マグネシりムは鉄の最も
有効な腐食剀の䞀぀ずしお広く知られおおり、チ
タンハロゲン化合物同様、生成オレフむン重合䜓
䞭にそのハロゲン原子が残存するこずが望たしく
ない化合物である。
Rather, the magnesium halides, especially magnesium chloride, contained in the catalyst are widely known as one of the most effective corrosive agents for iron, and like titanium halogen compounds, the halogen atoms remain in the resulting olefin polymer. It is a compound that is undesirable.

ずころが、埓来、觊媒組成の倧郚分はハロゲン
化マグネシりムが占めおおり、これに由来するハ
ロゲン原子の方が実際䞊はるかに倧量であるこず
は、ややもするずなおざりにされおいた。
However, in the past, most of the catalyst composition was made up of magnesium halide, and the fact that the halogen atoms derived from this were actually much larger in quantity was often ignored.

埓぀お、無脱灰補造プロセスを達成するために
は觊媒に含たれるハロゲン原子党䜓に察するオレ
フむン重合䜓の収率、いいかえればチタン原子圓
りのオレフむン重合䜓収率ず同様にハロゲン化マ
グネシりム圓りのオレフむン重合䜓収率が倧巟に
向䞊するこずが必須の課題であるこずが理解され
る。
Therefore, in order to achieve a non-deashing production process, it is necessary to increase the yield of olefin polymer based on all the halogen atoms contained in the catalyst, in other words, the yield of olefin polymer per titanium atom as well as the yield of olefin polymer per magnesium halide. It is understood that it is an essential issue to greatly improve the coalescence yield.

先行技術においおもハロゲン化マグネシりム圓
りのオレフむン重合䜓収率を改善する詊みは若干
おこなわれおいるが、䜕ら特筆すべき効果をあげ
おいない。たずえば特開昭48―16986号公報にお
いおはNa2CO3やCaSO4が、たた、特開昭52―
151691号公報においおはB2O3がそれぞれ粉砕工
皋䞭に添加されおいる。しかしながら觊媒䞭のハ
ロゲン含有率の䜎䞋を意図したこのような異皮担
䜓の単玔な混入は、チタン原子圓りのオレフむン
重合䜓収率の䜎䞋ず立䜓芏則性の䜎䞋をずもなう
だけで積極的な改善効果は芋られない。この理由
はチタン、アルミニりム化合物からなるチヌグラ
型觊媒が、被毒に察し極めお敏感であり、䞊蚘䟋
のような含酞玠化合物を特別の考慮を加えずに甚
いれば盎ちに被毒成分ずなり觊媒の効胜を匱める
為であるず理解される。
Although some attempts have been made in the prior art to improve the yield of olefin polymer per magnesium halide, no noteworthy effects have been achieved. For example, in JP-A No. 16986-16986, Na 2 CO 3 and CaSO 4 are used;
In Publication No. 151691, B 2 O 3 is added during the grinding process. However, the simple incorporation of such a heterogeneous carrier with the intention of reducing the halogen content in the catalyst only causes a decrease in the yield of olefin polymer per titanium atom and a decrease in stereoregularity, and does not have a positive improvement effect. can not see. The reason for this is that Ziegler-type catalysts made of titanium and aluminum compounds are extremely sensitive to poisoning, and if oxygen-containing compounds such as those in the example above are used without special consideration, they will immediately become poisonous components and reduce the effectiveness of the catalyst. It is understood that this is to weaken it.

たた、埓来、高掻性な觊媒を甚いおオレフむン
重合䜓を補造する方法、特にハロゲン化マグネシ
りムを觊媒担䜓ずしお甚いる方法においおは、觊
媒担䜓であるハロゲン化マグネシりムを䞻ずしお
粉砕によ぀お掻性化しおいる。埓぀おでき䞊り觊
媒も圢状が䞍芏則で、か぀その粒床分垃が広くな
るこずは䞍可避ずなる。そのために補造されるポ
リオレフむン粉末も䞀般に䞍定圢でか぀埮粉であ
り、粒床分垃も巟広いものずなる。このような埮
粉の倚い重合䜓は工業的には重合埌のスラリヌ溶
液から重合䜓ず重合溶媒を完党に分離するのが困
難であり、重合䜓の回収率を十分倧きくできない
ずいう欠点がある。たた、゚チレン・プロピレン
共重合䜓を補造する際にも嵩密床の十分倧きな共
重合䜓を埗るこずが容易でないずいう欠点もあ
る。曎に100Ό皋床以䞋の重合䜓埮粉に぀いおい
えば、その倚量の存圚は也燥粉末を取扱う際に粉
じん爆発をたねきやすい。たた、粉末のたた成圢
加工する際も粉じん爆発の危険がある他に、成圢
時の胜率䜎䞋等の問題を生ずる。さらに、溶媒を
党く䜿甚しない気盞重合法においおも流動状態の
均䞀化、ポリマヌ粉末の回収、粉末の茞送等にお
いお工業化に際しお倧きな制玄ずなる。理想的に
は100Ό皋床以䞋の埮粉は党く無いこずが望たれ
る。
Furthermore, conventionally, in the method of producing an olefin polymer using a highly active catalyst, particularly in the method of using magnesium halide as a catalyst carrier, the magnesium halide serving as the catalyst carrier is activated mainly by pulverization. Therefore, it is inevitable that the finished catalyst will also have an irregular shape and a wide particle size distribution. The polyolefin powder produced for this purpose is generally amorphous and fine powder, and has a wide particle size distribution. Industrially, such a polymer containing a large amount of fine powder has the drawback that it is difficult to completely separate the polymer and the polymerization solvent from the slurry solution after polymerization, and the recovery rate of the polymer cannot be sufficiently increased. Furthermore, when producing an ethylene-propylene copolymer, there is also the drawback that it is not easy to obtain a copolymer with a sufficiently large bulk density. Furthermore, when it comes to polymer fine powder of about 100 microns or less, the presence of a large amount of it tends to cause a dust explosion when handling dry powder. Further, when molding the powder as it is, there is a risk of dust explosion, and problems such as a decrease in efficiency during molding occur. Furthermore, even in a gas phase polymerization method that does not use any solvent, there are major constraints on industrialization in terms of uniformity of the fluid state, recovery of polymer powder, transportation of powder, etc. Ideally, it is desired that there be no fine powder of about 100 ÎŒm or less.

しかしながら、これたでの粉砕工皋を経由しお
掻性化する觊媒を甚いおいおは100Ό以䞋の埮粉
は通垞で10〜30、しばしば40に達するこずも
あり工業的な実斜の際には倧きな問題ずな぀おい
る。これを解決する方法もこれ迄に無いではない
が、たずえば、特開昭53―109587号公報蚘茉の発
明においおは105Ό以䞋の埮粉は皋床にずど
た぀おおり、ただ尚改良の䜙地を残しおいる。
However, when using conventional catalysts that are activated through the pulverization process, the proportion of fine particles of less than 100 Ό usually accounts for 10 to 30%, and often reaches 40%, which is a big problem in industrial implementation. It is becoming. There are ways to solve this problem, but for example, in the invention described in JP-A-53-109587, the amount of fine powder of 105Ό or less is only about 8%, and there is still room for improvement. There is.

