JPS64149B2 - - Google Patents

Info

Publication number
JPS64149B2
JPS64149B2 JP56030697A JP3069781A JPS64149B2 JP S64149 B2 JPS64149 B2 JP S64149B2 JP 56030697 A JP56030697 A JP 56030697A JP 3069781 A JP3069781 A JP 3069781A JP S64149 B2 JPS64149 B2 JP S64149B2
Authority
JP
Japan
Prior art keywords
stainless steel
ferritic stainless
electromagnetic induction
austenite
induction stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56030697A
Other languages
Japanese (ja)
Other versions
JPS57146456A (en
Inventor
Akira Kawarada
Kazuhisa Hamagami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3069781A priority Critical patent/JPS57146456A/en
Publication of JPS57146456A publication Critical patent/JPS57146456A/en
Publication of JPS64149B2 publication Critical patent/JPS64149B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/122Accessories for subsequent treating or working cast stock in situ using magnetic fields

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は冷間圧延用のフエライト系ステンレ
ス鋼の製造方法に関し、特に連続鋳造によるフエ
ライト系ステンレス鋼の製造方法に関するもので
ある。 周知のようにSUS430に代表されるフエライト
系ステンレス鋼の冷延鋼板においては、引張りや
深絞り等の変形を加えた場合に、その冷延鋼板の
圧延方向に沿つて細かい畝状のしわが発生する現
象、すなわち所謂リツジングと称される現象が生
じることがある。フエライト系ステンレス鋼は主
として自動車のサツシユやトリムなどの装飾部品
あるいは家庭用廚房機器などに使用されるもので
あるから、外観が美麗であることが要求される
が、上述のようなリツジングが発生すれば製品の
外観が損なわれ、製品価値を損なう問題がある。
ところでフエライト系ステンレス冷延鋼板のリツ
ジングは、連続鋳造法によつて製造した連鋳材の
場合には造塊鋳造法によつて製造した鋼塊材と比
較して著しく発生し易い。その原因は、連鋳材で
はスラブの中心部の凝固組織が柱状晶となり、そ
の結果熱延鋼板中心層の組織が粗大化し易いため
であるとされ、したがつてリツジングを防止する
ためには、熱延鋼板の中心層の組織を微細化する
ことが有効であるとされている。そこで従来フエ
ライト系ステンレス冷延鋼板のリツジングを防止
する方法としては、鋼のオーステナイトポテンシ
ヤルを増加させ、それによつてα−γ変態を利用
した熱延組織の微細化を図る方法が採用されてい
る。 上述のようにフエライト系ステンレス鋼のオー
ステナイトポテンシヤルを増加させるにはN,
C,Mn,Ni等のオーステナイト生成元素を増加
させれば良い。しかしながらこれらのオーステナ
イト生成元素を増量すれば冷延鋼板が硬くなつて
降伏伸びが大きくなり、その結果ストレツチヤー
ストレインが発生し易くなる問題がある。 この発明は以上の事情に鑑みてなされたもの
で、冷延鋼板におけるリツジングとストレツチヤ
ーストレインとを同時に軽減し得るようにした冷
間圧延用のフエライト系ステンレス鋼を連続鋳造
によつて製造することを目的とするものである。 すなわちこの発明は本発明者等の種々の実験・
検討の結果なされたものであつて、オーステナイ
トポテンシヤルを比較的低い値に抑えることによ
つてストレツチヤーストレインの発生を防止し、
かつ連続鋳造時に電磁誘導撹拌を併用することに
より凝固組織の等軸晶化を図つてリツジングの発
生を防止するようにしたものである。 具体的にはこの発明のフエライト系ステンレス
鋼製造方法は、フエライト系ステンレス鋼中の成
分形素C,Si,Mn,Ni,Cr,Nの含有量を次の
(1)式で定義されるオーステナイトポテンシヤル
γpot.が65%以下となるように調整し、かつその
フエライト系ステンレス鋼を連続鋳造するにあた
つて、鋳片凝固過程で電磁誘導撹拌することを特
徴とするものである。 γppt.(%)=288〔%C〕−54〔%Si〕 +7.5〔%Mn〕+22〔%Ni〕 −18.75〔%Cr〕+350〔%N〕+338.5 ……(1) さらにこの発明の方法を詳細に説明すると、こ
の発明においては、フエライト系ステンレス鋼を
連続鋳造するにあたつて、前述のように鋳片凝固
過程で電磁誘導撹拌を施す。すなわち、連続鋳造
機の2次冷却帯に誘導コイルを設けておき、この
コイルに低周波電流を供給してその低周波電流に
より発生する交番磁界と鋳片の未凝固クレータ内
の溶鋼に誘導される電流との誘導作用によつてク
レータ内の溶鋼を撹拌する。これによつて鋳片内
部の柱状晶の成長が阻止されて、鋳片凝固組織に
おける等軸晶率が向上し、その結果熱延板中心部
の組織も微細化され、冷延板におけるリツジング
の発生が軽減されるのである。上述のような鋳片
凝固段階での電磁誘導撹拌による等軸晶率の向上
効果は電磁誘導撹拌の条件によつて相当に異なる
が、本発明者等は適切な条件を選ぶことによつて
40〜75%の等軸晶率を得ている。 上述のようにフエライト系ステンレス鋼の連続
鋳造においては電磁誘導撹拌を施すことによつて
リツジングを軽減することができる。しかしなが
ら本発明者等は、電磁誘導撹拌を行わなかつた連
続鋳造製のフエライト系ステンレス鋼(以下これ
を連鋳比較材と記す)および前述の如く電磁誘導
撹拌(EMS)を施した連続鋳造製のフエライト
系ステンレス鋼(以下これを連鋳EMS材と記す)
について、前記(1)式で定義されるオーステナイト
ポテンシヤルを種々変化させてリツジングの発生
状況を調べたところ、オーステナイトポテンシヤ
ルが高い場合には連鋳比較材と連鋳EMS材との
間においてリツジングの状況に有意な差がなく、
オーステナイトポテンシヤルがある値以下の場合
にはじめて両材との間にリツジングの発生状況に
ついて有意な差が生じること、換言すれば電磁誘
導撹拌によるリツジング軽減効果が発揮されるの
はオーステナイトポテンシヤルがある値以下の領
域の場合であることを見出したのである。すなわ
ち第1図は前記連鋳EMS材、連鋳比較材、およ
び造塊鋳造法によつて得たフエライトステンレス
鋼の鋼塊材によつて、オーステナイトポテンシヤ
ルとリツジング評点との関係を示す図であり、こ
こでリツジング評点とは、試験片に20%の伸びを
与えた後、試験片の表面に発生する畝状のしわの
程度を観察し、その程度を畝状のしわの少ない方
から順次1〜5の等級に区分して段階的に格付け
したものである。またここで試験に供した材料
は、SUS430の成分範囲内で成分分調整してオー
ステナイトポテンシヤルを種々変化させたフエラ
イト系ステンレス鋼につき、前述のように電磁誘
導撹拌有りもしくは無しで連続鋳造、または造塊
鋳造した後、後述する実施例と同様な加工、処理
を施して厚さ0.7mmの冷延鋼板としたものであり、
また電磁誘導撹拌の条件も後述する実施例と同様
である。第1図から、連鋳比較材においてはその
リツジングの発生程度はオーステナイトポテンシ
ヤルに対する依存性が強く、オーステナイトポテ
ンシヤルが高くなるほどリツジングが改善される
ことが明らかである。これに対し連鋳EMS材に
おいてはオーステナイトポテンシヤルが65%以下
の領域で連鋳比較材に比べリツジングの発生が著
しく軽減されて、鋼塊材の場合とほぼ同程度とな
るが、オーステナイトポテンシヤルが65%よりも
高い領域では連鋳比較材とほぼ同等のリツジング
特性となる。したがつてオーステナイトポテンシ
ヤルが65%を越える領域では電磁誘導撹拌による
リツジング軽減効果が発揮されず、65%以下の領
域となつてはじめて電磁誘導撹拌によるリツジン
グ軽減効果があらわれることが明らかである。 また上述のようにオーステナイトポテンシヤル
が65%以下となるようにオーステナイト生成元素
の含有量を抑えることによつて冷延鋼板の硬化を
防ぎ、降伏点伸びを少くしてストレツチヤースト
レインの発生を防止することができる。したがつ
てこの発明ではオーステナイトポテンシヤルを65
%以下に抑制することと連続鋳造に電磁誘導撹拌
を併用することを相俟つて、従来リツジングが発
生し易いとされていたフエライト系ステンレス鋼
の連続鋳造材のリツジングを軽減し、しかもスト
レツチヤーストレインの発生を軽減することが可
能となつたのである。 以下にこの発明の実施例および比較例を記す。 実施例 第1表の試料番号1〜3に示すようにそれぞれ
オーステナイトポテンシヤルが50%,55%,67%
となるように成分調整したSUS430鋼種のスラブ
を連続鋳造し、かつその連続鋳造に際して鋳片凝
固段階で電磁誘導撹拌した。但し電磁誘導撹拌に
おける撹拌強度(電流(A)×√周波数(Hz))は
1500(A√Hz)とした。得られた各スラブを常法
にしたがい、1200℃×6時間の加熱後熱間圧延
し、860℃×8時間焼鈍した後、酸洗、冷間圧延、
焼鈍酸洗、およびスキンパスの各工程を経て0.7
mmの冷延鋼板を製造した。
