JPS641315B2 - - Google Patents

Info

Publication number
JPS641315B2
JPS641315B2 JP53050687A JP5068778A JPS641315B2 JP S641315 B2 JPS641315 B2 JP S641315B2 JP 53050687 A JP53050687 A JP 53050687A JP 5068778 A JP5068778 A JP 5068778A JP S641315 B2 JPS641315 B2 JP S641315B2
Authority
JP
Japan
Prior art keywords
light
layer
recording
recording medium
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53050687A
Other languages
Japanese (ja)
Other versions
JPS5437739A (en
Inventor
Edowaado Beru Aran
Arufuretsudo Barutoriini Robaato
Buruumu Aren
Josefu Baaku Uiriamu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RCA Corp
Original Assignee
RCA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RCA Corp filed Critical RCA Corp
Publication of JPS5437739A publication Critical patent/JPS5437739A/en
Publication of JPS641315B2 publication Critical patent/JPS641315B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/254Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of protective topcoat layers
    • G11B7/2542Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of protective topcoat layers consisting essentially of organic resins
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B2007/25705Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • G11B2007/2571Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing group 14 elements except carbon (Si, Ge, Sn, Pb)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B2007/25705Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • G11B2007/25715Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing oxygen
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/258Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers
    • G11B7/2585Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers based on aluminium
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/258Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers
    • G11B7/2595Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers based on gold