オレフむン重合䜓粉末においおは、その圢状、
倧きさはそれを補造する觊媒の圢状、倧きさに盞
䌌的であるこずは良く知られおいるたずえば、
J.BoorJr氏著Ziegler―Natta Catalysts
and Polymerizationsp.154Academic Press
瀟1979幎発行。埓぀おオレフむン重合䜓の粒
子圢状の改良はそれを補造する觊媒の圢状の改良
によ぀おなされる。具䜓的にはポリマヌの埮粉を
無くするためには觊媒の埮粉を無くさねばならな
い。これは倚くの堎合重合掻性の増倧ず矛盟する
芁請であ぀お解決の困難な問題である。特に粉砕
を経由する觊媒においおは、粒床分垃の巟広さは
䞍可避の珟象であり、きわめお困難な問題ずな
る。
For olefin polymer powder, its shape,
It is well known that the size is similar to the shape and size of the catalyst that produces it (for example,
Written by J. Boor, Jr. Ziegler―Natta Catalysts
and Polymerizations, p.154, Academic Press
Company. Published in 1979). Therefore, the particle shape of the olefin polymer can be improved by improving the shape of the catalyst used to produce it. Specifically, in order to eliminate fine polymer powder, catalyst fine powder must be eliminated. This is a problem that is difficult to solve because it is a requirement that is often contradictory to increasing polymerization activity. Particularly in catalysts that undergo pulverization, a wide particle size distribution is an unavoidable phenomenon and poses an extremely difficult problem.

〔〕 発明の抂芁 芁 æ—š 本発明は䞊蚘の点に解決を䞎えおるこずを目的
ずし、䞀般匏TiOR4で衚わされるチタン化合
物ここでは炭化氎玠残基であるで凊理した
金属酞化物担䜓を甚いるこずにより、担䜓にもず
ずく重合掻性、立䜓芏則性の䜎䞋を防止し、粉砕
によらずにMgX2ここではハロゲン、TiCl4
および゚ステルを担持するこずによ぀お、前蚘目
的を達成し埗たものである。
[2] Summary of the invention The purpose of the present invention is to provide a solution to the above-mentioned points, and the present invention aims to provide a solution to the above-mentioned points by treating it with a titanium compound represented by the general formula Ti(OR) 4 (where R is a hydrocarbon residue). By using a metal oxide support, it is possible to prevent a decrease in polymerization activity and stereoregularity due to the support, and to produce MgX 2 (here, X is a halogen), TiCl 4 without pulverization.
By supporting ester and ester, the above object could be achieved.

埓぀お、本発明によるオレフむン重合䜓の補造
方法は、 (1) 䞀般匏TiOR4で衚わされるチタン化合物
ここでは炭化氎玠残基であるで凊理した
シリカ、アルミナ、マグネシア、チタニダたた
はそれらの耇酞化物を含有する金属酞化物に、
MgX2ここではハロゲン、TiCl4および゚
ステルを担持した固䜓觊媒成分、および (2) 有機アルミニりム化合物 ずからなる觊媒にオレフむンを接觊させお重合さ
せるこずを特城ずするものである。
Therefore, the method for producing an olefin polymer according to the present invention includes (1) silica, alumina, magnesia, treated with a titanium compound represented by the general formula Ti(OR) 4 (where R is a hydrocarbon residue); Metal oxides containing titania or their double oxides,
It is characterized in that olefin is brought into contact with a catalyst consisting of MgX 2 (where X is a halogen), a solid catalyst component supporting TiCl 4 and an ester, and (2) an organoaluminum compound for polymerization.

効 果 本発明による觊媒系によれば、埓来知られおい
る觊媒にくらべ、觊媒䞭のハロゲン原子あたりの
オレフむン重合䜓収率、具䜓的にはそのハロゲン
の倧郚分を構成するハロゲン化マグネシりムあた
りのオレフむン重合䜓収率が倧きく、しかも高い
立䜓芏則性を保持しおいるのみならず、生成オレ
フむン重合䜓粉末の粒床分垃が狭く、100Ό皋床
以䞋の埮粉をほずんど含たず、たた、嵩密床もき
わめお高い。埓぀お珟圚広くおこなわれおいるス
ラリヌ重合プロセスにおいお粉じん爆発の危険が
なく、重合埌の埌凊理工皋がきわめお簡略化され
るかあるいは党く必芁なくなる。重合䜓の分離も
容易になる。たた共重合䜓の補造も容易になる。
溶媒を党く甚いない気盞重合プロセスにおいお
も、流動床の安定化が容易ずなり、粉䜓の回収、
茞送が容易ずなる。たた将来予想される無造粒成
型法においおも胜率の䜎䞋、粉じんの発生等の問
題がなくなり効率を増倧させるこずができる。
Effects According to the catalyst system of the present invention, compared to conventionally known catalysts, the yield of olefin polymer per halogen atom in the catalyst, specifically, the yield of olefin polymer per halogen atom in the catalyst, specifically per magnesium halide, which constitutes the majority of the halogen, is increased. Not only does it have a high yield of olefin polymer and maintains high stereoregularity, but the resulting olefin polymer powder has a narrow particle size distribution, containing almost no fine powder of about 100Ό or less, and has an extremely high bulk density. . Therefore, there is no risk of dust explosion in the currently widely used slurry polymerization process, and post-polymerization post-treatment steps are greatly simplified or even eliminated. Separation of the polymer also becomes easier. It also facilitates the production of copolymers.
Even in gas phase polymerization processes that do not use any solvents, the fluidized bed can be easily stabilized, allowing powder recovery and
Transportation becomes easier. Further, even in the non-granulation molding method expected in the future, problems such as reduction in efficiency and generation of dust will be eliminated, and efficiency can be increased.

このような特色は固䜓觊媒成分を電子顕埮鏡で
芳察するず20Ό以䞋の埮粉が党く無く、平均粒埄
が60Ό皋床であるこずから容易に理解できる。た
た特性線像からマグネシりム、チタンが担䜓䞊
にむらなく分垃しおおり、その担持の効果をうら
づけおいる。たた線回折像はハロゲン化マグネ
シりム担䜓のものず異り、完党に無定圢であり、
非晶性のシリカの圱響をうけ、掻性觊媒成分がほ
が完党に非晶化すなわち掻性化されおいるこずを
瀺す。たた固䜓觊媒成分の比衚面積はほずんど
300m2以䞊、倚くは400m2であり、分散の
良さをうらづけおいる。埓぀お本発明の觊媒はス
ラリヌ重合、液盞無溶媒重合、気盞重合プロセス
のいずれにおいおも優れた掻性ず立䜓芏則性及び
粒床分垃をかね備えたものである。
These characteristics can be easily understood from the fact that when the solid catalyst component is observed under an electron microscope, there is no fine powder smaller than 20Ό, and the average particle size is about 60Ό. Furthermore, the characteristic X-ray image shows that magnesium and titanium are evenly distributed on the carrier, suggesting the effect of their supporting. In addition, the X-ray diffraction image is completely amorphous, unlike that of the magnesium halide carrier.
This indicates that the active catalyst component is almost completely amorphous, that is, activated, due to the influence of amorphous silica. In addition, the specific surface area of the solid catalyst component is almost
It is 300m 2 /g or more, often 400m 2 /g, which indicates good dispersion. Therefore, the catalyst of the present invention has excellent activity, stereoregularity, and particle size distribution in any of slurry polymerization, liquid phase non-solvent polymerization, and gas phase polymerization processes.

〔〕 発明の具䜓的な説明  觊媒成分固䜓成分 チヌグラヌ觊媒の遷移金属成分を成すものであ
り、䞀般匏TiOR4で衚わされるチタン化合物
ここでは炭化氎玠残基であるで凊理した金
属酞化物担䜓にMgX2ここではハロゲン、
TiCl4および゚ステルを担持させおなるものであ
る。
[3] Specific description of the invention 1 Catalyst component (solid component) This is a transition metal component of the Ziegler catalyst, and is a titanium compound represented by the general formula Ti(OR) 4 (where R is a hydrocarbon residue). MgX 2 (where X is halogen) on a metal oxide support treated with
It supports TiCl 4 and ester.