The present invention relates to a method for manufacturing ferritic stainless steel for cold rolling, and more particularly to a method for manufacturing ferritic stainless steel by continuous casting. As is well known, when cold-rolled steel sheets made of ferritic stainless steel such as SUS430 are subjected to deformation such as tension or deep drawing, fine ridge-like wrinkles occur along the rolling direction of the cold-rolled steel sheets. A phenomenon called rigging may occur. Ferritic stainless steel is mainly used for decorative parts such as automobile sashes and trims, as well as household appliances, so it is required to have a beautiful appearance, but the above-mentioned ripping may occur. Otherwise, there is a problem that the appearance of the product is damaged and the product value is impaired.
By the way, rigging of ferritic stainless steel cold-rolled steel sheets is significantly more likely to occur in the case of continuously cast material manufactured by continuous casting method than in the case of steel ingot material manufactured by ingot casting method. The reason for this is said to be that in continuous cast materials, the solidified structure in the center of the slab becomes columnar crystals, and as a result, the structure in the center layer of the hot rolled steel sheet tends to become coarse.Therefore, in order to prevent ridging, It is said that it is effective to refine the structure of the center layer of hot rolled steel sheets. Therefore, as a conventional method for preventing rigging of cold-rolled ferritic stainless steel sheets, a method has been adopted in which the austenite potential of the steel is increased and thereby the hot-rolled structure is refined using α-γ transformation. As mentioned above, to increase the austenite potential of ferritic stainless steel, N,
It is sufficient to increase austenite-forming elements such as C, Mn, and Ni. However, if the amount of these austenite-forming elements is increased, the cold-rolled steel sheet will become hard and the yield elongation will increase, resulting in the problem that stretcher strain is likely to occur. This invention was made in view of the above circumstances, and it is an object of continuous casting to produce a ferritic stainless steel for cold rolling that can simultaneously reduce ridging and stretcher strain in cold rolled steel sheets. The purpose is to In other words, this invention was achieved through various experiments and
This was done as a result of studies, and by suppressing the austenite potential to a relatively low value, the occurrence of stretcher strain is prevented,
Furthermore, electromagnetic induction stirring is also used during continuous casting to achieve equiaxed crystallization of the solidified structure, thereby preventing the occurrence of rizzing. Specifically, the method for producing ferritic stainless steel of the present invention involves controlling the contents of the constituent elements C, Si, Mn, Ni, Cr, and N in the ferritic stainless steel as follows:
The austenite potential γpot. defined by equation (1) is adjusted to 65% or less, and when continuously casting the ferritic stainless steel, electromagnetic induction stirring is performed during the slab solidification process. That is. γ ppt. (%) = 288 [%C] -54 [%Si] +7.5 [%Mn] + 22 [%Ni] -18.75 [%Cr] +350 [%N] + 338.5 ...(1) Further To explain the method of the present invention in detail, in the present invention, when continuously casting ferritic stainless steel, electromagnetic induction stirring is applied during the slab solidification process as described above. In other words, an induction coil is installed in the secondary cooling zone of the continuous casting machine, and a low-frequency current is supplied to this coil to generate an alternating magnetic field generated by the low-frequency current and the molten steel in the unsolidified crater of the slab. The molten steel inside the crater is stirred by the induction effect of the electric current. This prevents the growth of columnar crystals inside the slab and improves the equiaxed crystallinity in the solidified structure of the slab.As a result, the structure in the center of the hot rolled sheet becomes finer, which reduces ridging in the cold rolled sheet. This will reduce the occurrence of this. Although the effect of improving equiaxed crystallinity by electromagnetic induction stirring during the slab solidification stage as described above varies considerably depending on the conditions of electromagnetic induction stirring, the present inventors have found that by selecting appropriate conditions,