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は新規な光学的記録媒体、特に吸光層
で被覆された反射層を基板上に設け、さらに薄く
て硬い不活性透明上被層を被着して成る光学的記
録媒体とそれに情報の記録された情報記録体に関
する。 スポングはレーザービームのような収束変調光
束を光融除型記録媒体に当てる融除型記録方式に
ついて説明している。この記録媒体は光吸収性材
料で被覆した光反射性材料の層を基板上に設けた
もので、その吸光層の厚さは反射率を極度に低下
させて入射光エネルギの最大部分を捕集して熱エ
ネルギに変換し得るように選定されている。この
熱エネルギによつて、吸光材料の光の当つた部分
が昇華または融解し、それによつて光反射層の対
応部分が露出される。再生時にはこの最低反射率
の吸光層と光反射層との照度差を検知するのであ
る。 この方面の研究によつて使用材料の性能は向上
してきたが、この記録媒体の1例として、熱の不
導体で表面の平滑な基板にアルミニウムのような
光反射性材料の薄膜を被覆し、このアルミニウム
被膜を不働態化した後4−フエニルアゾ−1−ナ
フチルアミンのような有機吸光材料の被膜を設け
たものがある。 これに対して、光反射層に2酸化シリコン等の
透明誘電層を被着し、その上に金属薄膜を設けて
吸光層としたものもある。これに最もよく用いら
れる金属はチタンである。 吸光層に有機染料を用いる場合は染料層の機械
的強度に問題が残されている。この染料層に損傷
を与えずに記録媒体を取扱い易くするために機械
的特性のよい保護被膜を設ける案もある。このよ
うな上被層はまた染料層または金属吸光層と雰囲
気との反応を防止して記録媒体の寿命を長くする
働きもする。 上記2形式の記録媒体に共通の今1つの問題
は、周囲から媒体に沈着して信号の欠陥または欠
落を生ずる表面の塵埃の効果である。この塵埃粒
子は記録用レーザービームの収束光点下に移動し
てトラツクのその部分を遮光し、その画像信号部
分に対する情報点の形成を妨害する。この塵埃粒
子のあつた記録トラツク部分を再生すると、その
情報の一時的欠落による画像の欠陥または欠落が
認められる。この発明の記録媒体では吸光層に擦
過その他の損傷を与えることなくこの塵埃を安全
に除去することができる。 この発明による新規な光学的記録媒体は、吸光
性材料で被覆され、さらに硬くて透明な固形透明
不活性材料の薄層で上被を施された光反射性材料
から成り、この保護上被層があるため、記録媒体
を払拭または洗浄して、吸光層を損傷することな
く表面の塵埃粒子を除去することができる上、吸
光層が雰囲気に化学的に侵されるのが防止され
る。 この発明は所定周波数の光を発する記録用レー
ザービームに用いる記録用材に関するもので、こ
の用材はそのレーザ周波数の光を反射する材料の
層と、この層を被覆するそのレーザ周波数の光を
吸収する材料の層とを含み、この吸光層を覆つて
払拭または洗浄により表面の汚染粒子を除去し得
る薄い透明不活性の保護上被層が設けられてい
る。吸光層が清浄に保たれておれば、この上被層
を必要に応じて記録後に施こすこともできる。 光反射性材料は光学的に平滑で接着性のよい基
板表面に被着することができる。この基板にはガ
ラスまたはプラスチツクの平板または円板が適し
ている。反射層は記録に用いる波長の光を反射す
る必要がある。厚さ約800Åの金の薄膜が良好な
不活性反射層を与えるが、厚さ250〜500Åのアル
ミニウム薄膜もこの目的に充分で、アルミニウム
薄膜は表面の不働態化のため深さ約30Åまで酸化
することができる。 吸光層は記録に用いる波長の光を吸収する必要
がある上、この層は反射率を最低ならしめる厚さ
の非晶質密着性の薄膜を形成する必要があり、ま
た低温で容易に融除されて形状が明瞭で規則正し
い開孔を形成しなければならない。染料スーダン
ブラツクBの真空蒸着によつて得られる4−フエ
ニルアゾ−1−ナフチルアミンの薄膜は優秀な被
膜を形成するが、光反射層を2酸化シリコンで被
覆した上にチタン薄膜を被着しても良好な吸光層
が得られる。 この発明による上被層の材料としては、疎水性
で、周囲条件並びに記録媒体の洗浄に用いるすべ
ての溶液に対して安定であることが望ましい。ま
たこの材料は通常非晶質で記録再生用の波長に対
して光学的に透明で散乱を生じないものが適して
いる。この上被層を通して信号を記録するとき、
その上被層がその下側の信号素子の形成を妨害し
たり再生時に画像品質に実質的な影響を及ぼすこ
とがあつてはならない。従つて、上被材料は充分
高融点高硬度で記録時の破損に耐えることが望ま
しい。吸光層に用いられる有機染料は大抵の有機
溶剤に容易に溶けるから、上被材料の所要特性は
無溶剤被着法によつて非晶質被膜を形成し得るこ
とであり、さらに通常の取扱いによる機械的応力
に耐えることが望ましい。 薄い保護上被層の厚さを注意深く調節すれば、
吸光層の無反射吸光状態を最初のまま保存するこ
とができる。光学的不働態の無反射上被層の厚さ
は、mを整数、λをレーザからの記録再生光の波
長、nをその波長における上被層の材料の屈折率
としたとき、mλ/2nに等しいのが最適である。 この発明には有機無機のどちらの上被材料も使
用に適しているが、無機誘電材料の方が融点が高
くて有機材料より硬い被膜を形成し、記録中の破
損の危険性が低い。その上無機材料は通常円板の
洗浄等に用いるどの有機溶剤にも侵されないか
ら、有機材料よりは若干融通性の高い上被層を形
成する。 推奨実施例においては光反射層および吸光層を
予め被着した円板に適当な厚さの2酸化シリコン
(SiO2)の上被層を設ける。このSiO2層を形成す
る方法としては、高真空中における電子ビーム被
着またはシラン等の気体単量体からの反応性グロ
ー放電が好ましい。この2方法により形成される
SiO2層の間には認知し得る差異はない。抵抗加
熱による場合はSiOx(但し1<x<2)を生じ、
これはSiO2より強度が低い。 この発明の上被薄層に適するものとして数種の
有機材料も認知されている。蔗糖の水酸基をアセ
チルオキシ基、ベンゾイルオキシ基等のエステル
基で置換した蔗糖誘導体は良好な保護上被層を形
成する。例えば6個以上の水酸基をベンゾイルオ
キシ基で置換した蔗糖から形成した安息香酸蔗糖
層を記録媒体の吸光層上に蒸着する。8酢酸蔗糖
を蒸着しても良好な上被層が得られる。 この発明に用いる上被層に適する他の材料とし
てロジン酸のペンタエリトリツト誘導体がある。
この材料は蒸着可能の低分子量(3000〜7000)熱
可塑性物質である。一部または全部水素化された
ロジン酸のペンタエリトリツトエステルで、主要
ロジン酸成分がアビエチン酸で軟化点が約104℃
のものは、良好な上被層を形成する。 吸光層の表面にグロー放電法で形成した、また
は吸光層の表面に被着させた反応性単量体を重合
させる方法で形成した高度の橋絡結合を持つ薄膜
も良好な上被層となる。このような薄膜としては
アセチレンと窒素との混合物(混合比1:3)ま
たはアルゴン担体ガスとペルフルオロエチルシク
ロヘキサンとの混合物をグロー放電に曝して生成
したものも適当である。米国特許第3342754号明
細書記載の方法を用いても、一般式 の反復単位を持つ高度に橋絡結合した同様の重合
被膜が得られる。但し、nは重合体中の反復単位
数、RおよびR′はHまたはClである。 次にこの発明を添付図面を参照しつつさらに詳
細に説明する。 第1図は記録光線に露出する前のこの発明の記
録媒体24を示すが、基板110、光反射層11
2、その上の透明不働態化層114、吸光層11
6、2酸化シリコンその他適当な無機または有機
材料の上被層120から構成されている。 第2図は記録光線に露出した後のこの発明の記
録媒体24を示すが、吸光層116は融除されて
開孔118を残し、不働態化層114を光に曝し
ている。上被層120はそのまま残つている。記
録後の記録媒体すなわち情報記録体は第2図のよ
うに1個だけではなく複数個の開孔118を持つ
ことは明らかである。 この発明の記録媒体の使用態様は第3図により
さらに詳細に説明することができる。記録に際し
ては、レーザ10から発した光が変調器12に供
給され、ここで入力電気信号源14に応じて変調
される。この変調された光は記録用光学系16に
より拡大されて、強度変調レーザービームの直径
を対物レンズ18の所要開口度を満たすように大
きくする。この拡大変調レーザービームは偏光ビ
ーム分割器20によつて全反射され、ビーム回転
1/4波長板22を通つて対物レンズ18に入射す
る。さらに変調記録ビームは第1図に示すような
記録媒体24に入射し、その吸光層の一部を融除
して光反射層の一部を露出する。記録媒体24は
ターンテーブル駆動装置26により約1800回転/
分の速度で渦線トラツクを描きつつ回転される。
収束サーボ機構28は対物レンズ18と記録媒体
24の表面との距離を一定に保つ働きをする。 再生時には未変調の強度の低いレーザービーム
すなわち記録媒体に融除現象を起さないレーザー
ビームにより記録媒体24の記録ビームの径路を
追跡させる。すると記録された反射・無反射のパ
タンによつて反射光が変調され、対物レンズ18
および1/4波長板22を通つて戻つて来る。この
光は1/4波長板22を2回通つて偏光面が90゜回転
されているが、偏光ビーム分割器20を通つて再
生光学系30により光検知器32に送られる。こ
の光検知器32は反射光を入力信号に相当する電
気信号に変換して出力端子34に出力する。トラ
ツキングサーボ機構36は再生光学系30を通る
光を監視して再生中ビームがトラツクを外れない
ようにする。 この発明の記録媒体は信号対雑音比45〜50dB
平均48dBの高品質の記録を作ることができるが、
この信号対雑音比を5dB以下低下させずに、上被
層を通して有機染料層に光誘導熱記録を行うこと
ができる。また驚くべきことに、チタン吸光層を
2酸化シリコンで上被した場合は信号対雑音比が
3〜4dB上昇する。上記信号対雑音比は放送標準
の範囲内にあり、信号対雑音比がもつと低い記録
媒体でも一般消費者用のビデオレコード盤やデジ
タル符号化情報記録盤として有用である。 次にこの発明を実施例について説明するが、こ
れはこの発明が以下の記載に限定されることを意
味するものではない。 例 1 直径30.5cmのガラス円板に厚さ約300Åのアル
ミニウム層を被着し、その表面を約30Åの深さま
で酸化して金属層を不働態化した後、この上に染
料スーダンブラツクBの蒸着と熱分解によつて厚
さ約525Åの4−フエニルアゾ−1−ナフチルア
ミンの層を被着し、この染料層の上に厚さ約1670
Åの2酸化シリコン上被層をシランのグロー放電
により形成した。 このようにして得られた記録媒体を第3図に示
すような装置のアルゴンレーザから出る波長4880
Åの光の50ナノ秒パルスに露光したが、レーザの
出力を200〜300mWに設定して、信号対雑音比
45dBの最良記録が得られた。 記録中に2酸化シリコン被膜が破壊したような
形跡は再生中に認められず、1000倍の顕微鏡検査
でも記録中薄膜に変化がなかつたことが判つた。
記録後2酸化シリコン上被層上にアルミニウム被
膜を被着してみたところ、その被膜中に見える記
録信号の回折パタンは2酸化シリコン被膜の表面
が若干揺動していることを示していた。 例 2 直径30.5cmの円板に厚さ800Åの金の層を被着
し、その上に厚さ400Åの4−フエニルアゾ−1
−ナフチルアミン染料層を被着した後、例1と同
様にしてこの染料層に2酸化シリコンの上被層を
被着した。この記録媒体に例1のように記録を行
つて記録トラツク当りの欠落数を測定したところ
1トラツク当り平均14であつた。 次にこの記録媒体を塵埃室内に15分間おいて重
さ12mg、直径5μの酸化アルミニウム粒子を沈着
させた後同様の測定を行つたところ平均欠落数は
1トラツク当り150に増加した。次にこの記録媒
体をイソプロピルアルコールで回転(スピン)洗
浄した後測定すると、その平均数は1トラツク当
り29に減少した。 例 3 直径30.5cmのガラス円板に厚さ約300Åのアル
ミニウム層を被着し、このアルミニウム層の上に
厚さ約800Åの2酸化シリコン層を被着した後、
この2酸化シリコン層の上に厚さ約50Åのチタン
吸光層を被着し、さらにこれに2酸化シリコンの
電子ビーム蒸着により約3340Åの保護層を被着し
た。この記録媒体とこれと同様で2酸化シリコン
上被層のない記録媒体に例1と同様に記録を行つ
た。出力を500mWに設定すると、上被層のない
記録媒体の信号対雑音比は46dB、2酸化シリコ
ン上被層のあるものは49dBであつた。出力設定
が1000mWまでの範囲では無上被記録媒体の信号