(1) 構成成分 䞋蚘の(a)〜(d)成分から構成される。(1) Components It is composed of the following components (a) to (d).

(a) 金属酞化物担䜓 基本的にはシリカ、アルミナ、シリカ・アルミ
ナ、マグネシア、チタニア、から遞ばれる金属酞
化物あるいは耇酞化物の単独又は混合物からな
る。
(a) Metal oxide support Basically consists of a metal oxide or a mixed oxide selected from silica, alumina, silica-alumina, magnesia, titania, or a mixture thereof.

基本的に無氎物であるこずが望たしいが、通垞
埮量混圚する皋床の氎酞化物の混入は蚱される。
たた、総重量の10重量以内、奜たしくは以
内の䞍玔物の混入は、金属酞化物ずしおの性栌を
著るしく改倉しないものであるかぎり本発明の担
䜓の範囲に含められる。蚱される䞍玔物の䟋ずし
おは、酞化ナトリりム、酞化カリりム、酞化カル
シりム、酞化亜鉛、酞化ニツケル、酞化コバルト
等の金属酞化物、炭酞ナトリりム、炭酞カリり
ム、炭酞マグネシりム、硫酞ナトリりム、硫酞ア
ルミニりム、硫酞チタニりム、硝酞アルミニり
ム、硝酞マグネシりム等の炭酞塩、硫酞塩、硝酞
塩などがあげられる。
Basically, it is desirable to use an anhydride, but a trace amount of hydroxide is usually allowed.
Furthermore, the inclusion of impurities within 10% by weight, preferably within 6% of the total weight, is included within the scope of the support of the present invention as long as it does not significantly alter the characteristics as a metal oxide. Examples of permissible impurities include metal oxides such as sodium oxide, potassium oxide, calcium oxide, zinc oxide, nickel oxide, cobalt oxide, sodium carbonate, potassium carbonate, magnesium carbonate, sodium sulfate, aluminum sulfate, titanium sulfate, nitric acid. Examples include carbonates, sulfates, and nitrates such as aluminum and magnesium nitrate.

これら担䜓はいずれも可胜な限り被毒を防止す
るため高枩で焌成し、䞍掻性ガス雰囲気䞭で保存
したものを甚いるこずが望たしい。圢状は粉末
線回折像が巟広ないし無定圢になるような結晶性
の䜎い方が奜たしい。比衚面積も倧きいものの方
が望たしい。担䜓は粉末状で以埌の凊理に甚いら
れるが、粉末の粒床は埗られるオレフむン重合䜓
粉末の粒床に関係するので、適宜調節できるこず
が望たしい。担䜓粉末の现孔容積及び平均现孔埄
は本発明においおはあたり重芁な因子ではないが
倧きい方が奜たしい。
In order to prevent poisoning as much as possible, it is desirable to use carriers that are fired at high temperatures and stored in an inert gas atmosphere. The shape is powder
It is preferable that the crystallinity is low so that the line diffraction image is wide or amorphous. A material with a large specific surface area is also desirable. The carrier is used in the subsequent processing in powder form, and since the particle size of the powder is related to the particle size of the obtained olefin polymer powder, it is desirable that it can be adjusted as appropriate. Although the pore volume and average pore diameter of the carrier powder are not very important factors in the present invention, larger ones are preferable.

䞀般匏TiOR4で衚わされるチタン化合物に
よる凊理 これらの金属酞化物担䜓は高いチタン原子圓り
の重合䜓収率ず立䜓芏則性を䞎える觊媒を調補す
るためには、他の操䜜に先立぀お䞀般匏Ti
OR4で衚わされるチタン化合物を甚いお金属酞
化物を凊理するこずが必須である。ここでは炭
化氎玠残基、䞀般には炭玠数〜10の、奜たしく
は〜のアルキル基、あるいは炭玠数〜10
の、奜たしくは〜のシクロアルキル基、ある
いは炭玠数〜10のアリヌル基、奜たしくはプ
ニル、トリルたたはキシリルである。
Treatment with titanium compounds of the general formula Ti(OR) 4 These metal oxide supports are used prior to other operations to prepare catalysts that give high polymer yields and stereoregularity per titanium atom. General formula Ti
It is essential to treat metal oxides with titanium compounds represented by (OR) 4 . Here, R is a hydrocarbon residue, generally an alkyl group having 1 to 10 carbon atoms, preferably 1 to 4 carbon atoms, or an alkyl group having 4 to 10 carbon atoms.
, preferably a cycloalkyl group having 5 to 8 carbon atoms, or an aryl group having 6 to 10 carbon atoms, preferably phenyl, tolyl or xylyl.

このような化合物の具䜓䟋をあげれば、 Ti―iC3H74Ti―nC3H74Ti―
nC4H94Ti―iC4H94TiOC6H54等があ
る。
Specific examples of such compounds include Ti(O—iC 3 H 7 ) 4 , Ti(O—nC 3 H 7 ) 4 , Ti(O—
Examples include nC 4 H 9 ) 4 Ti(O-iC 4 H 9 ) 4 and Ti(OC 6 H 5 ) 4 .

䞭でもTi―nC4H94が奜たしい。 Among them, Ti(O—nC 4 H 9 ) 4 is preferred.

これらのチタン化合物で金属酞化物を凊理する
には公知の手法のいずれを甚いおもよい。たずえ
ば溶液ないし液状化合物の堎合はスラリヌの状態
で金属酞化物を接觊させるこずができる。チタン
化合物を高枩の蒞気ずしお接觊させおも良い。た
た、共粉砕等の手段で機械的に接觊させるこずも
できる。加枩は必須ではないが、䞀般に凊理を早
めるのに有効である。具䜓的に枩床範囲を瀺すな
らば℃〜400℃、奜たしくは30℃〜200℃、特に
奜たしくは50℃〜150℃である。
Any known method may be used to treat metal oxides with these titanium compounds. For example, in the case of a solution or liquid compound, the metal oxide can be contacted in the form of a slurry. The titanium compound may be contacted as a high temperature vapor. In addition, mechanical contact can also be achieved by means such as co-pulverization. Warming is not required, but is generally effective in speeding up the process. Specifically, the temperature range is 0°C to 400°C, preferably 30°C to 200°C, particularly preferably 50°C to 150°C.

(b) ハロゲン化マグネシりムMgX2 ハロゲン化マグネシりムずしおは塩化マグネシ
りム、臭化マグネシりム、フツ化マグネシりム、
䞀塩化マグネシりム、䞀臭化マグネシりムなどが
あげられるが、特に塩化マグネシりムが良い。そ
れぞれ単䜓でも、混合物乃至耇合物でも良い。
(b) Magnesium halide (MgX 2 ) Magnesium halides include magnesium chloride, magnesium bromide, magnesium fluoride,
Examples include magnesium monochloride and magnesium monobromide, but magnesium chloride is particularly good. Each of them may be used alone, or as a mixture or composite.

(c) ゚ステル ゚ステルずしおは電子䟛䞎性の有機化合物が甚
いられる。
(c) Ester An electron-donating organic compound is used as the ester.

これら化合物のうち有機酞゚ステル、さらに奜
たしくはαβ―䞍飜和カルボン酞の、特にモノ
カルボン酞の゚ステル、特に䞀䟡アルコヌルずの
゚ステルが奜たしい。「αβ―䞍飜和」の定矩
にぱチレン性䞍飜和の倖に芳銙族性䞍飜和をも
包含する。
Among these compounds, esters of organic acids, more preferably esters of α,β-unsaturated carboxylic acids, especially monocarboxylic acids, especially esters with monohydric alcohols are preferred. The definition of "α,β-unsaturation" includes aromatic unsaturation in addition to ethylenic unsaturation.