Equiaxed crystallinity of 40-75% has been obtained. As mentioned above, in continuous casting of ferritic stainless steel, ridging can be reduced by applying electromagnetic induction stirring. However, the present inventors have developed continuous cast ferritic stainless steel without electromagnetic induction stirring (hereinafter referred to as continuous cast comparative material) and continuous cast ferrite stainless steel with electromagnetic induction stirring (EMS) as described above. Ferritic stainless steel (hereinafter referred to as continuous casting EMS material)
When the austenite potential defined by Equation (1) above was varied and the occurrence of ridging was investigated, it was found that when the austenite potential was high, the situation of ripping occurred between the continuously cast comparative material and the continuously cast EMS material. There was no significant difference in
A significant difference in the occurrence of ridging occurs between the two materials only when the austenite potential is below a certain value.In other words, the effect of reducing ridging by electromagnetic induction stirring is only achieved when the austenite potential is below a certain value. They found that this is the case in the area of . In other words, FIG. 1 is a diagram showing the relationship between austenite potential and ridging score for the continuous cast EMS material, the continuous cast comparison material, and the ferrite stainless steel ingot material obtained by the ingot casting method. , Here, the ridging rating is to observe the degree of ridge-like wrinkles that occur on the surface of the test piece after applying 20% elongation to the test piece. It is graded in stages from 5 to 5. The materials tested here were ferritic stainless steels with various austenite potentials adjusted within the composition range of SUS430, and were continuously cast or manufactured with or without electromagnetic induction stirring as described above. After ingot casting, a cold rolled steel plate with a thickness of 0.7 mm was obtained by processing and treating in the same manner as in the examples described below.
Further, the conditions for electromagnetic induction stirring are also the same as in the examples described later. From FIG. 1, it is clear that in the continuously cast comparative materials, the degree of occurrence of rizzing is strongly dependent on the austenite potential, and the higher the austenite potential, the more the rizzing is improved. On the other hand, in the continuously cast EMS material, the occurrence of ridging is significantly reduced compared to the continuously cast comparison material in the region where the austenite potential is 65% or less, and it is almost the same as in the case of the steel ingot material. In the range higher than %, the ridging properties are almost the same as the continuously cast comparative material. Therefore, it is clear that in a region where the austenite potential exceeds 65%, the effect of reducing ridging by electromagnetic induction stirring is not exhibited, and that the effect of reducing ridging by electromagnetic induction stirring appears only in a region of 65% or less. In addition, as mentioned above, by suppressing the content of austenite-forming elements so that the austenite potential is 65% or less, hardening of the cold rolled steel sheet is prevented, and the elongation at yield point is reduced to prevent the occurrence of stretcher strain. can do. Therefore, in this invention, the austenite potential is set to 65
% or less and combined use of electromagnetic induction stirring during continuous casting, we can reduce the ridding of continuous cast materials of ferritic stainless steel, which was conventionally thought to be prone to ridding, and also improve stretchability. This made it possible to reduce the occurrence of strain. Examples and comparative examples of this invention are described below. Example As shown in sample numbers 1 to 3 in Table 1, the austenite potential is 50%, 55%, and 67%, respectively.
A slab of SUS430 steel whose composition was adjusted so that However, the stirring intensity (current (A) × √ frequency (Hz)) in electromagnetic induction stirring is
1500 (A√Hz). Each slab obtained was hot rolled after heating at 1200°C for 6 hours, annealed at 860°C for 8 hours, pickled, cold rolled,
0.7 through each process of annealing, pickling, and skin pass.
mm cold rolled steel sheets were produced.

