JPS6191520A - Weighing/filling control method and apparatus - Google Patents

Weighing/filling control method and apparatus

Info

Publication number
JPS6191520A
JPS6191520A JP21269584A JP21269584A JPS6191520A JP S6191520 A JPS6191520 A JP S6191520A JP 21269584 A JP21269584 A JP 21269584A JP 21269584 A JP21269584 A JP 21269584A JP S6191520 A JPS6191520 A JP S6191520A
Authority
JP
Japan
Prior art keywords
filling
basket
weighing
weight
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21269584A
Other languages
Japanese (ja)
Inventor
Akira Iwata
岩田 昭
Jiro Nagashima
長嶋 次郎
Atsuo Koide
小出 敦雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LION ENG KK
Original Assignee
LION ENG KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LION ENG KK filed Critical LION ENG KK
Priority to JP21269584A priority Critical patent/JPS6191520A/en
Publication of JPS6191520A publication Critical patent/JPS6191520A/en
Pending legal-status Critical Current

Links

Landscapes

  • Weight Measurement For Supplying Or Discharging Of Specified Amounts Of Material (AREA)
  • Supply Of Fluid Materials To The Packaging Location (AREA)
  • Basic Packing Technique (AREA)

Abstract

PURPOSE:To enable a high-speed filling at a high accuracy, by calculating the drop impact value from second to second detecting the weighing increment speed in a weighing basket at a fixed cycle to cut off the dumping when the net dump amount reaches a set value. CONSTITUTION:When a filling material I exceeding a fixed amount is dumped into a weighing basket 2 from a feeding hopper 1 reaches a forecast net dump amount value, the dumping is cut off with a controller 5 to measure the filling material I with a weighing device 3 and then, a suction nozzle 4 is operated to suck up the filling material I' by an amount exceeding the fixed amount by inserting into the basket 2. Moreover, the filling material I in the basket 2 during the operation of the suction nozzle 4 is weighed and the operation of the suction nozzle 4 is halted with a controller 5 when it decreases to the fixed amount and finally, the filling material I weighed in the backet 2 is discharged to a container II to fill. The container II filled is moved and an empty container II below the basket 2 is sent in. This can improve the filling yields significantly to enable a high speed and a higher accuracy of the total filling cycle.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、洗剤などの粉粒体或いは顆粒ペレット、塊状
物、液体等を一定量計量して容器に充填するのに高速、
高精度に充填する計量充填制御方法およびその装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is a high-speed, high-speed, and high-speed method for measuring a fixed amount of powder, granule pellets, lumps, liquid, etc. of detergent, etc., and filling it into a container.
The present invention relates to a metering and filling control method for filling with high precision and an apparatus therefor.

〔従来の技術) 一般に包装商品では内容物の表示重量つきで販売される
ことが多いが、内容物の量的過不足がある場合、実際の
取引では表示重量の不足の方が問題であり、経験的に販
売者としては常に表示重量より多い目の重量に充填して
その安全度をみているのでこの包装傾向は経済的損失が
極めて大きい。
[Prior art] Generally, packaged products are often sold with the indicated weight of the contents, but if there is an excess or deficiency in the quantity of the contents, the lack of indicated weight is more of a problem in actual transactions. From experience, as a seller, I always check the safety level by filling the product to a weight higher than the indicated weight, so this packaging trend causes an extremely large economic loss.

そのため包装の際総重量のバラツキを可及的に小さくす
る高精度の計量と計量作業の高速度布が望まれている。
Therefore, there is a demand for highly accurate weighing and high-speed weighing fabrics that minimize variations in total weight during packaging.

従来のこの種方法の一例としては、粉粒体1例えば洗剤
を計量すべきスペース内へ定量以下の量を最初に供給し
、次いで定食不足分を小出しに供給し微量補充を行うと
いう盛込方法が採用されていた。即ち、被計量物(充填
物)を容器に充填した後、クエイトチェツカによりその
重量(通常は容器を含む重量)を測定し、重量不足品を
避けるために量目に上乗せする盛込量を定期的に設定し
ながら充填重量の管理を行う方式を採用している。
An example of a conventional method of this type is a loading method in which powder or granular material 1, for example, detergent, is first supplied in an amount less than the fixed amount into the space to be measured, and then the shortfall in the set meal is supplied in small amounts to replenish the amount. had been adopted. In other words, after filling a container with the object to be weighed (filling material), the weight (usually including the container) is measured using a weight checker, and the amount to be added is periodically added to the weight to avoid underweight items. A method is used to manage the filling weight while setting the

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

ところが、粱込量が修正されるまで計量(充填)指定量
(量目+盛込量)が固定で、一般に重量不足品を避ける
ため盛込量は大きく見る傾向があるので、搬入する被計
量物(例えば粉粒体)の流動性、嵩比重等が安定し、盛
込量が少なくてすむ場合でも、安全を見るため盛込量が
大きくなり、その分だけ盛込量が増加し、充填歩留りが
悪化する′という精度上の問題があるばかりか、この微
量補充方式は高精度計量をするには投入速度に減速か必
要となるばかりか計量時間がかかり、充填処理作業とし
ては実用的ではない。
However, the specified weighing (filling) amount (quantity + filling amount) is fixed until the filling amount is corrected, and there is a general tendency to overestimate the filling amount to avoid underweight items. Even if the fluidity, bulk specific gravity, etc. of the material (for example, powder or granular material) are stable and the amount of filling is small, the amount of filling is increased to ensure safety, and the amount of filling increases by that amount. Not only is there an accuracy problem in that the yield is degraded, but this micro-replenishment method not only requires slowing down the feeding speed for high-precision weighing, but also takes a long time to weigh, making it impractical for filling processing operations. do not have.