䟋えば、安息銙酞䜎玚アルキルC1〜C12゚
ステル、たずえばメチルおよび゚チル゚ステル、
―トルむル酞䜎玚アルキルたずえば゚チル
゚ステル、―アニス酞䜎玚アルキルたずえば
―プロピル゚ステル、メタクリル酞、䜎玚ア
ルキルたずえばメチル゚ステル、アクリル酞
䜎玚アルキルたずえば゚チル゚ステル、ケむ
皮酞䜎玚アルキルたずえば゚チル゚ステル、
マレむン酞ゞ䜎玚アルキルたずえばゞメチル
゚ステルその他がある。特に安息銙酞たたは―
トルむル酞などの芳銙族カルボン酞の䜎玚アルキ
ル゚ステルが奜たしい。
For example, benzoic acid lower alkyl ( C1 - C12 ) esters such as methyl and ethyl esters,
Lower alkyl P-toluate (e.g. ethyl)
esters, p-anisic acid lower alkyl (e.g. i-propyl) esters, methacrylic acid, lower alkyl (e.g. methyl) esters, acrylic acid lower alkyl (e.g. ethyl) esters, cinnamate lower alkyl (e.g. ethyl) esters,
Dilower alkyl maleate (e.g. dimethyl)
There are esters and others. Especially benzoic acid or p-
Lower alkyl esters of aromatic carboxylic acids such as toluic acid are preferred.

(d) チタンハロゲン化合物 本発明に甚いられるチタンハロゲン化合物は、
四塩化チタンTiCl4である。
(d) Titanium halogen compound The titanium halogen compound used in the present invention is:
Titanium tetrachloride (TiCl 4 ).

(2) 固䜓成分の調補方法 特願昭54―94141号に述べた方法により有効觊
媒成分を酞化物担䜓衚面に溶解析出担持させるこ
ずができる。すなわち以䞋の方法により固䜓成分
の調補を行なう。
(2) Method for preparing solid components Effective catalyst components can be deposited and supported on the surface of an oxide carrier by the method described in Japanese Patent Application No. 54-94141. That is, the solid component is prepared by the following method.

ハロゲン化マグネシりム自身は四塩化チタンに
党く溶解しないが、その゚ステルたずえば安
息銙酞゚チルずの錯䜓MgX2・nDはが玄0.8
以䞊の堎合容易に溶解する。
Magnesium halide itself does not dissolve in titanium tetrachloride at all, but its complex with ester D (e.g. ethyl benzoate), MgX 2.nD , has n of approximately 0.8.
In the above cases, it dissolves easily.

かくしお埗られた溶液はチタン皮、マグネシり
ム化合物、゚ステルの䞉成分が䞀䜓ずな぀た混合
物で存圚し、このようなハロゲン化マグネシりム
は担䜓ずしおの圹割を有しおいない。このような
混合物を被毒性を有しない金属酞化物担䜓に接觊
させお金属酞化物担䜓衚面に結合させるこずによ
぀お極めお有甚な觊媒成分が埗られるのである。
The solution thus obtained exists as a mixture of the three components of titanium species, magnesium compound, and ester, and such magnesium halide does not play a role as a carrier. By bringing such a mixture into contact with a non-toxic metal oxide carrier and bonding it to the surface of the metal oxide carrier, an extremely useful catalyst component can be obtained.

たた、同様に䞊蚘が0.2〜0.8の範囲においお
も固䜓量を溶剀四塩化チタンに察し小さく蚭
定するか、あるいは郚分的な溶解で良しずするな
らば、埗られた最終觊媒の性胜から芋おほが同等
のものが埗られる。
Similarly, even if n is in the range of 0.2 to 0.8, if the amount of solids is set small relative to the solvent (titanium tetrachloride), or if partial dissolution is sufficient, then the performance of the final catalyst obtained You can see almost the same thing.

このような条件䞋ではは少くずも党おの固䜓が
溶解するようには芋えないが、珟実には少量の固
䜓の溶解―析出が動的平衡状態ずしお出珟し、別
皮担䜓が存圚しない堎合には単独析出ずな぀お、
量的比率においおも぀ずも倚いハロゲン化マグネ
シりムが担䜓ずなり、通垞の觊媒が埗られる。
Under these conditions, at least not all the solids appear to dissolve, but in reality the dissolution-precipitation of a small amount of solids appears as a dynamic equilibrium state, and in the absence of another type of support As precipitation,
Magnesium halide, which is relatively large in quantitative proportion, serves as a carrier and a conventional catalyst is obtained.

さらに詳现に以䞋に蚘茉する。 Further details are provided below.

MgX2・nDの合成 ハロゲン化マグネシりムを予じめ前蚘゚ステル
ず接觊させるこずによ぀お錯䜓MgX2・nDを合
成する匏䞭、は0.15〜2.0、奜たしくは0.2〜
0.5の範囲である。 この接觊は埮粉化したハロゲン化マグネシりム
を非極性溶媒の存圚たたは䞍存圚䞋、スラリヌ状
にお゚ステルず加枩䞋に撹拌しおおこな぀おも良
いし、たた同じく埮粉化したハロゲン化マグネシ
りムず高枩䞋にガス化した゚ステルず反応させお
も良い。たた振動ミルなどの䞭で共粉砕により反
応させる手段も有効である。共粉砕は、たずえば
ボヌルミル、振動ミル、衝撃ミルなどの粉砕装眮
の䞭で行なうこずができる。この際゚ステルの反
応を完党におこなわせる為に粉砕助剀を加えるこ
ずも、必須ではないが有効な手段である。これら
の助剀の䟋ずしおは四塩化チタン、四塩化ケむ
玠、ポリシロキサン、Ti―nC4H94
OC2H53AlOC2H53、ハロゲン化炭化氎玠、
芳銙族炭化氎玠等があげられる。助剀の添加は粉
砕の最初からでも、たた途䞭からでもさし぀かえ
ない。
Synthesis of MgX 2 nD The complex MgX 2 nD is synthesized by contacting magnesium halide with the ester in advance (where n is 0.15 to 2.0, preferably 0.2 to
It is in the range of 0.5. ) This contact may be carried out by stirring the pulverized magnesium halide with the ester in slurry form in the presence or absence of a nonpolar solvent, or by stirring the pulverized magnesium halide with the ester while heating. It may be reacted with gasified ester at high temperature. It is also effective to carry out the reaction by co-pulverizing in a vibrating mill or the like. Co-milling can be carried out in milling equipment such as ball mills, vibratory mills, impact mills, etc. At this time, it is an effective, although not essential, measure to add a grinding aid to complete the ester reaction. Examples of these auxiliaries include titanium tetrachloride, silicon tetrachloride, polysiloxane, Ti(O-nC 4 H 9 ) 4 , B
( OC2H5 ) 3 , Al( OC2H5 ) 3 , halogenated hydrocarbon ,
Examples include aromatic hydrocarbons. The auxiliary agent may be added from the beginning or during the grinding process.