【表】 比較例 前記実施例と同様にそれぞれオーステナイトポ
テンシヤルが50%,55%,67%となるように成分
調整した第1表の試料番号1〜3のSUS430鋼種
のスラブを、電磁誘導撹拌を行なわずに連続鋳造
した。得られた各スラブを実施例と同様の工程で
処理して、厚さ0.7mmの冷延鋼板を得た。 実施例および比較例により製造された冷延鋼板
につき、前述と同様に20%の伸びを与えてリツジ
ングの発生状況を観察したところ、そのリツジン
グ評点は第2表に示す通りであつた。
[Table] Comparative Example SUS430 steel slabs of sample numbers 1 to 3 in Table 1, whose compositions were adjusted to have austenite potentials of 50%, 55%, and 67%, respectively, as in the above examples were subjected to electromagnetic induction stirring. Continuous casting was performed without Each obtained slab was treated in the same process as in the example to obtain a cold rolled steel plate with a thickness of 0.7 mm. The cold-rolled steel sheets produced in the Examples and Comparative Examples were subjected to 20% elongation in the same manner as described above, and the occurrence of ridging was observed, and the ridging scores were as shown in Table 2.

【表】 第2表から、オーステナイトポテンシヤルが高
い領域では電磁誘導撹拌によるリツジング軽減効
果が小さいのに対し、オーステナイトポテンシヤ
ルが低い領域では電磁誘導撹拌によるリツジング
軽減効果が顕著にあらわれていることが明らかで
ある。 また、実施例の冷延鋼板について、ストレツチ
ヤーストレインの発生を調べたところ、第3表に
示す結果が得られた。但し第3表の結果は、実施
例のスキンパス工程においてスキンパス伸び率
0.4%を与えた材料について引張試験を行ない、
ストレツチヤーストレインの発生状況を観察した
ものである。
[Table] From Table 2, it is clear that in areas where the austenite potential is high, the effect of electromagnetic induction stirring on reducing ridging is small, whereas in areas where the austenite potential is low, the effect of electromagnetic induction stirring on reducing riddging is significant. be. Furthermore, when the occurrence of stretcher strain was investigated for the cold-rolled steel sheets of Examples, the results shown in Table 3 were obtained. However, the results in Table 3 indicate that the skin pass elongation rate in the skin pass process of the example
A tensile test was conducted on the material given 0.4%,
This is an observation of the occurrence of stretcher strain.