対雑音比は最大46dB、上被付記録媒体では最大
50dBであつた。 例 4 例2において染料層の上に2酸化シリコン層の
代りに厚さ約1630Åの安息香酸蔗糖層を被着し
た。これに用いた安息香酸蔗糖は蔗糖の−OH基
の約75%以上が
This invention relates to a novel optical recording medium, in particular an optical recording medium in which a reflective layer coated with a light-absorbing layer is provided on a substrate, and a thin, hard, inert transparent overcoat layer is further applied thereto, and information is recorded thereon. related to information recording bodies. Spong describes an ablative recording method in which a convergent modulated light flux, such as a laser beam, is applied to an optical ablative recording medium. This recording medium consists of a layer of light-reflecting material coated with a light-absorbing material on a substrate, and the thickness of the light-absorbing layer is such that the reflectance is extremely reduced so that the maximum portion of the incident light energy is collected. It is selected so that it can be converted into thermal energy. This thermal energy causes the exposed portions of the light-absorbing material to sublime or melt, thereby exposing the corresponding portions of the light-reflecting layer. During reproduction, the difference in illuminance between the light-absorbing layer and the light-reflecting layer having the lowest reflectance is detected. Research in this area has improved the performance of the materials used, but as an example of this recording medium, a thin film of a light-reflecting material such as aluminum is coated on a thermally insulating substrate with a smooth surface. There is a method in which this aluminum coating is made passivated and then a coating of an organic light-absorbing material such as 4-phenylazo-1-naphthylamine is provided. On the other hand, there is also a light-absorbing layer in which a transparent dielectric layer such as silicon dioxide is deposited on the light-reflecting layer, and a metal thin film is provided on top of the transparent dielectric layer. The most commonly used metal for this is titanium. When an organic dye is used in the light absorbing layer, there remains a problem with the mechanical strength of the dye layer. In order to make the recording medium easier to handle without damaging the dye layer, there is a proposal to provide a protective coating with good mechanical properties. Such an overcoat layer also serves to prolong the life of the recording medium by preventing reaction of the dye layer or metal absorbing layer with the atmosphere. Another problem common to the two types of recording media mentioned above is the effect of surface dust that settles on the media from the surroundings and causes defects or omissions in the signal. These dust particles move under the converging light spot of the recording laser beam and shade that part of the track, preventing the formation of information points for that part of the image signal. When a recorded track portion containing dust particles is reproduced, image defects or omissions due to temporary omission of the information are observed. In the recording medium of the present invention, this dust can be safely removed without causing scratches or other damage to the light absorbing layer. The novel optical recording medium according to the invention consists of a light-reflecting material coated with a light-absorbing material and further overcoated with a thin layer of a hard transparent solid transparent inert material, the protective overcoat being Therefore, the recording medium can be wiped or washed to remove dust particles on the surface without damaging the light-absorbing layer, and the light-absorbing layer is prevented from being chemically attacked by the atmosphere. This invention relates to a recording material used for a recording laser beam that emits light of a predetermined frequency, and this material includes a layer of material that reflects light of the laser frequency and a layer of material that absorbs the light of the laser frequency that covers this layer. A thin transparent inert protective overcoat is provided over the absorbing layer to remove surface contaminant particles by wiping or washing. This overcoat layer can be applied after recording if desired, provided the light absorbing layer is kept clean. The light-reflective material can be applied to an optically smooth, well-adhesive substrate surface. A glass or plastic plate or disk is suitable for this substrate. The reflective layer needs to reflect light of the wavelength used for recording. A thin film of gold approximately 800 Å thick provides a good passive reflective layer, but a thin aluminum film 250-500 Å thick is also sufficient for this purpose; the aluminum film is oxidized to a depth of approximately 30 Å for surface passivation. can do. The light-absorbing layer needs to absorb light at the wavelength used for recording, and it also needs to form an amorphous, adhesive thin film with a thickness that minimizes reflectance, and it also needs to be easily ablated at low temperatures. The holes must be formed with a clear shape and a regular pattern. A thin film of 4-phenylazo-1-naphthylamine obtained by vacuum evaporation of the dye Sudan Black B forms an excellent film, but a thin film of titanium applied over a light-reflecting layer of silicon dioxide does not work. A good light-absorbing layer can be obtained. The material for the overcoat layer according to the invention is preferably hydrophobic and stable to ambient conditions as well as to all solutions used for cleaning the recording medium. In addition, this material is usually amorphous, optically transparent to the wavelength for recording and reproducing, and is suitably a material that does not cause scattering. When recording a signal through this overcoat,
