JPS641730B2 - - Google Patents

Info

Publication number
JPS641730B2
JPS641730B2 JP16633082A JP16633082A JPS641730B2 JP S641730 B2 JPS641730 B2 JP S641730B2 JP 16633082 A JP16633082 A JP 16633082A JP 16633082 A JP16633082 A JP 16633082A JP S641730 B2 JPS641730 B2 JP S641730B2
Authority
JP
Japan
Prior art keywords
value
weighing
head correction
measurement
correction value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16633082A
Other languages
Japanese (ja)
Other versions
JPS5956117A (en
Inventor
Tomotaka Uejima
Toshiji Takano
Yoshiaki Fujiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP16633082A priority Critical patent/JPS5956117A/en
Publication of JPS5956117A publication Critical patent/JPS5956117A/en
Publication of JPS641730B2 publication Critical patent/JPS641730B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G13/00Weighing apparatus with automatic feed or discharge for weighing-out batches of material
    • G01G13/24Weighing mechanism control arrangements for automatic feed or discharge
    • G01G13/28Weighing mechanism control arrangements for automatic feed or discharge involving variation of an electrical variable which is used to control loading or discharge of the receptacle
    • G01G13/29Weighing mechanism control arrangements for automatic feed or discharge involving variation of an electrical variable which is used to control loading or discharge of the receptacle involving digital counting
    • G01G13/2906Weighing mechanism control arrangements for automatic feed or discharge involving variation of an electrical variable which is used to control loading or discharge of the receptacle involving digital counting for controlling automatic loading of weigh-pans or other receptacles

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Weight Measurement For Supplying Or Discharging Of Specified Amounts Of Material (AREA)

Description

【発明の詳細な説明】 この発明は、粉粒体状の原材料を計量した後
に、他の処理機器へ供給する自動計量供給装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic metering and feeding device that measures powdery raw materials and then supplies them to other processing equipment.

自動計量供給装置は、粉粒体原料等の計量や定
量供給を自動的に行うものであり、多種類の粉粒
体原料を取り扱う工場等においては、その生産ラ
インの中で重要な位置を占めている。この種の自
動計量供給装置は、一般に、貯蔵ホツパから供給
される粉粒体を計量ホツパで計量して、この計量
ホツパから他の処理機器へ供給する。この場合、
計量ホツパへの投入量が予め定められた計量設定
値となるように制御する投入計量方式と、予め計
量ホツパに適当量投入し、計量ホツパからの排出
量が計量設定値となるように制御する排出計量方
式とがある。第1図は、これらの計量時における
計量ホツパの状態を示す図であり、同図イは投入
計量方式による場合、ロは排出計量方式による場
合の計量ホツパ内の状態を示している。同図イに
おいて、粉粒体投入時の状態を考察すると、計量
ホツパ内の粉粒体は、貯蔵ホツパから投入されて
次第に量を増していく。そして、投入目標値Aに
至ると、貯蔵ホツパへ閉塞指令が送られる。投入
目標値Aは、計量設定値A0から、落差補正値ε
差し引いたものであり、落差補正値εは、貯蔵ホ
ツパの閉塞指令が出された後、計量ホツパに流入
する粉粒体の量を勘案して定められた値である。
すなわち、貯蔵ホツパの閉塞指令が出されてから
実際に貯蔵ホツパが閉じるまでには、制御系およ
び機械系の応答遅れや動作時間があり、また、貯
蔵ホツパが実際に閉じてからも、その出口と計量
ホツパとの間に、まだ落ち切らずに残つている粉
粒体もあるため、貯蔵ホツパの閉塞指令がでてか
らも粉粒体は計量ホツパに流入し、投入目標値A
よりも落差補正値ε分多い所で計量ホツパへの供
給が止まると考えられる。そこで、予め計量設定
値A0より落差補正値ε分少い投入目標値Aを設
定する。しかし、このようにしても実投入量Gは
計量設定値A0からずれてしまう。そして、この
実投入量はGから計量設定値A0を減じた値が計
量誤差δであり、実投入量Gの値に応じて正負の
値をとりうる(図の場合は正)。
Automatic metering and feeding equipment automatically measures and supplies powder and granular raw materials, etc., and occupies an important position in the production line of factories that handle many types of powder and granular raw materials. ing. This type of automatic metering and feeding apparatus generally weighs powder and granular material supplied from a storage hopper with a weighing hopper, and supplies the powder and granular material from this weighing hopper to other processing equipment. in this case,
There is a feeding metering method that controls the input amount into the weighing hopper so that it becomes a predetermined measurement setting value, and another method that controls the input amount into the weighing hopper in advance so that the amount discharged from the weighing hopper becomes the measurement setting value. There is a discharge metering method. FIG. 1 is a diagram showing the state of the weighing hopper during these measurements, in which A shows the state inside the weighing hopper when the input weighing method is used, and B shows the state inside the weighing hopper when the discharge weighing method is used. In Figure A, considering the state when the powder or granular material is introduced, the amount of the powder or granular material in the weighing hopper gradually increases as it is introduced from the storage hopper. When the input target value A is reached, a closing command is sent to the storage hopper. The input target value A is the head correction value ε from the measurement setting value A 0 .
The head correction value ε is a value determined in consideration of the amount of powder and granular material flowing into the weighing hopper after the storage hopper closing command is issued.
In other words, there is a response delay and operation time of the control system and mechanical system from when a storage hopper closing command is issued until the storage hopper actually closes, and even after the storage hopper is actually closed, there is a delay in the exit of the storage hopper. Since some powder and granules still remain between the storage hopper and the weighing hopper, the powder still flows into the weighing hopper even after the storage hopper blockage command is issued, and the target input value A is reached.
It is thought that the supply to the weighing hopper will stop at a point where the head correction value ε is greater than . Therefore, the input target value A is set in advance to be less than the metering set value A 0 by the head correction value ε. However, even if this is done, the actual input amount G will deviate from the measurement setting value A0 . The measurement error δ is the value obtained by subtracting the measurement setting value A 0 from the actual input amount G, and can take a positive or negative value depending on the value of the actual input amount G (positive in the case of the figure).