MgX2・nDの溶解 かくしお埗られたMgX2ず゚ステルずの錯䜓を
溶解するのであるが、䜿甚される溶剀ずしおは本
発明觊媒の䞀぀であるチタンハロゲン化合物自身
がその機胜を有する。しかしながらこれにある皋
床の非極性溶剀で垌釈するこずも可胜である。非
極性溶剀の䟋ずしおはゞクロル゚タン、ゞクロル
プロパン、ゞクロルブタン、塩化プロピル、クロ
ルベンれン、ゞクロルベンれン、トリクロルベン
れン、臭化プロピル、ペり化゚チル等のハロゲン
化炭化氎玠が奜たしく、チタンハロゲン化合物に
察し最倧限倍容積たで加えお垌釈するこず
が可胜である。この他ベンれン、トル゚ン等の芳
銙族炭化氎玠もより垌釈比は䜎䞋するが䜿甚可胜
であり、曎にヘキサン、ヘプタン、シクロヘキサ
ン等の炭化氎玠も若干であれば垌釈するこずがで
きる。
Dissolution of MgX 2 ·nD The thus obtained complex of MgX 2 and ester is dissolved, and the titanium halogen compound itself, which is one of the catalysts of the present invention, has this function as the solvent used. However, it is also possible to dilute this with a certain amount of non-polar solvent. Preferred examples of non-polar solvents include halogenated hydrocarbons such as dichloroethane, dichloropropane, dichlorobutane, propyl chloride, chlorobenzene, dichlorobenzene, trichlorobenzene, propyl bromide, and ethyl iodide. It is possible to dilute by adding up to twice the volume (volume). In addition, aromatic hydrocarbons such as benzene and toluene can also be used, although the dilution ratio is lower, and hydrocarbons such as hexane, heptane, and cyclohexane can also be diluted to a small extent.

錯䜓の溶解は加枩により促進される。枩床範囲
は℃〜250℃であるが、30℃〜200℃が奜たし
く、60℃〜150℃が特に奜たしい。撹拌により溶
解を促進させるこずができる。
Dissolution of the complex is promoted by heating. The temperature range is 0°C to 250°C, preferably 30°C to 200°C, and particularly preferably 60°C to 150°C. Dissolution can be promoted by stirring.

金属酞化物担䜓ぞの結合 䞀般匏TiOR4で衚わされるチタン化合物
ここでは炭化氎玠残基である。で凊理をした
金属酞化物担䜓を䞊蚘溶液䞭に加え撹拌をするだ
けで有効觊媒成分の結合は容易におこなわれ、ほ
が定量的に担䜓衚面に担持される。䜆し、が
0.15〜0.3の郚分的溶解の堎合にはハロゲン化マ
グネシりム成分ず゚ステル成分の可溶化ず担持を
遂次的にはおこなえず、金属酞化物担䜓を溶解時
から共存させおおくこずが優れた粒床分垃を䞎え
る觊媒を埗るための必須条件ずなる。前蚘モル比
が0.3〜2.0の堎合に同じ手段を取るこずは䞀向に
差支えない。加枩は必須ではないが結合を促進す
るのに有効であ。又加枩埌溶液ず固䜓郚を分離す
る前に冷华するのも必須ではないが有効な手段で
ある。これは加枩時に溶解しおいる未担持の觊媒
成分の酞化物衚面ずの結合が完結するのを助ける
ものず理解される。
Bonding to the metal oxide support Simply add the metal oxide support treated with a titanium compound represented by the general formula Ti(OR) 4 (where R is a hydrocarbon residue) to the above solution and stir. The effective catalyst components are easily bound and supported almost quantitatively on the surface of the carrier. However, if n
In the case of partial dissolution of 0.15 to 0.3, it is not possible to sequentially solubilize and support the magnesium halide component and ester component, and an excellent particle size distribution is achieved by allowing the metal oxide carrier to coexist from the time of dissolution. This is an essential condition for obtaining a catalyst that gives . When the molar ratio is between 0.3 and 2.0, there is no problem in taking the same measures. Heating is not required but is effective in promoting binding. Also, cooling the solution after heating and before separating the solid portion from the solution is not essential, but it is an effective means. It is understood that this helps complete the bonding of the unsupported catalyst component with the oxide surface which is dissolved during heating.

この凊理段階においおハロゲン化マグネシりム
錯䜓は溶解乃至コロむド状に分散されお金属酞化
物の衚面䞊に吞着ないし析出しお有効な担持状態
が出珟するものず考えられる䞀郚は溶解したた
た倱われる。又同時に掻性皮であるTi化合物の
担持、゚ステルの適圓な抜出もおこなわれるもの
ず考える。
It is thought that in this treatment stage, the magnesium halide complex is dissolved or colloidally dispersed and adsorbed or precipitated on the surface of the metal oxide, creating an effective supported state (a portion remains dissolved and is lost). . At the same time, it is considered that the active species Ti compound is supported and the ester is appropriately extracted.

䞊蚘の結合凊理をおえた觊媒固䜓は溶液から分
離され、掗浄されお重合に甚いられる。
The catalyst solid that has undergone the above bonding treatment is separated from the solution, washed, and used for polymerization.

(3) 量比 䞊蚘(a)〜(d)成分の量比は本発明の効果が埗られ
る限り任意の量比で良いが、䞀般に䞋蚘の量比か
ら構成される固䜓觊媒成分であるこずが奜たし
い。
(3) Quantitative ratio The quantitative ratio of the components (a) to (d) above may be any quantitative ratio as long as the effects of the present invention can be obtained, but in general, solid catalyst components composed of the following quantitative ratios are preferred. preferable.

(a) 金属酞化物担䜓 30 〜95重量 奜たしくは 35 〜90重量 (b) ハロゲン化マグネシりム 5 〜60重量 奜たしくは 10 〜50重量 (c) ゚ステル 0.1〜20重量 奜たしくは 0.2〜15重量 (d) TiCl4 2 〜30重量 奜たしくは 4 〜20重量 このようにしお調補された固䜓觊媒成分は仕䞊
り觊媒の組成ずすれば以䞋の劂くずなる。
(a) Metal oxide support 30 to 95% by weight, preferably 35 to 90% by weight (b) Magnesium halide 5 to 60% by weight, preferably 10 to 50% by weight (c) Ester 0.1 to 20% by weight, preferably 0.2 to 15% by weight (d) TiCl 4 2 to 30% by weight, preferably 4 to 20% by weight The composition of the finished catalyst of the solid catalyst component thus prepared is as follows.

(a) 金属酞化物 30 〜90重量 奜たしくは 35 〜80重量 (b) チタン原子ずしお 0.3〜 8 重量 奜たしくは 0.7〜 5 重量 (c) マグネシりム原子ずしお 2 〜20重量 奜たしくは 3 〜15重量 (d) ハロゲン原子ずしお 5 〜60重量 奜たしくは 10 〜45重量 (e) ゚ステル 0.5〜20重量 奜たしくは 1 〜15重量  觊媒成分 䞀般匏AlRnX3-oであらされる有機アルミニり
ム化合物が甚いられる。ここでは氎玠、炭玠数
〜20の炭化氎玠残基、特にアルキル基、アラル
キル基、又はアリヌル基であり、はハロゲン特
に塩玠又は臭玠であり、は≊を満す範
囲内の数である。具䜓的には、(ã‚€)トリメチルアル
ミニりム、トリ゚チルアルミニりム、トリむ゜ブ
チルアルミニりム、トリオクチルアルミニりム、
トリデシルアルミニりムなどのトリアルキルアル
ミニりム、(ロ)ゞ゚チルアルミニりムモノクロラむ
ド、ゞむ゜ブチルアルミニりムモノクロラむド、
゚チルアルミニりムセスキクロラむド、゚チルア
ルミニりムゞクロラむドなどのアルキルアルミニ
りムハラむド、(ハ)ゞむ゜ブチルアルミニりムハラ
むドなどのアルキルアルミニりムハラむド、その
他がある。これらの䞭でトリアルキルアルミニり
ムが特に奜たしい。有機アルミニりム化合物の䜿
甚量は、固䜓觊媒成分に察しお重量比で0.01〜
200、奜たしくは0.03〜100であるが、その範囲は
次に述べる觊媒成分の量比により巊右される。
(a) Metal oxides 30 to 90% by weight, preferably 35 to 80% by weight (b) Titanium (as atoms) 0.3 to 8% by weight, preferably 0.7 to 5% by weight (c) Magnesium (as atoms) 2 to 20% by weight % Preferably 3 to 15% by weight (d) Halogen (as atoms) 5 to 60% by weight Preferably 10 to 45% by weight (e) Ester 0.5 to 20% by weight Preferably 1 to 15% by weight 2 Catalyst component General formula AlRnX An organoaluminum compound represented by 3-o is used. Here, R is hydrogen, a hydrocarbon residue having 1 to 20 carbon atoms, especially an alkyl group, an aralkyl group, or an aryl group, X is a halogen, especially chlorine or bromine, and n satisfies 0<n≩3. The number is within the range. Specifically, (a) trimethylaluminum, triethylaluminum, triisobutylaluminum, trioctylaluminum,
Trialkyl aluminum such as tridecyl aluminum, (b) diethyl aluminum monochloride, diisobutyl aluminum monochloride,
Alkylaluminum halides such as ethylaluminum sesquichloride and ethylaluminum dichloride, alkylaluminum halides such as (iii) diisobutylaluminum halide, and others. Among these, trialkyl aluminum is particularly preferred. The amount of organoaluminum compound used is 0.01 to 0.01 to the weight ratio of the solid catalyst component.
200, preferably 0.03 to 100, but the range depends on the quantitative ratio of the catalyst components described below.