Additionally, the overcoat must not interfere with the formation of the underlying signal elements or substantially affect image quality during reproduction. Therefore, it is desirable that the overcoat material has a sufficiently high melting point and hardness to withstand breakage during recording. Since the organic dyes used in the light-absorbing layer are easily soluble in most organic solvents, the required properties of the overcoat material are that it can form an amorphous coating by solvent-free deposition methods, and also by normal handling. It is desirable to withstand mechanical stress. By carefully adjusting the thickness of the thin protective overcoat,
The non-reflective light absorbing state of the light absorbing layer can be preserved as it was. The thickness of the optically passive non-reflective top layer is mλ/2n, where m is an integer, λ is the wavelength of the recording/reproducing light from the laser, and n is the refractive index of the top layer material at that wavelength. is optimally equal to . Although both organic and inorganic overcoating materials are suitable for use in this invention, inorganic dielectric materials have higher melting points and form harder coatings than organic materials, and are less susceptible to breakage during recording. Additionally, inorganic materials are not attacked by any of the organic solvents typically used to clean discs, and thus provide a slightly more flexible overcoat layer than organic materials. In a preferred embodiment, a disk that has previously been coated with a light-reflecting layer and a light-absorbing layer is provided with an overcoat layer of silicon dioxide (SiO 2 ) of a suitable thickness. Preferred methods for forming this SiO 2 layer include electron beam deposition in a high vacuum or reactive glow discharge from a gaseous monomer such as silane. Formed by these two methods
There is no perceptible difference between the two SiO layers. When using resistance heating, SiO x (1<x<2) is produced,
It has lower strength than SiO2 . Several organic materials are also recognized as suitable for the overcoat layer of this invention. Sucrose derivatives in which the hydroxyl group of sucrose is substituted with an ester group such as an acetyloxy group or a benzoyloxy group form a good protective overcoat. For example, a benzoic acid sucrose layer formed from sucrose in which six or more hydroxyl groups are substituted with benzoyloxy groups is deposited on the light-absorbing layer of the recording medium. A good overcoat layer can also be obtained by vapor deposition of 8-acetate sucrose. Other materials suitable for the overcoat layer used in this invention include pentaerythritol derivatives of rosin acid.
This material is a low molecular weight (3000-7000) thermoplastic that can be vapor deposited. A pentaerythritol ester of partially or fully hydrogenated rosin acid, with the main rosin acid component being abietic acid and a softening point of approximately 104°C.
Forms a good overcoat layer. A highly cross-linked thin film formed on the surface of the light-absorbing layer by glow discharge or by polymerization of reactive monomers deposited on the surface of the light-absorbing layer also makes a good overcoat. . Suitable such thin films are those produced by exposing a mixture of acetylene and nitrogen (mixing ratio 1:3) or a mixture of argon carrier gas and perfluoroethylcyclohexane to a glow discharge. Even if the method described in US Pat. No. 3,342,754 is used, the general formula A similar highly cross-linked polymeric coating is obtained with repeating units of . However, n is the number of repeating units in the polymer, and R and R' are H or Cl. Next, the present invention will be explained in more detail with reference to the accompanying drawings. FIG. 1 shows a recording medium 24 of the present invention before exposure to a recording beam, showing a substrate 110, a light reflective layer 11
2. Transparent passivation layer 114 thereon, light absorption layer 11
6, an overcoat layer 120 of silicon dioxide or other suitable inorganic or organic material. FIG. 2 shows the recording medium 24 of the present invention after exposure to recording light, with the light absorbing layer 116 being ablated leaving apertures 118 and exposing the passivation layer 114 to light. The overcoat layer 120 remains in place. It is clear that the recording medium after recording, that is, the information recording body, has not only one aperture 118 but a plurality of apertures 118 as shown in FIG. The manner of use of the recording medium of the present invention can be explained in more detail with reference to FIG. During recording, light emitted by a laser 10 is supplied to a modulator 12 where it is modulated according to an input electrical signal source 14. This modulated light is expanded by the recording optical system 16 to increase the diameter of the intensity modulated laser beam to meet the required aperture of the objective lens 18. This expanded modulated laser beam is totally reflected by the polarizing beam splitter 20 and is incident on the objective lens 18 through the beam rotating quarter-wave plate 22 . Furthermore, the modulated recording beam is incident on a recording medium 24 as shown in FIG. 1, ablating a portion of its light-absorbing layer and exposing a portion of its light-reflecting layer. The recording medium 24 is rotated approximately 1800 times by the turntable drive device 26.