次に、第1図ロに示す排出計量方式において
は、計量ホツパに予め適当量Wが投入され、以後
排出が行われる。この際計量ホツパ内の粉粒体
が、排出目標値Aだけ排出されたときに排出停止
指令が出され、実排出量Gのときに実際の排出が
停止する。そして、この場合も、排出目標値A
は、計量設定値A0から落差補正値εを減じた値
として、また、計量誤差δは、実排出量Gから計
量設定値A0を減じた値として、各々決定される。
こうして、自動計量供給装置においては、実投入
量(実排出量)Gの値が、計量設定値A0と等し
くなるように、計量設定値A0から落差補正値ε
を減じて、投入(排出)目標値Aを定め、これに
基づいて計量制御が行われている。そして、従来
の自動計量供給装置においては、落差補正値ε
は、操作者が計量誤差の情況に応じて値を変更し
ながら設定していた。
Next, in the discharge metering method shown in FIG. At this time, a discharge stop command is issued when the powder and granular material in the weighing hopper has been discharged by the discharge target value A, and when the actual discharge amount G is reached, the actual discharge is stopped. In this case as well, the emission target value A
is determined as the value obtained by subtracting the head correction value ε from the measurement setting value A 0 , and the measurement error δ is determined as the value obtained by subtracting the measurement setting value A 0 from the actual discharge amount G.
In this way, in the automatic metering and feeding device, the value of the actual input amount (actual discharge amount) G is adjusted from the metering setting value A 0 to the head correction value ε so that it becomes equal to the metering setting value A 0 .
is subtracted to determine input (discharge) target value A, and metering control is performed based on this. In the conventional automatic metering and feeding device, the head correction value ε
was set by the operator by changing the value depending on the situation of measurement error.

ところで、この落差補正値εは、装置の特性、
被計量物の物性、計量設定値などにより微妙に変
化し、その最適値を入手によつて定めることは極
めて困難であり、このため、計量精度には一定の
限界があつた。
By the way, this head correction value ε depends on the characteristics of the device,
It varies slightly depending on the physical properties of the object to be measured, the measurement setting values, etc., and it is extremely difficult to determine the optimum value by obtaining data, and therefore there is a certain limit to the measurement accuracy.