 他の觊媒成分 本発明觊媒は䞊蚘及びの二成分か
ら基本的になるものであるが、必芁に応じお曎に
他の成分を加えるこずができる。䟋えばアルコヌ
ル、゚ヌテル、゚ステル、ケトン、アルデヒドな
どの公知の電子䟛䞎性有機化合物を第䞉の觊媒成
分ずしお添加しおも良い。固䜓成分凊理に甚いた
のず同䞀の化合物でも又別皮の化合物でも良い。
䜿甚量は有機アルミニりム化合物に察しおモル比
で〜0.5、奜たしくは〜0.4の範囲が適圓であ
る。
3. Other Catalyst Components The catalyst of the present invention basically consists of the above two components () and (), but other components may be added as necessary. For example, known electron-donating organic compounds such as alcohols, ethers, esters, ketones, and aldehydes may be added as the third catalyst component. It may be the same compound as used for solid component treatment or a different type of compound.
The appropriate amount to be used is in a molar ratio of 0 to 0.5, preferably 0 to 0.4, relative to the organoaluminum compound.

 オレフむンの重合 (1) オレフむン 本発明の觊媒系で重合するオレフむンは䞀般匏
―CHCH2ここでは氎玠原子たたは炭玠数
〜10の炭化氎玠残基であり、眮換基を有しおも
良いで衚わされるα―オレフむンである。具䜓
的には、たずえば゚チレン、プロピレン、ブテン
―、ペンテン―、―メチル―ペンテン―
などのオレフむン類がある。奜たしくは、゚チレ
ンたたはプロピレン、特に奜たしくはプロピレン
である。
4 Polymerization of olefins (1) Olefins Olefins polymerized using the catalyst system of the present invention have the general formula R-CH=CH 2 (where R is a hydrogen atom or a hydrocarbon residue having 1 to 10 carbon atoms, and a substituent is It is an α-olefin represented by Specifically, for example, ethylene, propylene, butene-1, pentene-1, 4-methyl-pentene-1
There are olefins such as Preference is given to ethylene or propylene, particularly preferably propylene.

たたα―オレフむンの混合物を䜿甚するこずも
できる。たずえばプロピレンの重合の堎合にプロ
ピレンに察しお20重量迄の他の䞊蚘α―オレフ
むン特に゚チレンずの共重合をおこなうこず
ができる。又䞊蚘α―オレフむン以倖の共重合性
モノマヌたずえば酢酞ビニル、ゞオレフむン
ずの共重合をおこなうこずもできる。
It is also possible to use mixtures of α-olefins. For example, in the case of propylene polymerization, it is possible to copolymerize propylene with up to 20% by weight of other α-olefins (especially ethylene). Also, copolymerizable monomers other than the above α-olefin (e.g. vinyl acetate, diolefin)
It is also possible to perform copolymerization with.

(2) 重合 本発明の觊媒系は、通垞のスラリヌ重合に適甚
できるのはもちろんであるが、実質的に溶媒を甚
いない液盞無溶媒重合たたは気盞重合にも、連続
重合にも回分匏重合にも、あるいは予備重合をお
こなう方匏にも適甚できる。
(2) Polymerization The catalyst system of the present invention can be applied not only to ordinary slurry polymerization, but also to liquid-phase solvent-free polymerization or gas-phase polymerization that uses substantially no solvent, as well as continuous polymerization and batch-type polymerization. It can be applied to both polymerization and prepolymerization methods.

スラリヌ重合の堎合、溶媒ずしおはヘキサン、
ヘプタン、シクロヘキサン、トル゚ン等の飜和脂
肪族たたは芳銙族炭化氎玠の単独あるいは混合物
が甚いられる。重合枩床は宀枩から200℃皋床、
奜たしくは50゜〜150℃であり、この際の分子量調
節剀ずしお氎玠を添加するこずができる。
In the case of slurry polymerization, the solvent is hexane,
Saturated aliphatic or aromatic hydrocarbons such as heptane, cyclohexane, and toluene may be used alone or in mixtures. Polymerization temperature is from room temperature to about 200℃,
The temperature is preferably 50° to 150°C, and hydrogen can be added as a molecular weight regulator at this time.

実斜䟋  以䞋の操䜜は党お䞍掻性ガス雰囲気䞋で行なわ
れる。
Example 1 All of the following operations are performed under an inert gas atmosphere.

金属酞化物担䜓の調敎 富士デビ゜ン瀟補951番シリカゲル平均粒埄
箄46Όを500℃にお時間焌成し、也燥させる。
200ml䞉口フラスコ䞭にこのシリカ、Ti
―nC4H94 1.70、脱氎―ヘプタン50mlを加
え、80℃にお時間加熱撹拌させる。぀いで溶液
郚を陀き也燥させる。
Preparation of metal oxide carrier Silica gel No. 951 manufactured by Fuji Davison Co., Ltd. (average particle size approximately 46 Όm) was calcined at 500° C. for 5 hours and dried.
2g of this silica, Ti(O
Add 1.70 g of -nC 4 H 9 ) 4 and 50 ml of dehydrated n-heptane, and heat and stir at 80°C for 5 hours. Then, remove the solution part and dry it.

固䜓觊媒成分の調敎 内容積の振動ミルポツト䞭に無氎塩化マグ
ネシりム0.2モル、安息銙酞゚チル0.07モルを封
入し、24時間粉砕しおMgCl2・0.35EBEBは安
息銙酞゚チルをあらわすを䜜る。぀いでこのポ
ツト䞭に曎に0.07モルの四塩化チタンを加え、曎
に24時間粉砕する。
Preparation of solid catalyst component 0.2 mol of anhydrous magnesium chloride and 0.07 mol of ethyl benzoate are sealed in a vibrating mill pot with an internal volume of 1, and pulverized for 24 hours to produce MgCl 2 .0.35EB (EB represents ethyl benzoate). Then, an additional 0.07 mol of titanium tetrachloride was added to the pot, and the mixture was ground for another 24 hours.

200ml䞉口フラスコ䞭に前蚘の凊理をしたシリ
カ、䞊蚘の粉砕物4.5、脱氎―ゞク
ロル゚タン20ml、四塩化チタン100mlを加え、80
℃にお時間加熱撹拌する。぀いで加熱をやめ宀
枩に戻る迄撹拌を぀づける。それから溶液郚を陀
き、―ゞクロル゚タン及び―ヘプタンに
お十分掗浄する。
Add 2 g of the silica treated above, 4.5 g of the above pulverized material, 20 ml of dehydrated 1,2-dichloroethane, and 100 ml of titanium tetrachloride into a 200 ml three-necked flask, and add 80 ml of titanium tetrachloride.
Heat and stir at ℃ for 2 hours. Then, stop heating and continue stirring until the temperature returns to room temperature. Then, remove the solution part and wash thoroughly with 1,2-dichloroethane and n-heptane.