【表】 第3表から、オーステナイトポテンシヤルが低
い領域ではストレツチヤーストレインの発生が防
止されることが明らかである。 以上のようにこの発明の方法によれば、冷延鋼
板でのストレツチヤーストレインを発生させるこ
となくリツジングを有効に防止したフエライト系
ステンレス鋼を生産性が高い連続鋳造法で製造す
ることができ、したがつて各種装飾品や厨房用機
器などの優れた外観が要求される製品に使用され
るフエライト系ステンレス鋼の製造方法として実
際的に有益なものである。
[Table] From Table 3, it is clear that the occurrence of stretcher strain is prevented in the region where the austenite potential is low. As described above, according to the method of the present invention, ferritic stainless steel that effectively prevents rigging without causing stretcher strain in cold-rolled steel sheets can be manufactured using a highly productive continuous casting method. Therefore, this method is practically useful as a method for producing ferritic stainless steel used in products that require an excellent appearance, such as various decorative items and kitchen equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はフエライト系ステンレス鋼の連鋳
EMS(電磁誘導撹拌)材、電磁誘導撹拌を適用し
ない比較連鋳材、および鋼塊材におけるオーステ
ナイトポテンシヤルとそれらの冷延鋼材のリツジ
ング評点との相関関係を示す図である。
Figure 1 shows continuous casting of ferritic stainless steel.
FIG. 2 is a diagram showing the correlation between the austenite potential of EMS (electromagnetic induction stirring) material, comparative continuous casting material to which no electromagnetic induction stirring is applied, and steel ingot material, and the ridging score of these cold rolled steel materials.