この発明は、上記の事情にに鑑み、落差補正値
を自動的に修正することによつて、高い精度で計
量することのできる自動計量供給装置を提供する
もので、この目的を達成するために、本発明は前
回計量時の実投入量または実排出量から計量設定
値を差し引き、前回の計量誤差を求めこの計量誤
差の絶対値が予め定められた不感帯設定値よりも
大きい場合は、この計量誤差に予め定められた定
数を乗じ、この値と前回の落差補正値とに基づい
て今回の落差補正値を算出し、前記計量誤差が前
記不感帯設定値以下の場合は、前回の落差補正値
をそのまま今回の落差補正値とすることを特徴と
する。
In view of the above-mentioned circumstances, the present invention provides an automatic metering and feeding device that can measure with high accuracy by automatically correcting the head correction value. , the present invention subtracts the measurement setting value from the actual input amount or actual discharge amount at the previous measurement to obtain the previous measurement error, and if the absolute value of this measurement error is larger than the predetermined dead band setting value, this measurement The error is multiplied by a predetermined constant, and the current head correction value is calculated based on this value and the previous head correction value. If the weighing error is less than the dead zone setting value, the previous head correction value is calculated. It is characterized in that the current head difference correction value is used as it is.

以下、図面に基づき本発明の実施例を説明す
る。第2図は、本発明の一実施例の構成を示すブ
ロツク図であり、1は内部に粉粒体2が貯蔵され
ている貯蔵ホツパであり、3は貯蔵ホツパ1の下
端開口部に近接して設けられている電磁フイーダ
である。この電磁フイーダ3は比較制御回路5に
より、その駆動、非駆動が制御され、駆動時には
粉粒体2を振動搬送し、高速又は低速で計量ホツ
パ6の上端開口部へ投入する。計量ホツパ6の外
周面上部には水平方向に延びる腕7a,7bが対
向して設けられており、この腕7a,7bが各々
ロードセル8a,8bおよびワイヤを介して固定
端に取り付けられている。この場合、計量ホツパ
6は、固定端からロードセル8a,8bを介して
宙吊り状態にある。9は計量ホツパ6の下端開口
部に近接して設けられている電磁フイーダであ
り、電磁フイーダ3と同様に比較制御回路5によ
つて制御される。10は重量検出回路であり、ロ
ードセル8a,8bが出力する重量信号に基づい
て、計量ホツパ6内の粉粒体2の重量を検出し、
投入(排出計量方式においては排出)量WRを比
較制御回路5へ供給するともに、投入(排出)終
了時の実投入(排出)量Goを後述のCPU12へ
供給する。11はキーボード等からなる操作部で
あり、計量設定値A0、落差補正値の初期値ε0
定数K、不感帯設定値Dを入力するために設けら
れている。この初期値ε0は、1回目の計量時に用
いられる落差補正値であり、零でもよい。また、
定数Kは経験的に定められる値であり、粉粒体2
の種類等によつて異なる。さらに、不感帯設定値
Dは、計量誤差δoの許容範囲を示すもので、その
一例を第3図、第4図に示す。12は中央処理装
置(CPU)であり、装置各部を制御するほか、
後述する演算を行い、演算結果である投入(排
出)目標値Aoを比較制御回路5へ供給する。そ
して比較制御回路5は、投入(排出)量WRと投
入(排出)目標値Aoとを比較し、Ao>WRの場
合、電磁フイーダ3を駆動して、電磁フイーダ9
を停止し、Ao=WRになると電磁フイーダ3を停
止し、電磁フイーダ9を駆動する。また、14は
CPU12で用いられるプログラムが記憶されて
いるメモリ、15はデータバスである。
Embodiments of the present invention will be described below based on the drawings. FIG. 2 is a block diagram showing the configuration of an embodiment of the present invention, in which 1 is a storage hopper in which powder and granular material 2 is stored, and 3 is a storage hopper located close to the lower end opening of the storage hopper 1. This is an electromagnetic feeder installed at The electromagnetic feeder 3 is controlled to be driven or not driven by a comparison control circuit 5, and when it is driven, it vibrates and conveys the powder 2 and feeds it into the upper opening of the weighing hopper 6 at high or low speed. Arms 7a and 7b that extend in the horizontal direction are provided opposite to each other on the upper outer peripheral surface of the weighing hopper 6, and these arms 7a and 7b are respectively attached to fixed ends via load cells 8a and 8b and wires. In this case, the weighing hopper 6 is suspended from the fixed end via the load cells 8a, 8b. Reference numeral 9 denotes an electromagnetic feeder provided close to the lower end opening of the weighing hopper 6, and is controlled by the comparison control circuit 5 similarly to the electromagnetic feeder 3. 10 is a weight detection circuit, which detects the weight of the powder or granular material 2 in the weighing hopper 6 based on the weight signals output by the load cells 8a and 8b;
The input (or discharge in the case of the discharge metering method) amount W R is supplied to the comparison control circuit 5, and the actual input (discharge) amount G o at the end of the input (discharge) is supplied to the CPU 12, which will be described later. Reference numeral 11 denotes an operation unit consisting of a keyboard, etc., which controls the measurement setting value A 0 , the initial value ε 0 of the head correction value,
It is provided for inputting a constant K and a dead zone setting value D. This initial value ε 0 is a head correction value used during the first measurement, and may be zero. Also,
The constant K is an empirically determined value, and the granular material 2
It varies depending on the type etc. Further, the dead zone setting value D indicates the allowable range of the measurement error δ o , and examples thereof are shown in FIGS. 3 and 4. 12 is a central processing unit (CPU), which in addition to controlling each part of the device,
The computation described later is performed, and the input (discharge) target value Ao , which is the computation result, is supplied to the comparison control circuit 5. The comparison control circuit 5 then compares the input (discharge) amount W R with the input (discharge) target value A o , and if A o > W R , drives the electromagnetic feeder 3 and controls the electromagnetic feeder 9
When A o =W R , the electromagnetic feeder 3 is stopped and the electromagnetic feeder 9 is driven. Also, 14 is
A memory 15 stores programs used by the CPU 12, and a data bus.