このため短時間に大量に投入し余剰分を排除づ−る方式
が試みられるようになったが、短時間に大量投入しても
、投入誤差が多くてはあとの終点バランスに時間を要し
、高速充填はできない。この大量投入の際の誤差は、落
下衝撃、投入ゲートウ)ら粉面までの空中通過量、ゲー
トの締切り時間中の落下量があり、後の二つは低落差、
高速遮断で対応できるが落下@撃は落下質量速度が大き
いほど高くなり、また、粉粒体の嵩比重、流動性が変化
すると衝撃値のバラツキが生じ、オフセット(偏差)、
バラツキ誤差とも大きくなる。このため落差補正といっ
て前回充填の遮断設定値と終点との差をフィードバック
して修正する方法が考えられるが、これでもオフセット
修正が基本で、バラツキ誤差は吸収できず精度的に問題
がある。
For this reason, attempts have been made to introduce a large amount of material in a short period of time and remove the surplus, but even if a large amount of material is added in a short period of time, if there is a large amount of error in the amount of material, it will take time to balance the end point. , high-speed filling is not possible. Errors during this large amount of charging include the impact of the fall, the amount of air passing from the charging gate to the powder surface, and the amount of falling during the gate cutoff time.The latter two are due to low head,
Although it can be handled by high-speed interruption, the falling @ impact increases as the falling mass velocity increases, and changes in the bulk specific gravity and fluidity of the powder or granule material will cause variations in the impact value, offset (deviation),
The variation error also increases. For this reason, there is a method known as head correction, which feeds back the difference between the shutoff setting value of the previous filling and the end point and corrects it, but even this method is basically an offset correction, and it cannot absorb the variation error and has accuracy problems. .

本発明は、これら従来の欠点を排除するため、高い精度
で短時間大量投入をし終点バラジスの負担を軽減させる
ため大量投入中リアルタイムにその時点での落下衝撃値
を刻々計算し正味投入量を予測しながら設定値に予測値
が達した時点で投入遮断をすることにより、即ち投入落
下誤差を予測して自動修正する予測制御で高速、高精度
に充填することを可能とする有用な方法とその方法を効
果的に実現できる装置を構成簡単で安価な形態で提供す
ることを目的とするものである。また1本発明の他の目
的は投入速度を減速しない一定速度投入で計量時間の短
縮と、落下衝撃値の変動(速度、空気との抵抗)があっ
ても影響されず1サイクルのスピードアップと計量精度
の向上とを可能にした計量充填方法およびその装置を提
供することにある。
In order to eliminate these conventional drawbacks, the present invention enables high-accuracy, high-volume injection in a short period of time, and in order to reduce the burden on the end-point barage, the drop impact value at that point is calculated moment by moment during large-volume injection in real time, and the net input amount is calculated. This is a useful method that enables high-speed, high-precision filling by predictive control that predicts and automatically corrects the feeding drop error by predicting and cutting off the feeding when the predicted value reaches the set value. It is an object of the present invention to provide a device that can effectively implement the method in a simple and inexpensive form. Another object of the present invention is to shorten the weighing time by constant speed input without slowing down the input speed, and to speed up one cycle without being affected by fluctuations in drop impact value (velocity, resistance with air). It is an object of the present invention to provide a weighing and filling method and an apparatus for the same that make it possible to improve weighing accuracy.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は容器に充填すべき定量以上の充填物を計量バス
ケットに投入したのち、この定量を超えた量の充填物を
排除して容器に充填する計量充填制御において、前記計
量バスケット内の計量増加速度を一定周期で検出して落
下衝撃値を刻々計算し正味投入量を予測しながら設定値
処予測値が達した時点で投入遮断したのち、前記投入超
過量分を排除することを特徴とする計量充填制御方法お
よびその装置である。
The present invention provides for increasing the amount of material in the weighing basket in weighing and filling control in which a quantity of filling exceeding the fixed amount to be filled into the container is put into the measuring basket, and then the filling amount exceeding the fixed amount is removed and filling the container. The method is characterized in that the velocity is detected at a constant cycle, the falling impact value is calculated moment by moment, the net amount of input is predicted, and the input is cut off when the set value reaches the predicted value, and then the excess amount of input is eliminated. A metering and filling control method and apparatus thereof.

〔実施例〕〔Example〕

以下に本発明の好適な実施例を図面に基づいて説明する
と、第1図において、供給ホッパー1から充填すべき定
量以上の充填物■を計量バスケット2に投入してこの投
入中に正味投入量予測値に達した時に制御装置5で投入
遮断し、この充填物■を計量装置3で計量して吸引ノズ
ル4を作動させ、続いて計量バスケット2内に挿入され
た吸引ノズル4で定量を超えた量の充填物I′が吸引さ
れる。さらに、吸引ノズル4が作動中の計量バスケット
2内の充填物Iを計量し、定量まで減量したときに吸引
ノズル4の作動を制御装置5で停止させ、最後にバスケ
ット2内の計量された充填物■を容器■に排出し充填す
る。充填された容器■は移動され、計量バスケット2の
下方に空の容器■が送入されて次の充填に備えられる。
A preferred embodiment of the present invention will be described below based on the drawings. In FIG. When the predicted value is reached, the control device 5 turns on and off the filling, the metering device 3 measures the filling material 3, the suction nozzle 4 is activated, and then the suction nozzle 4 inserted into the measuring basket 2 exceeds the fixed amount. A quantity of filling I' is aspirated. Further, the suction nozzle 4 weighs the filling I in the measuring basket 2 while it is in operation, and when the amount has decreased to a fixed amount, the operation of the suction nozzle 4 is stopped by the control device 5, and finally the measured filling in the basket 2 is measured. Discharge and fill the material ■ into the container ■. The filled container (2) is moved, and an empty container (2) is sent below the measuring basket 2 in preparation for the next filling.

即ち、第2図に示すように、充填物■が供給ベルトコン
ベア6により移送されてきて供給ホッパー1に供給され
、供給ホッパー1内に貯留される。
That is, as shown in FIG. 2, the filling material (1) is transferred by the supply belt conveyor 6, supplied to the supply hopper 1, and stored in the supply hopper 1.