Claims (1)

【特許請求の範囲】 1 フエライト系ステンレス鋼を、 γppt.(%) =288〔%C〕−54〔%Si〕+7.5〔%Mn〕 +22〔%Ni〕−18.75〔%Cr〕 +350〔%N〕+338.5 で定義されるオーステナイトポテンシヤル
(γppt.)が65%以下となるように成分調整し、そ
の成分調整されたフエライト系ステンレス鋼を連
続鋳造し、かつその連続鋳造にあたつて鋳片凝固
過程で電磁誘導撹拌を行うことを特徴とする冷間
圧延用フエライト系ステンレス鋼の製造方法。
[Claims] 1 Ferritic stainless steel, γ ppt. (%) = 288 [%C] - 54 [%Si] + 7.5 [%Mn] + 22 [%Ni] - 18.75 [%Cr] + 350 The composition is adjusted so that the austenite potential (γ ppt. ) defined by [%N] + 338.5 is 65% or less, and the ferritic stainless steel whose composition has been adjusted is continuously cast. A method for producing ferritic stainless steel for cold rolling, characterized by performing electromagnetic induction stirring during the solidification process of a slab.
JP3069781A 1981-03-04 1981-03-04 Production of ferritic stainless steel for cold rolling Granted JPS57146456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3069781A JPS57146456A (en) 1981-03-04 1981-03-04 Production of ferritic stainless steel for cold rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3069781A JPS57146456A (en) 1981-03-04 1981-03-04 Production of ferritic stainless steel for cold rolling

Publications (2)

Publication Number Publication Date
JPS57146456A JPS57146456A (en) 1982-09-09
JPS64149B2 true JPS64149B2 (en) 1989-01-05

Family

ID=12310849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3069781A Granted JPS57146456A (en) 1981-03-04 1981-03-04 Production of ferritic stainless steel for cold rolling

Country Status (1)