次に、第2図、第3図を参照して、本実施例の
動作を説明する。第3図は、投入計量方式によつ
て粉粒体2の計量を繰返す場合の計量ホツパ6内
の重量変化を示す図であり、図においてA0は計
量設定値であり、予め操作部11から入力され
る。また、Ao,Go,εo,δo(n=1,2,3,
4)は各々、第n回目の計量目標値、実投入量、
落差補正値、計量誤差を示している。
Next, the operation of this embodiment will be explained with reference to FIGS. 2 and 3. FIG . 3 is a diagram showing the weight change in the weighing hopper 6 when the powder or granular material 2 is repeatedly weighed by the input weighing method. is input. Also, A o , G o , ε o , δ o (n=1, 2, 3,
4) are the nth measurement target value, actual input amount,
Indicates head correction value and weighing error.

さて、計量を開始する場合、操作者は先ず、操
作部11を操作して、計量設定値A0、落差補正
値εの初期値ε0、定数KをCPU12に入力し、
次に計量をスタートさせる。これによつてCPU
12は、第3図イに示す第1回目の投入目標値
A1を次式によつて演算し、比較制御回路5に供
給する。
Now, when starting measurement, the operator first operates the operation unit 11 to input the measurement setting value A 0 , the initial value ε 0 of the head correction value ε, and the constant K to the CPU 12,
Next, start weighing. This will cause the CPU
12 is the first input target value shown in Figure 3 A.
A 1 is calculated using the following equation and is supplied to the comparison control circuit 5.