このとき、供給ベルトコンベア6から供給ホッパー1へ
の供給量は、レベルゲージ7で計量されて一定のレベル
に保たれる。この供給ポツパー1の下端開口に開閉シャ
ッタ8が取付けられている。
At this time, the amount of supply from the supply belt conveyor 6 to the supply hopper 1 is measured by a level gauge 7 and kept at a constant level. An opening/closing shutter 8 is attached to the opening at the lower end of the supply popper 1.

この開閉シャッタ8は、シャッタードライブソレノイド
9に制御装置5から開又は閉の指令が大刀されたときに
開閉され、供給ホッパーの開閉シャッタ8が開き、落下
してくる充填物■は、供給ホッパー1の下方に設けられ
た計量パケット2内に投入貯留されるが、投入中に充填
設定値に投入予測値が達したときに開閉シャッタ8が閉
じ投入遮断が行なわれ、計量バスケット2に設けた計量
装置6例えばロードセルで計量される。計量バスケット
2内には吸引ノズル4が挿入され、この吸引ノズル4に
排出管10が連結され、この排出管10に戻し装置11
が連結され、この戻し装置11に吸引装置12が取付け
られる。また、排出管10の途中にバルブ13が取付け
られている。このバルブ16は、排出管10に穿設され
た孔10aを開閉するためのものであり、この孔10a
とバルブ13の窓13aとが合致するとき、エアーは外
部に流出し、吸引ノズル4は作動せず、孔10aを閉塞
するとき、吸引ノズル4は作動する。この孔10aのバ
ルブ13による開閉は、制御装置5によりノ(ルプドラ
イプソレノイド13′の作動で行なわれる。
This opening/closing shutter 8 is opened/closed when the shutter drive solenoid 9 is given an opening or closing command from the control device 5, and the opening/closing shutter 8 of the supply hopper is opened, and the falling filling material is transported to the supply hopper 1. However, when the predicted filling value reaches the filling set value during filling, the opening/closing shutter 8 closes and the filling is interrupted, and the measuring packet provided in the measuring basket 2 It is weighed by a device 6, for example a load cell. A suction nozzle 4 is inserted into the measuring basket 2, a discharge pipe 10 is connected to the suction nozzle 4, and a return device 11 is connected to the discharge pipe 10.
are connected to each other, and a suction device 12 is attached to this return device 11. Further, a valve 13 is installed in the middle of the discharge pipe 10. This valve 16 is for opening and closing a hole 10a bored in the discharge pipe 10.
When the window 13a of the valve 13 matches, the air flows out to the outside and the suction nozzle 4 does not operate, and when the hole 10a is closed, the suction nozzle 4 operates. The opening and closing of the hole 10a by the valve 13 is performed by the control device 5 by operating the nozzle drive solenoid 13'.

吸引ノズル4は、2重管構造に構成され、周りの空隙か
ら外気が導入され、導入された外気と充填物Iとが中心
の空隙から排出管10へと吸引されて戻し装置11へ排
出される。この戻し装置11は、バックフィルター14
を備え、このバックフィルター14によりエアーのみ吸
引装置12へ吸引され、超過量分の充填物■′は戻し装
置11内の室15に貯留される。この室15に貯留され
た戻り充填物1′は、ロータリーバルブ16から再び供
給ホッパー1へ排出される。
The suction nozzle 4 has a double pipe structure, in which outside air is introduced from the surrounding gap, and the introduced outside air and the filling material I are sucked through the central gap into the discharge pipe 10 and discharged to the return device 11. Ru. This return device 11 includes a back filter 14
Only the air is sucked into the suction device 12 by this back filter 14, and the excess amount of the filling material 2' is stored in the chamber 15 in the return device 11. The return filling 1' stored in this chamber 15 is discharged to the supply hopper 1 again through the rotary valve 16.

前記計量パケット2の下端開口には排出ゲート17が取
付げられ、この排出ゲート17にゲートドライブソレノ
イド18が取付けられ、このソレノイド18が制御装置
5からの指令により作動し排出ゲート17の開閉を図る
ようになっていて、排出ゲート17の開閉は、吸引ノズ
ル4の充填物■の吸引により計量パケット2内の充填物
■が定量に至ったとき、計量装置6の情報を読み取った
制御装置5がバルブ16を作動させて吸引作動を停止さ
せ1次いでゲートドライブソレノイド18を作動させて
排出ゲート17を開き、充填物Iが全て排出されたか否
かを制御装置5が計量装置乙の情報を読み取って判断し
、制御装置5が再びゲートドライブソレノイド18を作
動させて排出ゲート17を閉塞する。計量パケット2内
から排出された充填物Iは、充填シュート19を通過し
て空の容器■へ充填される。
A discharge gate 17 is attached to the lower end opening of the weighing packet 2, and a gate drive solenoid 18 is attached to this discharge gate 17, and this solenoid 18 is activated by a command from the control device 5 to open and close the discharge gate 17. The opening/closing of the discharge gate 17 is controlled by the control device 5 which has read the information from the weighing device 6 when the filling material (■) in the weighing packet 2 reaches a fixed amount due to suction of the filling material (■) by the suction nozzle 4. The valve 16 is operated to stop the suction operation, the gate drive solenoid 18 is then operated to open the discharge gate 17, and the control device 5 reads the information from the metering device B to determine whether all the filling material I has been discharged. The controller 5 then operates the gate drive solenoid 18 again to close the discharge gate 17. The filling material I discharged from the weighing packet 2 passes through the filling chute 19 and is filled into the empty container (2).

本発明における前記制御装置5は、前記バスケット2の
計量増加速度をリアルタイムに検出し。
The control device 5 in the present invention detects the weight increase rate of the basket 2 in real time.