It rotates while drawing a vortex track at a speed of 1 minute.
The convergence servo mechanism 28 functions to keep the distance between the objective lens 18 and the surface of the recording medium 24 constant. During reproduction, the path of the recording beam on the recording medium 24 is traced by an unmodulated low-intensity laser beam, that is, a laser beam that does not cause an ablation phenomenon on the recording medium. Then, the reflected light is modulated by the recorded reflection/non-reflection pattern, and the objective lens 18
and returns through the quarter-wave plate 22. This light passes through the 1/4 wavelength plate 22 twice and has its polarization plane rotated by 90 degrees, and is sent to the photodetector 32 by the reproducing optical system 30 through the polarizing beam splitter 20. This photodetector 32 converts the reflected light into an electrical signal corresponding to an input signal and outputs it to an output terminal 34. Tracking servo mechanism 36 monitors the light passing through reproduction optics 30 to ensure that the beam does not go off track during reproduction. The recording medium of this invention has a signal-to-noise ratio of 45 to 50 dB.
It can make high-quality recordings with an average of 48dB, but
Photoinduced thermal recording can be performed on the organic dye layer through the overcoat layer without reducing the signal-to-noise ratio by more than 5 dB. Also surprisingly, when the titanium absorption layer is overlaid with silicon dioxide, the signal-to-noise ratio increases by 3-4 dB. The signal-to-noise ratio is within the range of broadcasting standards, and even recording media with a low signal-to-noise ratio are useful as video records and digitally encoded information records for general consumers. Next, the present invention will be described with reference to Examples, but this does not mean that the present invention is limited to the following description. Example 1 An aluminum layer with a thickness of about 300 Å is deposited on a glass disk with a diameter of 30.5 cm. After the surface of the aluminum layer is oxidized to a depth of about 30 Å to passivate the metal layer, the dye Sudan Black B is applied on top of the aluminum layer. A layer of 4-phenylazo-1-naphthylamine approximately 525 Å thick is deposited by vapor deposition and pyrolysis, and on top of this dye layer a layer approximately 1670 Å thick is deposited.
A silicon dioxide overcoat layer of 1.5 Å was formed by glow discharge of silane. The recording medium obtained in this way can be used at a wavelength of 4880 nm emitted from the argon laser of the apparatus shown in Figure 3.
Exposure to 50 ns pulses of light at Å, the laser power was set to 200-300 mW, and the signal-to-noise ratio
The best recording of 45dB was obtained. No evidence that the silicon dioxide film was destroyed during recording was observed during playback, and microscopic examination at 1000x revealed that there was no change in the thin film during recording.
When an aluminum film was deposited on the silicon dioxide top layer after recording, the diffraction pattern of the recorded signal visible in the film showed that the surface of the silicon dioxide film was slightly oscillated. Example 2 A 800 Å thick layer of gold is deposited on a 30.5 cm diameter disk, and a 400 Å thick layer of 4-phenylazo-1 is placed on top of it.
- After the naphthylamine dye layer had been applied, a silicon dioxide overcoat layer was applied to this dye layer analogously to Example 1. When recording was carried out on this recording medium as in Example 1 and the number of missing pieces per recorded track was measured, the average number of missing pieces per track was 14. Next, this recording medium was placed in a dust chamber for 15 minutes to deposit aluminum oxide particles weighing 12 mg and having a diameter of 5 .mu.m, and the same measurement was carried out, and the average number of missing pieces increased to 150 per track. Next, when this recording medium was spin-cleaned with isopropyl alcohol and measured, the average number decreased to 29 per track. Example 3 After depositing an aluminum layer approximately 300 Å thick on a glass disk with a diameter of 30.5 cm, and depositing a silicon dioxide layer approximately 800 Å thick on top of this aluminum layer,
A titanium absorbing layer approximately 50 Å thick was deposited over the silicon dioxide layer, and a protective layer approximately 3340 Å thick was deposited thereon by electron beam evaporation of silicon dioxide. Recording was carried out in the same manner as in Example 1 on this recording medium and a similar recording medium without a silicon dioxide overcoat. When the power was set at 500 mW, the signal-to-noise ratio for the recording medium without the overcoat was 46 dB and with the silicon dioxide overlayer was 49 dB. For output settings up to 1000 mW, the signal-to-noise ratio for non-topped recording media is up to 46 dB, and for top-attached recording media is up to 46 dB.
It was 50dB hot. Example 4 In Example 2, a sucrose benzoate layer with a thickness of about 1630 Å was deposited over the dye layer instead of the silicon dioxide layer. The benzoic acid sucrose used for this purpose contains approximately 75% or more of the -OH groups in sucrose.