A1=A0−ε1 ……(1) ただし、ε1=ε0 ところで、初期状態においては、計量ホツパ6
は空であり、投入量WR=0であるから、A1>WR
となる。そこで、比較制御回路5は、電磁フイー
ダ3の駆動を開始し、貯蔵ホツパ1内の粉粒体2
が計量ホツパ6内に高速で投入される。こうし
て、計量ホツパ6内に粉粒体2が投入されてい
き、投入量WRが予め定められた値(第3図のA0
−S)になると、比較制御回路5は電磁フイーダ
9を制御し、投入速度を低速に切換え、投入終了
に備える。そして、WR=A1になると、比較制御
回路5は電磁フイーダ3に貯蔵ホツパ閉塞指令を
出し、電磁フイーダ3を停止させる。この際、指
令が出されてから、計量ホツパ6への投入が実際
に停止するまでに、しばらくの時間がかかり、こ
の間計量ホツパ6への投入量は、第3図イのG1
まで増加する。こうして第1回目の投入が終了す
ると、比較制御回路5は電磁フイーダ9を駆動
し、粉粒体2を計量ホツパ6から排出させる。そ
して、CPU12は、重量検出器10から実投入
量G1を読み取り、次のようにして第2回目の投
入目標値A2を演算する。
A 1 = A 0 −ε 1 ...(1) However, ε 1 = ε 0 By the way, in the initial state, the weighing hopper 6
is empty and input amount W R = 0, so A 1 > W R
becomes. Therefore, the comparison control circuit 5 starts driving the electromagnetic feeder 3 and starts to drive the powder and granular material in the storage hopper 1.
is thrown into the weighing hopper 6 at high speed. In this way, the powder or granular material 2 is charged into the weighing hopper 6, and the input amount W R is set to a predetermined value (A 0 in Fig. 3).
-S), the comparison control circuit 5 controls the electromagnetic feeder 9, switches the feeding speed to a low speed, and prepares for the end of feeding. When W R =A 1 , the comparison control circuit 5 issues a storage hopper closing command to the electromagnetic feeder 3 to stop the electromagnetic feeder 3. At this time, it takes some time after the command is issued until the feeding into the weighing hopper 6 actually stops, and during this time the amount fed into the weighing hopper 6 is G1 in Figure 3 A.
increase to. When the first feeding is completed in this manner, the comparison control circuit 5 drives the electromagnetic feeder 9 to discharge the powder 2 from the weighing hopper 6. Then, the CPU 12 reads the actual input amount G 1 from the weight detector 10 and calculates the second input target value A 2 as follows.

δ1=G1−A0 ……(2) なる式によつて前回(第1回目)の計量誤差δ1
求め、次に、計量誤差δ1の絶対値|δ1|が、 |δ1|≦D ……(3) (ただし、Dは不感帯設定値) なる式を満す場合は、前回の落差補正値ε1をその
まま今回の落差補正値ε2とする。すなわち、 ε2=ε1 ……(4) とする。一方、絶対値|δ1|が |δ1|>D ……(5) なる式を満す場合は、前回の落差補正値ε1に次式
の補正を施し、今回の落差補正値ε2を得る。すな
わち、 ε2=ε1+Kδ1 ……(6) なる式によつて、前回の落差補正値ε1に、前回の
計量誤差δ1と定数Kを掛けた値を加算して今回の
落差補正値ε2を得る。こうして(4)、又は(6)式で得
られた落差補正値ε2を計量設定値A0から差し引
いて第2回目の投入目標値A2を得る。すなわち、
CPU12は、 A2=A0−ε2 ……(7) なる式によつて、投入目標値A2を求め、この値
を比較制御回路5に供給する。こうして、第3図
ロに示す第2回目の計量が第1回目と同様にして
行われる。
The previous (first) weighing error δ 1 is determined by the formula δ 1 = G 1 −A 0 ……(2), and then the absolute value of the weighing error δ 11 | is |δ 1 |≦D (3) (where D is the dead zone setting value) If the following formula is satisfied, the previous head difference correction value ε 1 is used as the current head difference correction value ε 2 . In other words, ε 2 = ε 1 ...(4). On the other hand, if the absolute value |δ 1 | satisfies the formula |δ 1 |>D ...(5), the previous head correction value ε 1 is corrected by the following equation, and the current head correction value ε 2 get. That is, according to the formula ε 2 = ε 1 + Kδ 1 ...(6), the current head correction is made by adding the product of the previous weighing error δ 1 and the constant K to the previous head correction value ε 1 . We get the value ε 2 . In this way, the head correction value ε 2 obtained by equation (4) or (6) is subtracted from the measurement setting value A 0 to obtain the second injection target value A 2 . That is,
The CPU 12 calculates the input target value A 2 using the formula A 2 =A 0 −ε 2 (7), and supplies this value to the comparison control circuit 5. In this way, the second weighing shown in FIG. 3B is performed in the same manner as the first one.