Country Link
JP (1) JPS57146456A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100543296B1 (en) * 2001-12-11 2006-01-20 주식회사 포스코 Continuous casting method for ridging improvement of ferritic stainless steel
KR100659467B1 (en) 2005-12-26 2006-12-19 주식회사 포스코 Production method for ferrite stainless steel, continuous casting apparatus for the same and ferrite stainless steel produced by the method and the apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2851384A (en) * 1953-07-03 1958-09-09 Armco Steel Corp Process of diminishing of ridging in 17-chrome stainless steel
JPS5152317A (en) * 1974-11-02 1976-05-08 Nippon Steel Corp Ritsujinguno sukunaifueraitokeisutenresukono seizoho
JPS5198616A (en) * 1975-02-19 1976-08-31 FUKASHIBORISEINISUGURETAFUERAITOKEISUTENRESUKO
JPS5224913A (en) * 1975-08-21 1977-02-24 Nippon Steel Corp Ferritic stainless steel with excellent workability
JPS5315223A (en) * 1976-07-29 1978-02-10 Nippon Steel Corp Method of electromagnetic stirring in continuous casting
JPS53127318A (en) * 1977-03-15 1978-11-07 Kawasaki Steel Co Method of making ferriteebased stainless steel with little ridging
JPS5456017A (en) * 1977-05-26 1979-05-04 Kawasaki Steel Co Ferrite type stainless steel
JPS54125132A (en) * 1978-03-24 1979-09-28 Nisshin Steel Co Ltd Continuous casting of ferite stainless steel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2851384A (en) * 1953-07-03 1958-09-09 Armco Steel Corp Process of diminishing of ridging in 17-chrome stainless steel
JPS5152317A (en) * 1974-11-02 1976-05-08 Nippon Steel Corp Ritsujinguno sukunaifueraitokeisutenresukono seizoho
JPS5198616A (en) * 1975-02-19 1976-08-31 FUKASHIBORISEINISUGURETAFUERAITOKEISUTENRESUKO
JPS5224913A (en) * 1975-08-21 1977-02-24 Nippon Steel Corp Ferritic stainless steel with excellent workability
JPS5315223A (en) * 1976-07-29 1978-02-10 Nippon Steel Corp Method of electromagnetic stirring in continuous casting
JPS53127318A (en) * 1977-03-15 1978-11-07 Kawasaki Steel Co Method of making ferriteebased stainless steel with little ridging
JPS5456017A (en) * 1977-05-26 1979-05-04 Kawasaki Steel Co Ferrite type stainless steel
JPS54125132A (en) * 1978-03-24 1979-09-28 Nisshin Steel Co Ltd Continuous casting of ferite stainless steel

Also Published As

Publication number Publication date
JPS57146456A (en) 1982-09-09

Similar Documents

Publication Publication Date Title
KR900004405B1 (en) Process for a base steel sheet to be surface-treated which is to produce no stretcher strain
JPS58151453A (en) Nondirectional electrical steel sheet with small iron loss and superior magnetic flux density and its manufacture
JPS61235534A (en) Thick steel plate excellent in stopping characteristics for transmission of brittleness and crack and its production
KR100580356B1 (en) Grain oriented electromagnetic steel sheet and manufacturing thereof
JPH0474824A (en) Production of hot rolled steel plate excellent in baking hardenability and workability
CS210603B2 (en) Manufacturing process of sheet metal with oriented grains and high permeability
US4116729A (en) Method for treating continuously cast steel slabs
JPS64149B2 (en)
JPS6043431A (en) Manufacture of soft steel sheet for surface treatment with superior fluting resistance by continuous annealing
JPH07310122A (en) Production of ferritic stainless steel strip having excellent bulging formability
JPH0365001B2 (en)
EP0463182B1 (en) METHOD OF MANUFACTURING Cr-Ni STAINLESS STEEL SHEET EXCELLENT IN SURFACE QUALITY AND MATERIAL THEREOF
JPS61272321A (en) Manufacture of ultra high-strength cold rolled steel sheet
JPH0215612B2 (en)
JPH0665645A (en) Production of high ductility hot rolled high tensile strength steel sheet
JP2000256749A (en) Manufacture of high purity ferritic stainless steel sheet excellent in ridging resistance
JPH0657332A (en) Manufacture of non-oriented silicon steel sheet having high magnetic flux density and low iron loss
JP2716999B2 (en) Manufacturing method of non-oriented electrical steel sheet with high tensile strength and low iron loss
JPH01191741A (en) Manufacture of semiprocessing non-oriented electrical steel sheet
JPH0249373B2 (en)
JPS60245728A (en) Manufacture of high tension steel sheet having not less than 70% yield ratio and high ductility
KR20000037759A (en) Method of fabricating 60kgf/mm2 molten steel
JPH04293731A (en) Production of high (r) value hot rolled steel sheet low in plane anisotropy
JPH03138317A (en) Production of hot rolled plate for high grade nonoriented silicon steel sheet
KR920005613B1 (en) Making process for the feritic stainless cold rolled steel plate