その時点での落下衝撃値を予測し、バスケット2内の粉
体重量と衝撃値を含んだ重量指示値から予測衝撃値を差
引いてバスケット2内の粉体重量を推定するために高速
Aカコンバータ56と、高性能コンピュータ54との組
合せで行ない、例えば1.5秒の短時間投入で1/10
0の精度を得ることが可能となり、後続の吸引抜出工程
に移行させる。
The high-speed A power converter predicts the falling impact value at that point and estimates the weight of the powder in the basket 2 by subtracting the predicted impact value from the weight indication value that includes the powder weight in the basket 2 and the impact value. 56 and a high-performance computer 54, for example, 1/10 in a short time of 1.5 seconds.
It becomes possible to obtain an accuracy of 0, and the subsequent suction and extraction process is performed.

この場合第5図に示すように実際の投入量は自然落下の
場合、変動落下衝撃値は信号加算器51を経てその数倍
に増巾器52で増巾され、スケール上に表わすが−3/
1ooo秒の速さでこれに追随するようにしである。
In this case, as shown in FIG. 5, if the actual input amount is a natural fall, the variable fall impact value is amplified by a signal adder 51 and multiplied by an amplifier 52, and is expressed on the scale as -3. /
It is designed to follow this at a speed of 100 seconds.

また、本発明の場合、予め充填物■と同一計量物で落下
速度、落差、充填物の物性、即ち真比重、嵩比重、形状
等の物性の使用変動範囲で落下衝撃値を測定し、前記パ
ラメータとの近似相関式で精度を求めておき1次で実装
置の計量バスケット20重量増加を一定周期で検出し、
前記相関式をプログラムしたコンピュータ54で落下衝
撃値を解析し真の重量増加を推定するものである。
In addition, in the case of the present invention, the falling impact value is measured in advance with the same weighing object as the filling (1) within the usage variation range of the physical properties of the filling, such as the falling speed, head, and physical properties of the filling, such as true specific gravity, bulk specific gravity, and shape. The accuracy is determined using an approximate correlation formula with the parameters, and the increase in weight of the weighing basket 20 of the actual device is detected at regular intervals in the first order.
The computer 54 programmed with the above correlation formula analyzes the drop impact value and estimates the true weight increase.

例えば洗剤の粉粒体の場合を例にとってみると、一定重
量の測定粉体を仕切り板で閉じた供給ホッパーに入れ、
仕切板を抜取り、ホッパー内へ粉体を落下させる。落下
した粉体は傾斜板(45度角度)に当り下方に流れる。
For example, in the case of detergent powder, a certain weight of measured powder is placed in a supply hopper closed with a partition plate.
Remove the partition plate and drop the powder into the hopper. The fallen powder hits an inclined plate (at a 45 degree angle) and flows downward.

この時バネ秤の重量を読む。At this time, read the weight on the spring scale.

粉体の落下速度は仕切り板を抜取ったときから全量落下
した時間を計測し算出する。測定回数は同一落下質量速
度、同一落差の条件で5回、落差は100.200,3
00mm落下質量速度は0.5.1.0.2.0゜2、
5 kVsecであったが、その測定結果は落差変動(
100〜300mm)を誤差因子として扱い、落下質量
速度と衝撃値の回帰分析を次式で行った。
The falling speed of the powder is calculated by measuring the time from when the partition plate is removed until the entire amount falls. The number of measurements was 5 times with the same falling mass velocity and the same head, and the head was 100.200.3
00mm falling mass velocity is 0.5.1.0.2.0゜2,
5 kVsec, but the measurement results showed head fluctuation (
100 to 300 mm) as an error factor, regression analysis of the falling mass velocity and impact value was performed using the following equation.

回帰式 Y−=A−x+c 粒状洗剤:嵩比重33 o gr/1 :水分5.5% :平均粒径450μ A=0.4261. 0=−0,0336y=0.42
61 x+ (−0,0336)・・・相関係数0.9
88 Y・・・落下衝撃値(kq)  A・・・係数C・・・
常数、 X・・・落下質量速度(−4ec)この解析制
御プログラムは第3図に示すように重量指示値と時間と
の関係で 0ToNn・・・測定点(各測定点間隔は一定時間とす
る。)oWn ・・・測定点における重量指示値0IW
n  ・・・一測定間隔の投入重量の増加量o CWn
  ・・・重量増加の累積値(計量バスケット内の粉体
量)01Fn  ・・・測定点における落下衝撃値を示
し、その解析手項を示すと 0 ’pnにおけるWnとTn−1におけるVVn  
1の差を求め。
Regression equation Y-=A-x+c Granular detergent: bulk specific gravity 33 o gr/1: moisture 5.5%: average particle size 450μ A=0.4261. 0=-0,0336y=0.42
61 x+ (-0,0336)...Correlation coefficient 0.9
88 Y...Fall impact value (kq) A...Coefficient C...
Constant, )oWn...Weight indication value 0IW at the measurement point
n...Amount of increase in input weight per measurement interval o CWn
... Cumulative value of weight increase (amount of powder in the weighing basket) 01Fn ... Shows the drop impact value at the measurement point, and shows the analysis procedure: Wn at 0'pn and VVn at Tn-1
Find the difference of 1.

oIWnを回帰式を展開したIWn算出式で求めocW
n−1にIWnを累計してOWnを推定する。
Find oIWn using the IWn calculation formula that expands the regression formula.ocW
OWn is estimated by adding up IWn to n-1.

OCWnが投入設定値に等しくなるまで上記を繰返す。Repeat the above until OCWn becomes equal to the input setting value.

回帰式よりCWnの算出式を展開すると、第3図より、 Wn −0Wn−1= iFn+ (WnWn−CWn
−1=(A−IWn十〇)+IWnWn−CWn −1
= I Wn (A+ 1 ) + OIW = (W
n −0Wn−1−C)/(A+ 1 )、°、 CW
n= ((Wn−CWn−1−C)/A+1 )+0W
n−1となる。従ってこの算出によって第4図に示すよ
うに投入設定重量CFWに予測値CWnが達した時点で
投入遮断し、後続の吸引抜出に移行させ制御をするもの
である。
When the formula for calculating CWn is expanded from the regression formula, from Figure 3, Wn -0Wn-1= iFn+ (WnWn-CWn
−1=(A−IWn10)+IWnWn−CWn −1
= IWn (A+1) + OIW = (W
n-0Wn-1-C)/(A+1), °, CW
n= ((Wn-CWn-1-C)/A+1)+0W
It becomes n-1. Accordingly, based on this calculation, when the predicted value CWn reaches the set loading weight CFW as shown in FIG. 4, the loading is interrupted and the subsequent suction extraction is performed.