このようにして、第(n−1)回目の計量が終
了すると、CPU12は、以下のようにして第n
回目の投入目標値Aoを求める。
In this way, when the (n-1)th measurement is completed, the CPU 12 performs the nth measurement as follows.
Find the target input value Ao for the first time.

δ(n−1)=G(n−1)−A0 ……(8) εo=ε(n−1) ……(9) (ただし|δ(n−1)|≦Dのとき) εo=ε(n−1)+Kδ(n−1) ……(10) (ただし|δ(n−1)|>Dのとき) これらの式は、(2)式,(4)式,(6)式に対応するも
のであり、その適用例を第3図に基づいて説明す
る。第3図イ(第1回目の計量)、ロ(第2回目
の計量)においては、|δ1|>D、|δ2|>Dなの
で(10)式から落差補正値ε2、ε3が求められ、この結
果、ε1<ε2<ε3となる。そして、第3回目の計量
(同図ハ)においては、|δ3|<Dとなり、計量誤
差δ3の絶対値|δ3|が不感帯設定値Dよりも小さ
くなる。これは第3回目の計量が極めて正確に遂
行されたためであり、第4回目の計量(同図ニ)
において、落差補正値ε4を修正する必要はないと
考えられる。そこで(9)式によつてε4=ε3と設定さ
れ、これに基づいて第4回目の計量が行われる。
こうして、前回の計量が極めて正確に行われた場
合は、今回の計量も前回と同じ条件下で行うよう
にすることによつて、計量時のハンチング現象を
防止することができ、これによつて計量精度をさ
らに向上させることができる。
δ(n-1)=G(n-1)-A 0 ...(8) ε o =ε(n-1)...(9) (However, when |δ(n-1)|≦D) ε o = ε(n-1)+Kδ(n-1) ...(10) (when |δ(n-1)|>D) These equations are equations (2), (4), This corresponds to equation (6), and an example of its application will be explained based on FIG. In Figure 3 A (first measurement) and B (second measurement), |δ 1 |>D, |δ 2 |>D, so from formula (10), the head correction values ε 2 , ε 3 As a result, ε 1 < ε 2 < ε 3 . Then, in the third measurement (FIG. 3C), |δ 3 |<D, and the absolute value |δ 3 | of the measurement error δ 3 becomes smaller than the dead zone setting value D. This is because the third measurement was carried out extremely accurately, and the fourth measurement (see figure d)
In this case, it is considered that there is no need to modify the head correction value ε 4 . Therefore, ε 43 is set using equation (9), and the fourth measurement is performed based on this.
In this way, if the previous weighing was performed extremely accurately, the hunting phenomenon during weighing can be prevented by performing the current weighing under the same conditions as the previous time. Weighing accuracy can be further improved.

以上を要約すると、前回の実投入量G(n−1)
から計量設定値A0を差し引いて前回の計量誤差
δ(n−1)を求め、その絶対値|δ(n−1)|
が不感帯設定値D以下であれば、前回の落差補正
値ε(n−1)をそのまま今回の落差補正値εo(=
ε(n−1))とし、絶対値|δ(n−1)|が不感
帯設定値Dより大きければ、計量誤差δ(n−1)
と定数Kとの積をとり、その値に前回の落差補正
値ε(n−1)を加算して今回の落差補正値εo
求める。このように、前回の計量が設定範囲内の
精度で行われていればそのままの状態で計量を続
け、設定範囲内の精度で行われなかつた場合は、
落差補正値εoを自動的に修正する。こうして、落
差補正値εoの値を次第に最適な値にすることがで
きる。
To summarize the above, the previous actual input amount G(n-1)
Find the previous weighing error δ(n-1) by subtracting the weighing set value A 0 from and calculate its absolute value |δ(n-1)|
is less than the dead zone setting value D, the previous head correction value ε(n-1) is changed to the current head correction value ε o (=
ε(n-1)), and if the absolute value |δ(n-1)| is larger than the dead zone setting value D, the weighing error δ(n-1)
and a constant K, and add the previous head correction value ε(n-1) to that value to obtain the current head correction value ε o . In this way, if the previous measurement was performed with an accuracy within the set range, the measurement will continue as it is, and if the previous measurement was not performed with the accuracy within the set range,
Automatically correct the head correction value εo . In this way, the value of the head correction value ε o can be gradually brought to an optimal value.