かくしお埗られた固䜓觊媒成分を分析した結果
チタン4.22重量、マグネシりム8.05重量、塩
玠34.0重量を含んでいた。
Analysis of the solid catalyst component thus obtained contained 4.22% by weight of titanium, 8.05% by weight of magnesium, and 34.0% by weight of chlorine.

プロピレンの重合 のオヌトクレヌブ䞭に脱氎工業甚ヘプタン
500mlを加え、䞊蚘の固䜓觊媒成分をTi原子換算
で0.5mg、トリ゚チルアルミニりム180mg、―ト
ルむル酞゚チル86mgを封入し、プロピレン圧
Kgcm2にお15分宀枩にお予備重合させた埌氎玠
100mlを加え、プロピレン党圧Kgcm2、65℃
にお90分重合させた。この結果、可溶分も含め63
のポリプロピレンが埗られ、そのII沞ずう
―ヘプタン抜出残率は93.8であり、MIメル
トむンデクスは1.2であ぀た。重合掻性は126Kg
―ポリマヌ―チタン原子、16.8Kg―ポリマヌ
―MgCl2、15.6Kg―ポリマヌ―塩玠原子
であ぀た。このポリマヌ䞭に理論的に残存する塩
玠量は64ppmに盞圓する。この粉末ポリプロピレ
ンの粒床分垃を衚に瀺す。埮粉のきわめお少な
い優れた分垃であるこずが明らかである。
Polymerization of propylene Dehydrated industrial heptane in autoclave 1
Add 500 ml of the above solid catalyst component, 0.5 mg of the above solid catalyst component in terms of Ti atoms, 180 mg of triethylaluminum, and 86 mg of ethyl p-toluate, and reduce the propylene pressure to 1.
After prepolymerizing at room temperature for 15 minutes at Kg/cm 2 G, hydrogen
Add 100ml, total propylene pressure 9Kg/cm 2 G, 65℃
Polymerization was carried out for 90 minutes. As a result, 63
g of polypropylene is obtained, its II (boiling n
- Heptane extraction residual rate) was 93.8%, and MI (melt index) was 1.2. Polymerization activity is 126Kg
-Polymer/g-Titanium atoms, 16.8Kg-Polymer 1g-MgCl 2 , 15.6Kg-Polymer/g-Chlorine atoms. The theoretical amount of chlorine remaining in this polymer corresponds to 64 ppm. Table 1 shows the particle size distribution of this powdered polypropylene. It is clear that there is an excellent distribution with very little fines.

è¡š  篩䞋重量比 ポリマヌ粒埄 実斜䟋wt 53Ό以䞋 0.6 74 〃 1.3 105 〃 3.1 149 〃 10.5 297 〃 39.9 500 〃 80.8 840 〃 98.6 840Ό以䞊 100.0 実斜䟋  金属酞化物担䜓の調敎 觊媒化成工業瀟補 珪酞マグネシりム組成
3MgO.4SiO2を500℃にお時間焌成し、也燥
させる。200ml䞉口フラスコ䞭にこの珪酞マグネ
シりム、Ti―nC4H90.50、―
ゞクロル゚タン50mlを加え、宀枩にお時間撹拌
させる。぀いで真空䞋50℃にお溶媒を蒞発させ、
時間加熱也燥させる。
Table 1 Weight ratio under sieve Polymer particle size Example 1 (wt%) 53ÎŒ or less 0.6 74 〃 1.3 105 〃 3.1 149 〃 10.5 297 〃 39.9 500 〃 80.8 840 〃 98.6 840ÎŒ or more 100.0 Example 2 Preparation of metal oxide support catalyst Manufactured by Kasei Kogyo Co., Ltd. Magnesium silicate (composition
3MgO.4SiO 2 ) was fired at 500°C for 5 hours and dried. In a 200ml three-necked flask, 5g of this magnesium silicate, 0.50g of Ti (O-nC 4 H 9 ), 1,2-
Add 50 ml of dichloroethane and stir at room temperature for 1 hour. The solvent was then evaporated under vacuum at 50°C.
Heat and dry for 1 hour.

固䜓觊媒成分の調敎 200ml䞉口フラスコ䞭に前蚘の凊理をした珪酞
マグネシりム、実斜䟋で䜿甚した無氎塩化
マグネシりム、安息銙酞゚チルず四塩化チタンの
共粉砕物4.5、―ゞクロル゚タン20ml、
四塩化チタン100mlを加え、実斜䟋ず同じ条件
で凊理し、掗浄した。
Preparation of solid catalyst components In a 200 ml three-necked flask, 2 g of magnesium silicate treated as described above, anhydrous magnesium chloride used in Example 1, 4.5 g of co-pulverized product of ethyl benzoate and titanium tetrachloride, 20 ml of 1,2-dichloroethane,
100 ml of titanium tetrachloride was added, treated under the same conditions as in Example 1, and washed.

かくしお埗られた固䜓觊媒成分を分析した結果
チタン3.43重量、氎溶性マグネシりム7.80重量
、塩玠32.8重量を含んでいた。
Analysis of the solid catalyst component thus obtained revealed that it contained 3.43% by weight of titanium, 7.80% by weight of water-soluble magnesium, and 32.8% by weight of chlorine.

プロピレンの重合 実斜䟋におけるトリ゚チルアルミニりムを
143mg、―トルむル酞゚チルを61.6mg䜿甚する
以倖は実斜䟋ず党く同じ条件におプロピレンの
重合を行な぀た。この結果、可溶分も含め82.2
のポリプロピレンが埗られ、そのIIは92.3であ
り、MIは1.3であ぀た。重合掻性は164Kg―ポリ
マヌ―チタン原子、18.4Kg―ポリマヌ―
MgCl2、17.2Kg―ポリマヌ―塩玠原子であ぀
た。このポリマヌ䞭に理論的に残存する塩玠量は
58ppmに盞圓する。この粉末ポリプロピレン䞭の
105Ό以䞋の埮粉ポリマヌは2.5重量であ぀た。
Polymerization of propylene Triethylaluminum in Example 1
Polymerization of propylene was carried out under exactly the same conditions as in Example 1 except that 143 mg of ethyl p-toluate and 61.6 mg of ethyl p-toluate were used. As a result, 82.2g including soluble content
of polypropylene was obtained, whose II was 92.3% and MI was 1.3. Polymerization activity is 164Kg-polymer/g-titanium atoms, 18.4Kg-polymer/g-
MgCl 2 , 17.2Kg-polymer/g-chlorine atom. The theoretical amount of chlorine remaining in this polymer is
Equivalent to 58ppm. In this powdered polypropylene
The amount of fine powder polymer of 105Ό or less was 2.5% by weight.

実斜䟋  実斜䟋における共粉砕物の替わりに、粉砕助
剀ずしおTi―nC4H940.71mlを远加添加しお
粉砕した共粉砕物4.8を䜿甚する以倖は、実斜
䟋ず党く同じ条件にお固䜓觊媒成分を調敎し
た。その結果、チタン3.52重量、氎溶性マグネ
シりム8.19重量を含んだ固䜓觊媒成分が埗られ
た。
Example 3 In place of the co-pulverized product in Example 2, 4.8 g of a co-pulverized product which was pulverized with additional addition of 0.71 ml of Ti(O-nC 4 H 9 ) 4 as a grinding aid was used. A solid catalyst component was prepared under exactly the same conditions as in Example 2. As a result, a solid catalyst component containing 3.52% by weight of titanium and 8.19% by weight of water-soluble magnesium was obtained.