前記計量装置6は応答速度の速い電気的重量検出センサ
例えばロードセル、フォースバランス等が用いられ、信
号加算器51と該計量センサの出力を増巾する増巾器5
2を経てディジタル信号に変換するA/D変換器のコン
バータ56とを備え、さらに演算指令手段としてのコン
ピュータ54をもって制御機構が構成されている。この
制御手段のコンピュータ54は検出手段の検出信号から
の指令により動作する制御機構で計量充填装置(第2図
に示した開閉シャッタ8パルプ16、排出ゲート17等
)の動作を制御する。20は初期定数設定手段で、例え
ば計量時間、計量整定時間、排出時間、量目、サンプル
データ数、規格値、許容率等の設定部とを備えている。
The weighing device 6 uses an electrical weight detection sensor with a quick response speed, such as a load cell or a force balance, and includes a signal adder 51 and an amplifier 5 for amplifying the output of the weighing sensor.
The control mechanism includes a converter 56, which is an A/D converter that converts the signal into a digital signal via 2, and a computer 54 as an arithmetic command means. The computer 54 serving as the control means controls the operation of the weighing and filling device (opening/closing shutter 8 pulp 16, discharge gate 17, etc. shown in FIG. 2) by a control mechanism operated by commands from the detection signal of the detection means. Reference numeral 20 denotes initial constant setting means, which includes setting sections for, for example, measurement time, measurement settling time, discharge time, quantity, number of sample data, standard value, tolerance rate, and the like.

前記演算手段を行なうコンピュータ54では、上記定数
設定手段20からのデータ及び検出手段からの検出値を
入力として新たな演算手段を行ない、その結果を遮断弁
の制御手段に与える。
The computer 54 which performs the calculation means performs a new calculation using the data from the constant setting means 20 and the detected value from the detection means as input, and provides the result to the control means of the shutoff valve.

第4図は上述した各構成要素を備えたコンピュータ54
の計量解析制御装置を計量充填装置(第1図)に適用し
た場合の具体的実行の一例を示したフローチャートであ
るが、超過分排除工程の吸引計量整定を含む吸引補正工
程のフローにバトンタッチする構成とするのが便利であ
る。
FIG. 4 shows a computer 54 equipped with each of the above-mentioned components.
This is a flowchart showing an example of a specific execution when the weighing analysis control device is applied to the weighing and filling device (Fig. 1). It is convenient to have a configuration.

このように前記計量制御装置は、その主要部をマイクロ
コンピュータによって構成するが、上述した計量充填装
置への適用のみに限定されるものではなく、二次制御方
式の計量管理を行なう装置に広く応用することができる
As described above, the main part of the weighing control device is composed of a microcomputer, but its application is not limited to the weighing and filling device described above, but can be widely applied to devices that perform weighing management using a secondary control method. can do.

なお、落下衝撃値は落下質量速度、落差、空気抵抗によ
って左右されるが、多くの粉粒体は空気抵抗が太きいた
め質量速度が支配的因子となる。
Note that the falling impact value is influenced by the falling mass velocity, head difference, and air resistance, but since many powders and granules have large air resistance, the mass velocity is the dominant factor.

従ってこの質量速度は計量バスケットの重量増加速度を
知ることによって、推定でき、また重量増加速度は粉粒
体の嵩比重、流動性、落差などの変化を含んだ値として
得られるので粉体特性が変動しても大きな影響を受けな
いで制御することが可能となる。
Therefore, this mass velocity can be estimated by knowing the weight increase rate of the weighing basket, and since the weight increase rate can be obtained as a value that includes changes in the bulk specific gravity, fluidity, head, etc. of the powder, the powder characteristics can be estimated. It becomes possible to control without being affected greatly even by fluctuations.

前記高速N勺コンバータとしては分解能12ビツト、変
換速度25〜100μ秒程度の性能を有すると共に、前
記コンピューターとしては16ビツトのマイクロプロセ
ッサと・演算用プロセッサとを組み合せ5MHzのクロ
ックでドライブするシステムを用いれば好適である。さ
らに計量装置6は応答速度の速いワイヤーストレンゲー
ジ等の電気的重量検出センサーと組合せることができる
。このワイヤーストレンゲージとして応答速度が0.0
1秒程度のものを使用すれば、吸引排出速度の0.42
秒よりも速いので十分に追従可能である。
The high-speed converter has a resolution of 12 bits and a conversion speed of about 25 to 100 microseconds, and the computer uses a system that combines a 16-bit microprocessor and an arithmetic processor and is driven by a 5 MHz clock. It is suitable if Furthermore, the weighing device 6 can be combined with an electrical weight detection sensor such as a wire strain gauge having a fast response speed. The response speed of this wire strain gauge is 0.0
If you use one for about 1 second, the suction and discharge speed will be 0.42
Since it is faster than seconds, it is possible to follow it well.

本発明に係る計量充填方式は粉粒体に限らず連続重量測
定可能な重量計量器において、落下投入する液体、スラ
リー、砂、造粒物、その他の原料d’) /<ソチ計量
充填に用いられ得るものである。
The weighing and filling method according to the present invention is used for weighing and filling not only powder and granular materials but also liquids, slurries, sand, granules, and other raw materials d') /<Sochi, which are dropped into a weighing machine that can continuously measure the weight. This is something that can be done.