次に、第4図は排出計量方式によつて、計量を
繰返す場合の計量ホツパ6内の重量変化を示す図
であり、図においてWo(n=1,2,3,4)は
計量に先立つて、計量ホツパ6に適当に投入され
た粉粒体2の重量であり、この重量Woを基準と
して、計量が行われる。その具体的方法は上述し
た投入計量方式とほぼ同じなのでその説明を省略
する。
Next, FIG. 4 is a diagram showing the weight change in the weighing hopper 6 when weighing is repeated by the discharge weighing method. In the figure, W o (n=1, 2, 3, 4) is This is the weight of the powder or granular material 2 that has been appropriately charged into the weighing hopper 6 in advance, and the weighing is performed based on this weight W o . The specific method is almost the same as the input metering method described above, so its explanation will be omitted.

以上説明したように、この発明は、前回計量時
の実投入量または実排出量から計量設定値を差し
引き、前回の計量誤差を求め、この計量誤差の絶
対値が予め定められた不感帯設定値よりも大きい
場合は、この計量誤差に予め定められた定数を乗
じ、この値と前回の落差補正値とに基づいて今回
の落差補正値を算出し、前記計量誤差が前記不感
帯設定値以下の場合は、前回の落差補正値をその
まま今回の落差補正値とするので、落差補正値が
自動的に修正され、これによつて自動計量供給装
置の計量精度を向上させることとができる。ま
た、不感帯を設けたことによつて、計量バツチ毎
に起こるハンチング現象が防止でき、これによつ
て計量精度をさらに向上させることができる。
As explained above, the present invention subtracts the measurement setting value from the actual input amount or actual output amount at the previous measurement to obtain the previous measurement error, and the absolute value of this measurement error is calculated from the predetermined dead band setting value. If the weighing error is also large, this weighing error is multiplied by a predetermined constant, and the current head compensation value is calculated based on this value and the previous head compensation value. If the weighing error is less than the dead zone setting value, Since the previous head correction value is used as the current head correction value, the head correction value is automatically corrected, thereby improving the metering accuracy of the automatic metering and feeding device. Further, by providing the dead zone, it is possible to prevent the hunting phenomenon that occurs in each weighing batch, thereby further improving the weighing accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、計量時における計量ホツパの状態を
示す図、第2図はこの発明の一実施例の構成を示
すブロツク図、第3図は投入計量方式によつて粉
粒体の計量を繰返す場合の計量ホツパ6内の重量
変化を示す図、第4図は排出計量方式によつて粉
粒体の計量を繰返す場合の計量ホツパ6内の重量
変化を示す図である。 2……粉粒体(被計量物)、6……計量ホツパ、
12……CPU(演算手段)、A0……計量設定値、
Ao……(n=1,2…)……投入(排出)目標
値、D……不感帯設定値、Go(n=1,2…)…
…実投入量(実排出量)、K……定数、εo(n=
1,2…)……落差補正値、δo(n=1,2…)
……計量誤差。
Fig. 1 is a diagram showing the state of the weighing hopper during measurement, Fig. 2 is a block diagram showing the configuration of an embodiment of the present invention, and Fig. 3 is a diagram showing repeated weighing of powder and granular material using the input weighing method. FIG. 4 is a diagram showing the weight change in the weighing hopper 6 when weighing powder or granules is repeated by the discharge weighing method. 2... Powder (object to be weighed), 6... Weighing hopper,
12... CPU (calculation means), A 0 ... Weighing set value,
A o ...(n=1,2...)...Input (discharge) target value, D...Dead band setting value, G o (n=1,2...)...
...actual input amount (actual output amount), K...constant, ε o (n=
1, 2...)...Head correction value, δ o (n=1, 2...)
...Weighing error.