実斜䟋ず同じ条件でプロピレンの重合を行な
぀たずころ、可溶分も含め73.4のポリプロピレ
ンが埗られ、そのIIは93.4であり、MIは1.2で
あ぀た。重合掻性は147Kg―ポリマヌ―チタ
ン原子、16.1Kg―ポリマヌ―MgCl2であ぀
た。この粉末ポリプロピレン䞭の105Ό以䞋の埮
粉ポリマヌは2.9重量であ぀た。
When propylene was polymerized under the same conditions as in Example 2, 73.4 g of polypropylene including soluble content was obtained, with II of 93.4% and MI of 1.2. The polymerization activity was 147 Kg-polymer/g-titanium atoms and 16.1 Kg-polymer/g- MgCl2 . The amount of fine powder polymer of 105Ό or less in this powdered polypropylene was 2.9% by weight.

実斜䟋  実斜䟋におけるTi―nC4H94の替わりに
Ti―iC3H74を1.42䜿甚する以倖は実斜䟋
ず党く同じ条件にお固䜓觊媒成分を調敎したずこ
ろ、チタン4.51重量、マグネシりム8.02重量
含んだ固䜓觊媒成分が埗られた。
Example 4 Instead of Ti(O-nC 4 H 9 ) 4 in Example 1
Example 1 except that 1.42g of Ti(O-iC 3 H 7 ) 4 was used.
When the solid catalyst components were adjusted under exactly the same conditions, titanium was 4.51% by weight and magnesium was 8.02% by weight.
A solid catalyst component was obtained.

実斜䟋ず同じ条件でプロピレンの重合を行な
぀たずころ、可溶分も含め59のポリプロピレン
が埗られ、そのIIは91.9であり、MIは1.4であ
぀た。重合掻性は118Kg―ポリマヌ―チタン
原子、16.9Kg―ポリマヌ―MgCl2であ぀た。
この粉末ポリプロピレン䞭の105Ό以䞋の埮粉ポ
リマヌは3.3重量であ぀た。
When propylene was polymerized under the same conditions as in Example 1, 59 g of polypropylene including soluble content was obtained, with II of 91.9% and MI of 1.4. The polymerization activity was 118 Kg-polymer/g-titanium atoms and 16.9 Kg-polymer/g- MgCl2 .
This powdered polypropylene contained 3.3% by weight of finely divided polymers having a particle size of 105Ό or less.

実斜䟋  日本觊媒孊䌚補粉末アルミナJRC―ALO―
、平均粒埄60Όを500℃にお時間焌成埌、
Ti―nC4H942.75を䜿甚しお実斜䟋ず同
じ条件で凊理し、固䜓觊媒成分を調敎した。その
結果、チタン4.26重量、マグネシりム8.10重量
を含んだ固䜓觊媒成分が埗られた。
Example 5 Powdered alumina manufactured by Japan Catalysis Society (JRC-ALO-
2. After firing the particles (average particle size 60ÎŒ) at 500℃ for 5 hours,
A solid catalyst component was prepared using 2.75 g of Ti(O-nC 4 H 9 ) 4 under the same conditions as in Example 1. As a result, a solid catalyst component containing 4.26% by weight of titanium and 8.10% by weight of magnesium was obtained.

実斜䟋ず同じ条件でプロピレンの重合を行な
぀たずころ、可溶分も含めお53.7のポリプロピ
レンが埗られ、そのIIは93.6であり、MIは1.5
であ぀た。重合掻性は107Kg―ポリマヌ―チ
タン原子、14.4Kg―ポリマヌ―MgCl2であ぀
た。この粉末ポリプロピレン䞭の105Ό以䞋の埮
粉ポリマヌは4.1重量であ぀た。
When propylene was polymerized under the same conditions as in Example 1, 53.7 g of polypropylene including the soluble content was obtained, with II of 93.6% and MI of 1.5.
It was hot. The polymerization activity was 107 Kg-polymer/g-titanium atoms and 14.4 Kg-polymer/g- MgCl2 . The amount of fine powder polymer of 105Ό or less in this powdered polypropylene was 4.1% by weight.

【図面の簡単な説明】[Brief explanation of drawings]

第図は、チヌグラヌ觊媒に関する本発明の技
術内容の理解を助けるためのフロヌチダヌト図で
ある。
FIG. 1 is a flowchart to help understand the technical contents of the present invention regarding Ziegler catalysts.

Claims (1)

【特蚱請求の範囲】  䞀般匏TiOR4で衚わされるチタン化合物
ここでは炭化氎玠残基であるで凊理したシ
リカ、アルミナ、マグネシア、チタニダたたはそ
れらの耇酞化物を含有する金属酞化物に、MgX2
ここではハロゲン、TiCl4および゚ステルを
担持した固䜓觊媒成分、および 有機アルミニりム化合物 ずからなる觊媒にオレフむンを接觊させるこずを
特城ずするオレフむン重合䜓の補造方法。
[Claims] 1 Contains silica, alumina, magnesia, titania, or their double oxides treated with a titanium compound represented by the general formula Ti(OR) 4 (where R is a hydrocarbon residue) In metal oxide, MgX 2
(wherein X is a halogen), a solid catalyst component supporting TiCl 4 and an ester, and an organoaluminum compound.
JP835881A 1981-01-22 1981-01-22 Preparation of olefin polymer Granted JPS57121003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP835881A JPS57121003A (en) 1981-01-22 1981-01-22 Preparation of olefin polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP835881A JPS57121003A (en) 1981-01-22 1981-01-22 Preparation of olefin polymer

Publications (2)

Publication Number Publication Date
JPS57121003A JPS57121003A (en) 1982-07-28
JPS642124B2 true JPS642124B2 (en) 1989-01-13

Family

ID=11691001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP835881A Granted JPS57121003A (en) 1981-01-22 1981-01-22 Preparation of olefin polymer

Country Status (1)

Country Link
JP (1) JPS57121003A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8957166B2 (en) 2009-10-29 2015-02-17 Japan Polypropylene Corporation Method for producing propylene-based polymer
BR112014011174A2 (en) * 2011-12-22 2017-05-02 Petróleo Brasileiro S A - Petrobras alumina supported catalyst for use in olefin polymerization and method of preparation thereof

Also Published As

Publication number Publication date
JPS57121003A (en) 1982-07-28

Similar Documents

Publication Publication Date Title
JPS6411651B2 (en)
JPS64404B2 (en)
JPH0364306A (en) Production of polyoflefin
JPH0119407B2 (en)
JPH07196733A (en) Continuous dimerizing method for ethylene
JPS62104810A (en) Production of olefin polymer
GB2049709A (en) A Process for Preparing an Olefin Polymer
JPS642124B2 (en)
JP2814310B2 (en) Method for producing polyolefin
JP2717723B2 (en) Method for producing polyolefin
US4415713A (en) High activity supported catalytic components and method for homo- or co-polymerization of α-olefin
JP2566824B2 (en) Method for producing polyolefin
JPH0424361B2 (en)
JPS6329683B2 (en)
JPS5835521B2 (en) Olefin polymerization catalyst
JPS6363561B2 (en)
JPS637202B2 (en)
JPH0149287B2 (en)
JPH0119406B2 (en)
JPS58189207A (en) Manufacture of solid catalyst titanium component and polymerization of 1-alkene by using titanium component
JPH0819176B2 (en) Olefin polymerization catalyst
JPH0134248B2 (en)
JPH04304208A (en) Method of (co)polymerization of ethylene
JPS62115004A (en) Storage of catalyst component for polymerization of olefin
JPS5867703A (en) Perparation of olefinic polymer having improved particle size distribution