【式】基で置換されたも のである。 この安息香酸蔗糖の上被層の被着前後に例1と
同様に記録を行つた。この記録に用いた対物レン
ズには約0.08mmのカバーグラス補正を行つた。レ
ーザ出力を250mWに設定すると、被着前の記録
素子では信号対雑音比が43dB、被着後のもので
は40dBで、安息香酸蔗糖上被はそのまま残つて
いた。 比較例 例4の有機染料層の上に次の上被材料を被着し
たが、これらの材料で非晶質の光学的品質の薄膜
を形成するものはなかつた。
[Formula] is substituted with a group. Recordings were made in the same manner as in Example 1 before and after the application of this benzoic acid sucrose overcoat layer. The objective lens used for this recording was subjected to a cover glass correction of approximately 0.08 mm. When the laser power was set to 250 mW, the signal-to-noise ratio was 43 dB for the recording element before deposition and 40 dB for the recording element after deposition, with the benzoate sucrose overcoat remaining intact. Comparative Example The following overcoat materials were deposited over the organic dye layer of Example 4, but none of these materials formed an amorphous optical quality film.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は記録前のこの発明の記録媒体の断面
図、第2図は記録後のこの発明の記録媒体の断面
図、第3図はこの発明の記録媒体を使用し得る記
録再生方式の略示図である。 24……記録媒体、110……基板、112…
…光反射層、114……透明不働態化層、116
……吸光層、118……開孔、120……上被
層。
FIG. 1 is a cross-sectional view of the recording medium of the present invention before recording, FIG. 2 is a cross-sectional view of the recording medium of the present invention after recording, and FIG. 3 is an outline of a recording/reproducing method that can use the recording medium of the present invention. It is an illustration. 24...recording medium, 110...substrate, 112...
...Light reflective layer, 114...Transparent passivation layer, 116
... Light absorbing layer, 118 ... Open pores, 120 ... Overcoat layer.