〔発明の効果〕〔Effect of the invention〕

本発明では、定量以上の量を供給ホッパーから計量パケ
ットへ供給するので、このときの大出し時間は従来方法
よりも若干多くかかるが、従来のような精確な計量をす
るための小出し工程がなくなり、小出し排出時の落下に
よる慣性と空中移動中の充填物制御が出来ないことによ
る計量精度の狂いは生じないし、短時間大量投入しても
バラツキ誤差を吸収した制御を行って投入誤差が少なく
終点バランスに時間がかからないし負担も軽減できるの
で高速充填が可能であり、しかも充填物の質量速度を計
量バスケットの重量増加速度を検出することで推定でき
ることになり、この重量増加速度には充填物の嵩比重、
流動性、落差などの変化を含んだ値としてとらえられる
ので充填物特性が変動として大きな影響を受けずに追随
でき高精度の充填ができる。
In the present invention, more than a fixed amount is supplied from the supply hopper to the weighing packet, so it takes a little longer to dispense the large amount than the conventional method, but it eliminates the dispensing process for accurate weighing as in the conventional method. , there will be no errors in measurement accuracy due to inertia caused by falling during dispensing and the inability to control the filling while it is moving in the air, and even if a large quantity is injected in a short period of time, it will be controlled to absorb variation errors and the final point will be small with fewer errors in dosing. High-speed filling is possible because balancing does not take much time and reduces the burden.Moreover, the mass speed of the filling can be estimated by detecting the weight increase rate of the weighing basket, and this weight increase speed is dependent on the weight increase rate of the filling. bulk specific gravity,
Since it is taken as a value that includes changes in fluidity, head, etc., the characteristics of the filling material can be followed without being greatly affected by fluctuations, allowing highly accurate filling.

また1本発明の装置では、計量時間のスピードアップと
計量精度の向上とが同時に図れるし、超過分の充填物排
除が高速に可能であるため、計量装置に応答速度の速い
電気的重量検出センサーを組合せることができ、より一
層計量精度を向上させることかできるし、大量投入の投
入誤差が可及的に小さい範囲中、に押えて制御できるの
で充填歩留りの大巾の向上が見込めるし、全充填サイク
ルの高速、高精度化が可能となる。
In addition, the device of the present invention can speed up weighing time and improve weighing accuracy at the same time, and can remove excess filling at high speed. By combining these, it is possible to further improve the weighing accuracy, and since it is possible to control the input error in large quantities within the range that is as small as possible, it is possible to expect a significant improvement in the filling yield. Enables high speed and high accuracy of the entire filling cycle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の制御原理の説明図、第2図は計量制御
装置の要部構成概略図、第3図は重量指示値と測定点と
の関係線図、第4図は解析・制御プログラムの70−チ
ャート、第5図は洗剤の場合の投入量変化と落下衝撃値
変化動作を時間(T)と重量指示値(Wn)の関係とし
て表示させたグラフである。 1・・・供給ホッパー、2・・・計量バスケット、6・
・・計量装置、4・・・吸引ノズル、5・・・制御装置
、8・・・開閉シャッター、17・・・排出ゲート、5
1・・・信号加算器、52・・・増巾器、53・・・コ
ンバータ、54・・・コンピュータ、■・・・充填物、
■・・・容器。
Figure 1 is an explanatory diagram of the control principle of the present invention, Figure 2 is a schematic diagram of the main parts of the weighing control device, Figure 3 is a relationship diagram between weight indication values and measurement points, and Figure 4 is analysis and control. 70-Chart of the program, FIG. 5 is a graph in which changes in the input amount and changes in the drop impact value in the case of detergent are displayed as a relationship between time (T) and weight indication value (Wn). 1... Supply hopper, 2... Measuring basket, 6...
...Measuring device, 4...Suction nozzle, 5...Control device, 8...Opening/closing shutter, 17...Discharge gate, 5
DESCRIPTION OF SYMBOLS 1... Signal adder, 52... Amplifier, 53... Converter, 54... Computer, ■... Filler,
■...Container.

Claims (1)