Claims (1)

【特許請求の範囲】 1 計量設定値と落差補正値とに基づき、投入目
標値または排出目標値を求め、この目標値に基づ
いて自動計量を行う自動計量供給装置において、 前記計量設定値を入力する入力手段と、 予め定められた定数を入力する入力手段と、 不感帯設定値を入力する入力手段と、 前回計量時の実投入量または実排出量から前
記計量設定値を差し引き、前回の計量誤差を求
め、この計量誤差の絶対値が前記不感帯設定値
以下の場合は前回の落差補正値をそのまま今回
の落差補正値とし、前記計量誤差の絶対値が前
記不感帯設定値より大きい場合は、前記計量誤
差に前記定数を乗じ、この値と前回の落差補正
値とに基づいて今回の落差補正値を算出する演
算手段と を具備することを特徴とする自動計量供給装置。
[Scope of Claims] 1. In an automatic metering and supplying device that determines a target input value or a target discharge value based on a metering set value and a head correction value, and performs automatic metering based on this target value, the metering set value is input. input means for inputting a predetermined constant; input means for inputting a dead zone set value; If the absolute value of this weighing error is less than the dead band setting value, the previous head correction value is used as the current head correction value, and if the absolute value of the weighing error is greater than the dead band setting value, the An automatic metering/feeding device comprising a calculation means for multiplying the error by the constant and calculating a current head correction value based on this value and a previous head correction value.
JP16633082A 1982-09-24 1982-09-24 Automatic weighing supply device Granted JPS5956117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16633082A JPS5956117A (en) 1982-09-24 1982-09-24 Automatic weighing supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16633082A JPS5956117A (en) 1982-09-24 1982-09-24 Automatic weighing supply device

Publications (2)

Publication Number Publication Date
JPS5956117A JPS5956117A (en) 1984-03-31
JPS641730B2 true JPS641730B2 (en) 1989-01-12

Family

ID=15829358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16633082A Granted JPS5956117A (en) 1982-09-24 1982-09-24 Automatic weighing supply device

Country Status (1)

Country Link
JP (1) JPS5956117A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02117029U (en) * 1989-03-10 1990-09-19

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02117029U (en) * 1989-03-10 1990-09-19

Also Published As

Publication number Publication date
JPS5956117A (en) 1984-03-31

Similar Documents

Publication Publication Date Title
AU635088B2 (en) System for precisely controlling discharge rates of loss-in-weight feeder systems
US4534428A (en) Vibratory feeder control for a weighing system
US4766966A (en) Apparatus and method of controlling rate of feeding product to weigher
US5121638A (en) Method and device for recording the flow rate of a stream of bulk material
US4642788A (en) Combinatorial weighing method and apparatus
JPS641730B2 (en)
US4023021A (en) Method and apparatus for weighing batches of liquid and other pourable substances
JPS6148845B2 (en)
JPS641729B2 (en)
JPS6151247B2 (en)
JP3565568B2 (en) Raw material cutting weighing control method
CN112238529A (en) Powder metering system and control method thereof
JP2661838B2 (en) Screw feeder-type fixed quantity cutting device
JPS63279119A (en) Powder weighing method
JP2699100B2 (en) Quantitative filling method
SU932265A1 (en) Method of weighing-batching of loose material and loose material weigher-batcher
JPH095150A (en) Constant amount supplying apparatus
JP2005206848A (en) Method for controlling amount of raw material charged into blast furnace, program therefor and method for operating blast furnace
JP3267841B2 (en) Controller with phase compensation function
SU1624036A1 (en) Method for controlling charging of sintering belt
JPH07311077A (en) Combination weight system
SU1516792A1 (en) Method of weighing loose materials and weigher for loose materials
JPS6191520A (en) Weighing/filling control method and apparatus
RU2026376C1 (en) Method for automatic stabilization of sinter burden thickness on sintering machine
SU1640183A1 (en) Device for mixture charge to agglobelt control