Claims (1)

【特許請求の範囲】 1 光反射性材料の層と、この光反射性材料を覆
う光吸収性材料の層と、この光吸収性材料を覆つ
て表面の汚染物質を除去し得るようにするための
固形透明硬質不活性の薄い保護上被層であつて、
水酸基をエステル基で置換した庶糖誘導体、ロジ
ン酸のペンタエリトリツト誘導体およびアセチレ
ンまたはペルフルオロエチルシクロヘキサンから
グロー放電により生成した重合体から成る群から
選ばれた材料で形成されたものとを具え、上記上
被層の厚さは使用するレーザービームの波長並び
にその波長におけるその上被材料の屈折率の関数
であることを特徴とする、所要周波数の光を発す
るレーザービームによる記録に用いる記録媒体。 2 使用する光の周波数において反射性を呈する
材料の層と、この光反射性材料層を覆う上記周波
数の光を吸収する材料の層から成り記録情報を表
わす互に間隔を隔てた凹部の列を有する層と、こ
の光吸収材料層を覆つて表面の汚染物質を除去し
得るようにするための固形透明硬質不活性の薄い
保護上被層であつて、水酸基をエステル基で置換
した庶糖誘導体、ロジン酸のペンタエリトリツト
誘導体およびアセチレンまたはペルフルオロエチ
ルサイクロヘキサンからからグロー放電により生
成した重合体から成る群から選ばれた材料で形成
されたものとを具え、上記上被層の厚さは上記使
用する光の波長並びにその波長におけるその上被
材料の屈折率の関数であることを特徴とする、所
要周波数の再生用光ビームを使用する再生装置に
用いる情報記録体。
[Claims] 1. A layer of a light-reflecting material, a layer of a light-absorbing material covering the light-reflecting material, and a layer of a light-absorbing material covering the light-absorbing material so as to be able to remove surface contaminants. a solid transparent hard inert thin protective overcoat of
a saccharide derivative in which a hydroxyl group is substituted with an ester group, a pentaerythritol derivative of rosin acid, and a polymer produced from acetylene or perfluoroethylcyclohexane by glow discharge; Recording medium used for recording with a laser beam emitting light at a desired frequency, characterized in that the thickness of the coating is a function of the wavelength of the laser beam used and also of the refractive index of the coating material at that wavelength. 2 A layer of material that is reflective at the frequency of the light used, and a layer of material that absorbs light at the frequency that covers this light-reflective material layer, and has a row of spaced recesses representing recorded information. a sucrose derivative in which the hydroxyl group is substituted with an ester group; formed of a material selected from the group consisting of a pentaerythritol derivative of rosin acid and a polymer produced by glow discharge from acetylene or perfluoroethylcyclohexane, the thickness of said overcoat layer being as specified above. 1. An information recording medium for use in a reproducing device using a reproducing light beam of a desired frequency, characterized in that the wavelength of the reproducing light is a function of the wavelength of the light and also of the refractive index of the material to be coated at that wavelength.
JP5068778A 1977-08-29 1978-04-26 Laser beam recording media Granted JPS5437739A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US82881677A 1977-08-29 1977-08-29