【特許請求の範囲】 1、容器に充填すべき定量以上の充填物を計量バスケッ
トに投入したのち、この定量を超えた量の充填物を排除
して容器に充填する計量充填制御において、前記計量バ
スケット内の計量増加速度を一定周期で検出して落下衝
撃値を刻々計算し正味投入量を予測しながら設定値に予
測値が達した時点で投入遮断したのち、前記投入超過量
分を排除することを特徴とする計量充填制御方法。 2、前記正味投入量を予測するのに予め同一計量物で落
下速度、落差、計量物の真比重、嵩比重、形状などの物
性の使用変動範囲で落下衝撃値を測定したものを用いる
ことを特徴とした特許請求の範囲第1項記載の計量充填
制御方法。 3、前記正味投入量を予測するのに計量バスケットの重
量増加を一定周期で測定し、予測された前記落下衝撃値
の相関式をプログラムしたコンピュータで落下衝撃値を
解き真の重量増加を推定して用いるものである特許請求
の範囲第1項又は第2項記載の計量充填制御方法。 4、前記正味投入量を予測するのにバスケット内の充填
物重量と衝撃値を含んだ重量指示値から予測衝撃値を差
引いて処理するものである特許請求の範囲第1〜3項の
いずれか一つの項記載の計量充填制御方法。 5、前記落下衝撃値を充填物の落差変動を誤差因子とし
落下質量速度と衝撃値の回帰分析を回帰式Y=A・x+
C {但しY…落下衝撃値、(kg)A…係数、C…常数、
x…落下質量速度(kg/sec)}で処理して制御す
ることを特徴とする特許請求の範囲第1〜4項のいずれ
か一つの項記載の計量充填制御方法。 6、前記落下衝撃値を充填物の各測定点における重量指
示値W_nの差を求め、一測定間隔の投入重量の増加量
IW_nを前記回帰式を展開した算出式で求めたのち、
累計し重量増加の累積値CW_nを推定し、累積値CW
_nが投入設定重量に等しくなるまで繰返して等しくな
った時点で投入遮断処理することを特徴とする特許請求
の範囲第5項記載の計量充填制御方法。 7、容器に充填すべき定量以上の充填物を計量バスケッ
トに投入し計量バスケット内に挿入された吸引ノズルで
定量を超えた量の充填物を吸引する際、計量バスケット
内の充填物を計量し、定量まで減量したときに吸引ノズ
ルの作動を停止して計量バスケット内の充填物を容器に
充填する工程において、計量バスケットの計量増加速度
をリアルタイムに検出する手段と、バスケット内の粉体
重量と衝撃値を含んだ重量指示値から予測衝撃値を差引
き演算する手段と、該演算手段で求めた正味投入量を予
測しながら設定値に予測値が達した際に遮断弁に投入遮
断信号を出す手段とで処理するものである特許請求の範
囲第5項又は第6項記載の計量充填制御方法。 8、充填物を計量する計量機構を持ち、容器に充填すべ
き定量以上の充填物が投入される計量バスケットに、こ
の定量を超えた量の充填物を排除する手段を設けた計量
充填制御装置において、前記計量バスケットに投入され
る充填物の計量増加速度を一定周期で検出し、ディジタ
ル信号に変換して出力する検出手段と、該検出手段に基
いて落下衝撃値を刻々計算して正味投入量を予測しなが
ら演算し、予め定められた充填設定値に予測値が達した
ときに投入遮断信号を発する指示手段とを備え、該指示
手段に連動して前記排除手段を経て計量バスケット下方
に待機する容器へ定計量された充填物を排出させる排出
機構を配備したことを特徴とする計量充填制御装置。 9、前記計量バスケットが、ロードセルからなる計量装
置を具えたものであって、順次移送されてくる充填物を
受け入れ貯留され定間隔をあけて所定時間下端開口を解
放して容器に充填すべき定量以上の量を供給させる開閉
シャッターを備えた供給ホッパーの下端開口下方に設け
られ、開閉シャッターが開いて供給されてくる定量以上
の充填物を貯留し計量するものである特許請求の範囲第
8項記載の計量充填制御装置。 10、前記充填物排除手段が、前記計量バスケットに貯
留される充填物に挿入される吸引ノズルであって、計量
バスケット内の充填物を計量する計量装置に連動され、
計量バスケット内への充填物投入が遮断されたときに吸
引ノズルを作動させ、この吸引ノズルの吸引により充填
物が設定値を示したときに吸引ノズルの作動を停止させ
る制御装置を備えたものである特許請求の範囲第8項又
は第9項記載の計量充填制御装置。 11、前記検出手段が、充填物の投入中、バスケットの
計量増加速度をリアルタイムに検出するコンバータであ
る特許請求の範囲第8〜10項のいずれか一つの項記載
の計量充填制御装置。 12、前記演算指示手段が計量バスケット内の充填物重
量と落下衝撃値を含んだ重量指示値から予測衝撃値を差
引いて計量バスケット内の充填物重量を推定して指令信
号を出すコンピュータである特許請求の範囲第8〜11
項のいずれか一つの項記載の計量充填制御装置。
[Scope of Claims] 1. In the weighing and filling control in which a quantity of filling that exceeds a fixed amount to be filled into a container is put into a weighing basket, a quantity of filling that exceeds the fixed amount is removed and filled into the container. The rate of increase in the weight in the basket is detected at regular intervals, the fall impact value is calculated moment by moment, and the net amount of input is predicted.When the predicted value reaches the set value, the input is cut off, and the excess amount of input is removed. A measuring and filling control method characterized by: 2. In order to predict the net input amount, it is recommended to use the falling impact value of the same weighed object, which has been measured in advance over a range of variations in physical properties such as falling speed, head, true specific gravity, bulk specific gravity, and shape of the weighed object. A metering and filling control method as claimed in claim 1. 3. To predict the net input amount, measure the weight increase of the weighing basket at regular intervals, and use a computer programmed with a correlation formula for the predicted drop impact value to solve the drop impact value and estimate the true weight increase. A measuring and filling control method according to claim 1 or 2, which is used for. 4. Any one of claims 1 to 3, wherein the net input amount is predicted by subtracting the predicted impact value from a weight indication value including the weight of the filling in the basket and the impact value. Metering and filling control method described in one section. 5. Using the falling impact value as an error factor, a regression analysis of the falling mass velocity and the impact value is performed using the regression formula Y=A・x+
C {However, Y...drop impact value, (kg) A...coefficient, C...constant,
5. The weighing and filling control method according to any one of claims 1 to 4, characterized in that the measuring and filling control method is carried out by processing and controlling the following: x...falling mass velocity (kg/sec)}. 6. After calculating the drop impact value by calculating the difference between the weight indication values W_n at each measurement point of the filling, and calculating the increase IW_n in the input weight per measurement interval using a calculation formula developed by expanding the regression formula,
The cumulative value CW_n of the weight increase is estimated, and the cumulative value CW is calculated.
6. The weighing and filling control method according to claim 5, wherein _n is repeated until it becomes equal to the set loading weight, and at the point when it becomes equal, the loading/unloading process is performed. 7. When putting more than the fixed amount of filling into the container into the measuring basket and sucking up the filling in excess of the fixed amount with the suction nozzle inserted into the measuring basket, weigh the filling in the measuring basket. In the process of stopping the operation of the suction nozzle and filling the container with the filling material in the weighing basket when the weight has decreased to a fixed amount, there is provided a means for detecting the rate of increase in the weight of the weighing basket in real time, and a means for detecting the weight of the powder in the basket in real time. A means for subtracting a predicted impact value from a weight indication value including the impact value, and a means for predicting the net input amount obtained by the calculation means and sending a supply shutoff signal to a shutoff valve when the predicted value reaches a set value. 7. The metering and filling control method according to claim 5 or 6, wherein the measuring and filling control method is performed using a dispensing means. 8. A weighing and filling control device that has a measuring mechanism for weighing the filling material, and is provided with a means for removing the filling amount exceeding the fixed amount from the measuring basket into which the filling amount exceeds the fixed amount to be filled into the container. , detecting means for detecting the rate of increase in the weight of the filling to be put into the weighing basket at regular intervals, converting it into a digital signal and outputting it; and an instruction means that calculates while predicting the filling amount and issues a supply cutoff signal when the predicted value reaches a predetermined filling set value, and in conjunction with the instruction means, the liquid is transferred to the lower part of the weighing basket via the removal means. A weighing and filling control device characterized by being equipped with a discharge mechanism for discharging a fixed amount of filling into a waiting container. 9. The weighing basket is equipped with a weighing device consisting of a load cell, and the measuring basket receives and stores the filling materials that are sequentially transferred, and opens the lower end opening at regular intervals for a predetermined time to measure the amount to be filled into the container. Claim 8: The supply hopper is provided below the lower end opening of the supply hopper, which is equipped with an opening/closing shutter for supplying the above quantity, and the opening/closing shutter is opened to store and measure the supplied filling quantity. The metering and filling control device described. 10. The filling removal means is a suction nozzle inserted into the filling stored in the measuring basket, and is linked to a measuring device that weighs the filling in the measuring basket,
This device is equipped with a control device that operates the suction nozzle when the feeding of the filling into the measuring basket is interrupted, and stops the operation of the suction nozzle when the filling reaches the set value due to the suction of the suction nozzle. A metering and filling control device according to claim 8 or 9. 11. The weighing and filling control device according to any one of claims 8 to 10, wherein the detection means is a converter that detects the rate of increase in the weight of the basket in real time while filling is being added. 12. A patent in which the calculation instruction means is a computer that estimates the weight of the filling in the weighing basket by subtracting the predicted impact value from the weight instruction value including the weight of the filling in the weighing basket and the falling impact value, and issues a command signal. Claims 8th to 11th
A metering and filling control device according to any one of the following paragraphs.
JP21269584A 1984-10-12 1984-10-12 Weighing/filling control method and apparatus Pending JPS6191520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21269584A JPS6191520A (en) 1984-10-12 1984-10-12 Weighing/filling control method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21269584A JPS6191520A (en) 1984-10-12 1984-10-12 Weighing/filling control method and apparatus

Publications (1)

Publication Number Publication Date
JPS6191520A true JPS6191520A (en) 1986-05-09

Family

ID=16626895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21269584A Pending JPS6191520A (en) 1984-10-12 1984-10-12 Weighing/filling control method and apparatus

Country Status (1)

Country Link
JP (1) JPS6191520A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287801A (en) * 1986-06-07 1987-12-14 株式会社大生機械 Fixed-quantity feeder
JPS6326539A (en) * 1986-06-27 1988-02-04 ケ−−トロン インタ−ナシヨナル インコ−ポレイテツド Measuring supply method and system
JP2013245009A (en) * 2012-05-29 2013-12-09 Hitachi Aloka Medical Ltd Powder dispensing device
CN104280103A (en) * 2014-09-30 2015-01-14 华电电力科学研究院 Pulverized coal weighing sample injection device and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58108411A (en) * 1981-12-22 1983-06-28 Ee & D:Kk Raw material weighing apparatus having forecast control function
JPS58135920A (en) * 1982-02-08 1983-08-12 Kamachiyou Seikou Kk Self-correcting method utilizing computer for self-determining balance
JPS5937104A (en) * 1982-08-20 1984-02-29 ライオンエンジニアリング株式会社 Weighing and filling method and its device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58108411A (en) * 1981-12-22 1983-06-28 Ee & D:Kk Raw material weighing apparatus having forecast control function
JPS58135920A (en) * 1982-02-08 1983-08-12 Kamachiyou Seikou Kk Self-correcting method utilizing computer for self-determining balance
JPS5937104A (en) * 1982-08-20 1984-02-29 ライオンエンジニアリング株式会社 Weighing and filling method and its device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287801A (en) * 1986-06-07 1987-12-14 株式会社大生機械 Fixed-quantity feeder
JPS6326539A (en) * 1986-06-27 1988-02-04 ケ−−トロン インタ−ナシヨナル インコ−ポレイテツド Measuring supply method and system
JPH0521488B2 (en) * 1986-06-27 1993-03-24 Kei Toron Intern Inc
JP2013245009A (en) * 2012-05-29 2013-12-09 Hitachi Aloka Medical Ltd Powder dispensing device
CN104280103A (en) * 2014-09-30 2015-01-14 华电电力科学研究院 Pulverized coal weighing sample injection device and method

Similar Documents

Publication Publication Date Title
KR0143227B1 (en) Device and process for monitoring material flow, and use of the process
JP2984059B2 (en) Method and apparatus for bagging bulk material with a predetermined filling volume
JP3732614B2 (en) Quantitative scale
JPS6044833A (en) Control of vibrating feeder for weighing system
JPH06307916A (en) Method and equipment for determining quantity of pulverulent substance
US4662409A (en) Method and apparatus for fine-dosing bulk material
JPS6250624A (en) Device and method of feeding granular material, such as coaland other bulk material
JPS6191520A (en) Weighing/filling control method and apparatus
JPH02253835A (en) Mixing device for raw material of particulate matter
EP0911617B1 (en) Powder/chip weighing method
JPS6130962B2 (en)
JPS62245115A (en) Weighing and filling control method
JP3573831B2 (en) Metering device
JPH026007B2 (en)
US8735746B2 (en) Weighing apparatus and method
RU2287136C1 (en) Method for weight batching of free-flowing materials
RU2369846C1 (en) Method for batch weighing of loose products and device for its realisation
JP2699100B2 (en) Quantitative filling method
JPS62271817A (en) Weighing filling control method and device
SU1642256A1 (en) Method for metering out loose materials
RU2284016C2 (en) Method and device for portion-by-portion weiging of gnaular matters in flow followed by preliminary measuring
JP4668626B2 (en) Continuous scale
JPH0435696B2 (en)
SU1507509A1 (en) Method of determining parameters of waste moulding sand
SU241039A1 (en) PORTABLE DISPENSER OF POWDER MATERIALS