Publications (2)

Publication Number Publication Date
JPS5437739A JPS5437739A (en) 1979-03-20
JPS641315B2 true JPS641315B2 (en) 1989-01-11

Family

ID=25252817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5068778A Granted JPS5437739A (en) 1977-08-29 1978-04-26 Laser beam recording media

Country Status (8)

Country Link
JP (1) JPS5437739A (en)
DE (1) DE2817945A1 (en)
FR (1) FR2402275A1 (en)
GB (1) GB1603761A (en)
HK (1) HK77386A (en)
MY (1) MY8500779A (en)
NL (1) NL191296C (en)
SG (1) SG38384G (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4101907A (en) * 1977-08-29 1978-07-18 Rca Corporation Overcoat structure for optical video disc
JPS5522961A (en) * 1978-08-07 1980-02-19 Fuji Photo Film Co Ltd Thermal recording material
US4357616A (en) * 1979-03-26 1982-11-02 Hitachi, Ltd. Recording medium
JPS6023037B2 (en) * 1980-03-18 1985-06-05 旭化成株式会社 Information recording member
JPS56161199A (en) * 1980-05-16 1981-12-11 Fuji Photo Film Co Ltd Recording of information using information recording medium
JPS5766544A (en) * 1980-10-14 1982-04-22 Fujitsu Ltd Optical disk medium
JPS62188037A (en) * 1986-02-13 1987-08-17 Central Glass Co Ltd Optical information recording card
JPS6480591A (en) * 1987-09-24 1989-03-27 Nippon Denso Co Optical information recording medium

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3665483A (en) * 1969-06-06 1972-05-23 Chase Manhattan Capital Corp Laser recording medium
US3911444A (en) * 1974-04-04 1975-10-07 Bell Telephone Labor Inc Metal film recording media for laser writing
DE2522928C2 (en) * 1974-05-25 1984-04-05 Canon K.K., Tokyo Recording media, processes for their production and recording processes
AU511031B2 (en) * 1976-03-19 1980-07-24 Rca Corp. Ablative optical recording medium
US4023185A (en) * 1976-03-19 1977-05-10 Rca Corporation Ablative optical recording medium
AU514899B2 (en) * 1977-03-28 1981-03-05 Rca Corp. High density information record
US4101907A (en) * 1977-08-29 1978-07-18 Rca Corporation Overcoat structure for optical video disc

Also Published As

Publication number Publication date
FR2402275A1 (en) 1979-03-30
JPS5437739A (en) 1979-03-20
SG38384G (en) 1985-03-08
GB1603761A (en) 1981-11-25
DE2817945A1 (en) 1979-03-15
NL191296B (en) 1994-12-01
DE2817945C2 (en) 1987-10-08
NL191296C (en) 1995-05-01
NL7804656A (en) 1979-03-02
HK77386A (en) 1986-10-24
MY8500779A (en) 1985-12-31
FR2402275B1 (en) 1985-03-15

Similar Documents

Publication Publication Date Title
US4300143A (en) Thin protective overcoat layer for optical video disc
JPH0335113B2 (en)
US4315269A (en) Thick protective overcoat layer for optical video disc
US4241355A (en) Ablative optical recording medium
JPH0350340B2 (en)
EP0092113B1 (en) Optical recording medium for use in an optical storage system and method for making such recording medium
US4313188A (en) Method of recording an ablative optical recording medium
JP2896231B2 (en) Optical recording medium
US4219826A (en) Optical recording medium
CA1135413A (en) Optical recording medium
JP2000517455A (en) Optical recording medium including cross-linked buffer layer
JPS641315B2 (en)
US4218689A (en) Ablatable medium for optical recording
US4242689A (en) Ablative optical recording medium
EP0161809A1 (en) Overcoated recording elements having amorphous dye and binder optical recording layers
GB2066489A (en) Ablative optical recording medium
US4600682A (en) Optical storage structure
CA1235901A (en) High contrast thin film optical recording medium
JPH0436876B2 (en)
AU649818B2 (en) Optical information recording medium in which a protective layer comprises a Ni-Cr alloy layer
JPH07105063B2 (en) Optical information recording medium
CA1131774A (en) Optical recording medium
GB2066490A (en) Optical recording medium
CA1244129A (en) Optical storage structure
US7014902B2 (en) Optical disc and method for manufacturing the same